This analysis used the backpropagation Levenberg-Marquardt technique coupled through neural networks (BPLMT-NN). The magnetohydrodynamic (MHD) viscous nanofluid flow due to the rotating disk (MHD-VNRD) through the slip effect was investigated. In the existence of a velocity slip condition, this communication investigated the boundary coating flow of viscous nanofluid under MHD conditions. The flow was produced by a disk that was revolving. A fluid effects electricity under the effect of a magnetic field that is transverse. The magnetic field that is generated is neglected when the magnetic Reynolds number is low. The properties of Brownian and thermophoresis motion were demonstrated using a nanofluid simulation. Hypotheses about the boundary coating and low magnetic Reynolds number were made while formulating the problem. To transform nonlinear partial differential equations into a scheme of ordinary differential equations, the similarity transformation was utilized. On the profiles of velocity, temperature, and concentration, a data set for the suggested (BPLMT-NN) was created for the impacts of several important parameters and was illustrated via the explicit Runge-Kutta technique. Using the (BPLMT-NN) testing, training, and validation approach, the estimated result of various situations was endorsed, and the suggested model was evaluated for fitness. After that, the proposed (BPLMT-NN) was validated using mean square error (MSE), regression analysis, and histogram investigations. The novelty of the proposed BPLMT-NN technique has various applications, such as disease diagnosis, robotic control systems, ecosystem evaluation, etc. We conducted analyses of some statistical data like gradient, performance, and epoch of the proposed fluid model. Based on closeness, as well as recommended and reference results, the suggested approach has made a distinction with precision level varying from $ {10}^{-09} $ to $ {10}^{-11} $.
Citation: Yousef Jawarneh, Samia Noor, Ajed Akbar, Rafaqat Ali Khan, Ahmad Shafee. Intelligent neural networks approach for analysis of the MHD viscous nanofluid flow due to rotating disk with slip effect[J]. AIMS Mathematics, 2025, 10(5): 10387-10412. doi: 10.3934/math.2025473
This analysis used the backpropagation Levenberg-Marquardt technique coupled through neural networks (BPLMT-NN). The magnetohydrodynamic (MHD) viscous nanofluid flow due to the rotating disk (MHD-VNRD) through the slip effect was investigated. In the existence of a velocity slip condition, this communication investigated the boundary coating flow of viscous nanofluid under MHD conditions. The flow was produced by a disk that was revolving. A fluid effects electricity under the effect of a magnetic field that is transverse. The magnetic field that is generated is neglected when the magnetic Reynolds number is low. The properties of Brownian and thermophoresis motion were demonstrated using a nanofluid simulation. Hypotheses about the boundary coating and low magnetic Reynolds number were made while formulating the problem. To transform nonlinear partial differential equations into a scheme of ordinary differential equations, the similarity transformation was utilized. On the profiles of velocity, temperature, and concentration, a data set for the suggested (BPLMT-NN) was created for the impacts of several important parameters and was illustrated via the explicit Runge-Kutta technique. Using the (BPLMT-NN) testing, training, and validation approach, the estimated result of various situations was endorsed, and the suggested model was evaluated for fitness. After that, the proposed (BPLMT-NN) was validated using mean square error (MSE), regression analysis, and histogram investigations. The novelty of the proposed BPLMT-NN technique has various applications, such as disease diagnosis, robotic control systems, ecosystem evaluation, etc. We conducted analyses of some statistical data like gradient, performance, and epoch of the proposed fluid model. Based on closeness, as well as recommended and reference results, the suggested approach has made a distinction with precision level varying from $ {10}^{-09} $ to $ {10}^{-11} $.
| [1] |
D. B. Parker, A comparison of algorithms for neuron‐like cells, AIP Conf. Proc., 151 (1986), 327–332. https://doi.org/10.1063/1.36233 doi: 10.1063/1.36233
|
| [2] |
A. Akbar, H. Ullah, M. A. Z. Raja, K. S. Nisar, S. Islam, M. Shoaib, A design of neural networks to study MHD and heat transfer in two phase model of nano-fluid flow in the presence of thermal radiation, Wave. Random Complex, 2022, 1–24. https://doi.org/10.1080/17455030.2022.2152905 doi: 10.1080/17455030.2022.2152905
|
| [3] |
M. Shoaib, M. A. Z. Raja, M. T. Sabir, S. Islam, Z. Shah, P. Kumam, et al., Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet, Sci. Rep., 10 (2020), 1–15. https://doi.org/10.1038/s41598-020-75254-8 doi: 10.1038/s41598-020-75254-8
|
| [4] |
R. A. Khan, H. Ullah, M. A. Z. Raja, M. A. R. Khan, S. Islam, M. Shoaib, Heat transfer between two porous parallel plates of steady nanofluids with Brownian and Thermophoretic effects: A new stochastic numerical approach, Int. Commun. Heat Mass Transf., 126 (2021), 105436. https://doi.org/10.1016/j.icheatmasstransfer.2021.105436 doi: 10.1016/j.icheatmasstransfer.2021.105436
|
| [5] |
Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden–Fowler equation, Comput. Appl. Math., 39 (2020), 1–18. https://doi.org/10.1007/s40314-020-01330-4 doi: 10.1007/s40314-020-01330-4
|
| [6] |
A. Shafiq, A. B. Çolak, T. N. Sindhu, Modeling of Soret and Dufour's convective heat transfer in nanofluid flow through a moving needle with artificial neural network, Arab. J. Sci. Eng., 48 (2023), 2807–2820. https://doi.org/10.1007/s13369-022-06945-9 doi: 10.1007/s13369-022-06945-9
|
| [7] |
M. Shoaib, R. A. Khan, H. Ullah, K. S. Nisar, M. A. Z. Raja, S. Islam, et al., Heat transfer impacts on maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical technique via artificial neural networks, Coatings, 11 (2021), 1483. https://doi.org/10.3390/coatings11121483 doi: 10.3390/coatings11121483
|
| [8] |
A. Akbar, H. Ullah, M. A. Z. Raja, S. Islam, K. S. Nisar, M. Shoaib, Intelligent networks for MHD fluid flow in a thermally stratified medium between coaxial stretchable rotating disks, Wave. Random Complex, 2023, 1–22. https://doi.org/10.1080/17455030.2023.2193852 doi: 10.1080/17455030.2023.2193852
|
| [9] |
T. N. Sindhu, A. B. Çolak, S. A. Lone, A. Shafiq, Reliability study of generalized exponential distribution based on inverse power law using artificial neural network with Bayesian regularization, Qual. Reliab. Eng. Int., 39 (2023), 2398–2421. https://doi.org/10.1016/j.triboint.2023.108544 doi: 10.1016/j.triboint.2023.108544
|
| [10] |
R. Lin, Q. Zhou, X. Nan, T. Hu, A parallel optimization method for robustness verification of deep neural networks, Mathematics, 12 (2024), 1884. https://doi.org/10.3390/math12121884 doi: 10.3390/math12121884
|
| [11] | D. D. Ganji, M. Azimi, Application of DTM on MHD Jeffery Hamel problem with nanoparticle, UPB Sci. Bull. Ser. A, 75 (2013), 223–230. |
| [12] |
F. Garoosi, G. Bagheri, M. M. Rashidi, Two phase simulation of natural convection and mixed convection of the nanofluid in square cavity, Powder Technol., 275 (2015), 239–256. https://doi.org/10.1016/j.powtec.2015.02.013 doi: 10.1016/j.powtec.2015.02.013
|
| [13] |
M. K. Nayak, N. S. Akbar, V. S. Pandey, Z. H. Khan, D. Tripathi, 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation, Powder Technol., 315 (2017), 205–215. https://doi.org/10.1016/j.powtec.2017.04.017 doi: 10.1016/j.powtec.2017.04.017
|
| [14] | S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ANL/MSD/CP-84938; CONF-951135-29, Argonne National Laboratory, IL, 1995. |
| [15] |
M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: A numerical study, Int. J. Heat Mass Tran., 96 (2016), 513–524. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059 doi: 10.1016/j.ijheatmasstransfer.2016.01.059
|
| [16] |
M. M. Syam, M. Alkhedher, M. I. Syam, Thermal and hydrodynamic analysis of MHD nanofluid flow over a permeable stretching surface in porous media: Comparative study of Fe3O4, Cu, and Ag nanofluids, Int. J. Thermofluids, 26 (2025), 101055. https://doi.org/10.1016/j.ijft.2025.101055 doi: 10.1016/j.ijft.2025.101055
|
| [17] |
O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Tran., 62 (2013), 526–533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049 doi: 10.1016/j.ijheatmasstransfer.2013.03.049
|
| [18] |
M. M. Bhatti, M. M. Rashidi, Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface, Int. J. Appl. Comput. Math., 3 (2017), 2275–2289. https://doi.org/10.1007/s40819-016-0193-4 doi: 10.1007/s40819-016-0193-4
|
| [19] |
W. Ibrahim, B. Shankar, M. M. Nandeppanavar, MHD stagnation point flow and heat transfer due to nanofluid towards stretching sheet, Int. J. Heat Mass Tran., 56 (2013), 1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.034 doi: 10.1016/j.ijheatmasstransfer.2012.08.034
|
| [20] |
M. M. Syam, M. I. Syam, Investigation of slip flow dynamics involving Al2O3 and Fe3O4 nanoparticles within a horizontal channel embedded with porous media, Int. J. Thermofluids, 24 (2024), 100934. https://doi.org/10.1016/j.ijft.2024.100934 doi: 10.1016/j.ijft.2024.100934
|
| [21] |
S. Nadeem, S. Ahmad, N. Muhammad, Computational study of Falkner-Skan problem for a static and moving wedge, Sensors Actuat. B-Chem., 263 (2018), 69–76. https://doi.org/10.1016/j.snb.2018.02.039 doi: 10.1016/j.snb.2018.02.039
|
| [22] |
T. Von Karman, Uber laminare and turbulente Reibung, Z. Angew. Math. Mech., 1 (1921), 233–252. https://doi.org/10.1002/zamm.19210010401 doi: 10.1002/zamm.19210010401
|
| [23] |
M. Turkyilmazoglu, P. Senel, Heat and mass transfer of the flow due to a rotating rough and porous disk, Int. J. Therm. Sci., 63 (2013), 146–158. https://doi.org/10.1016/j.ijthermalsci.2012.07.013 doi: 10.1016/j.ijthermalsci.2012.07.013
|
| [24] |
M. M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties, Int. J. Heat Mass Tran., 70 (2014) 892–917. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.058 doi: 10.1016/j.ijheatmasstransfer.2013.11.058
|
| [25] |
M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94 (2014), 139–146. https://doi.org/10.1016/j.compfluid.2014.02.009 doi: 10.1016/j.compfluid.2014.02.009
|
| [26] |
K. Sharma, N. Vijay, F. Mabood, I. A. Badruddin, Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties, Int. Commun. Heat Mass Tran., 133 (2022), 105977. https://doi.org/10.1016/j.icheatmasstransfer.2022.105977 doi: 10.1016/j.icheatmasstransfer.2022.105977
|
| [27] |
M. Mustafa, J. A. Khan, T. Hayat, A. Alsaedi, On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk, J. Mol. Liq., 211 (2015) 119–125. https://doi.org/10.1016/j.molliq.2015.06.065 doi: 10.1016/j.molliq.2015.06.065
|
| [28] |
M. Sheikholeslami, M. Hatami, D. D. Ganji, Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process, J. Mol. Liq., 211 (2015) 577–583. https://doi.org/10.1016/j.molliq.2015.07.006 doi: 10.1016/j.molliq.2015.07.006
|
| [29] | J. C. Maxwell, A treatise on electricity and magnetism, 2Eds., Clarendon Press, Oxford, UK, 1873. |
| [30] | K. B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface, Magn. Gidrodin., 4 (1974), 146–147. |
| [31] | A. Chakrabarti, A. S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Q. Appl. Math., 37 (1979) 73–78. Available from: https://www.ams.org/journals/qam/1979-37-01/S0033-569X-1979-99636-6/S0033-569X-1979-99636-6.pdf. |
| [32] |
T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects, Adv. Powder Technol., 27 (2016) 504–512. https://doi.org/10.1016/j.apt.2016.02.002 doi: 10.1016/j.apt.2016.02.002
|
| [33] |
S. Heysiattalab, A. Malvandi, D. D. Ganji, Anisotropic behavior of magnetic nanofluids (MNFs) at filmwise condensation over a vertical plate in presence of a uniform variable-directional magnetic field, J. Mol. Liq., 219 (2016), 875–882. https://doi.org/10.1016/j.molliq.2016.04.004 doi: 10.1016/j.molliq.2016.04.004
|
| [34] |
T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi, On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface, Int. J. Heat Mass Tran., 100 (2016), 566–572. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.113 doi: 10.1016/j.ijheatmasstransfer.2016.04.113
|
| [35] |
T. Hayat, M. Waqas, M. I. Khan, A. Alsaedi, Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects, Int. J. Heat Mass Tran., 102 (2016) 1123–1129. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.090 doi: 10.1016/j.ijheatmasstransfer.2016.06.090
|
| [36] |
A. Malvandi, A. Ghasemi, D. D. Ganji, Thermal performance analysis of hydromagnetic Al2O3-water nanofluid flows inside a concentric microannulus considering nanoparticle migration and asymmetric heating, Int. J. Therm. Sci., 109 (2016), 10–22. https://doi.org/10.1016/j.ijthermalsci.2016.05.023 doi: 10.1016/j.ijthermalsci.2016.05.023
|
| [37] |
T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption, Int. J. Therm. Sci., 111 (2017), 274–288. https://doi.org/10.1016/j.ijthermalsci.2016.08.009 doi: 10.1016/j.ijthermalsci.2016.08.009
|
| [38] |
S. S. Motsa, P. G. Dlamini, M. Khumalo, Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems, Adv. Math. Phys., 2014, 1–12. https://doi.org/10.1155/2014/341964 doi: 10.1155/2014/341964
|
| [39] |
S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7
|
| [40] |
J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003
|
| [41] |
N. M. Sarif, M. Z. Salleh, R. Nazar, Numerical solution of flow and heat transfer over a stretching sheet with Newtonian heating using the Keller box method, Procedia Eng., 53 (2013), 542–554. https://doi.org/10.1016/j.proeng.2013.02.070 doi: 10.1016/j.proeng.2013.02.070
|
| [42] |
H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions, Int. J. Hydrogen Energ., 46 (2021), 4947–4980. https://doi.org/10.1016/j.ijhydene.2020.11.097 doi: 10.1016/j.ijhydene.2020.11.097
|
| [43] |
Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, S. Z. Abbas, M. Shoaib, et al., Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study the dynamics of expanding/contracting cylinder for Cross magneto-nanofluid flow model, Phys. Scr., 96 (2021), 055219. https://doi.org/10.1088/1402-4896/abe068 doi: 10.1088/1402-4896/abe068
|
| [44] |
M. Awais, M. A. Z. Raja, S. E. Awan, M. Shoaib, H. M. Ali, Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink, Alex. Eng. J., 60 (2021), 1355–1363. https://doi.org/10.1016/j.aej.2020.10.056 doi: 10.1016/j.aej.2020.10.056
|
| [45] |
M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.3390/sym12101628 doi: 10.3390/sym12101628
|
| [46] |
T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with Levenberg–Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1–35. https://doi.org/10.1140/epjp/s13360-020-00910-x doi: 10.1140/epjp/s13360-020-00910-x
|
| [47] |
A. Ali, S. U. Ilyas, S. Garg, M. Alsaady, K. Maqsood, R. Nasir, et al., Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network, Int. Commun. Heat Mass Transfer, 118 (2020), 104882. https://doi.org/10.1016/j.icheatmasstransfer.2020.104882 doi: 10.1016/j.icheatmasstransfer.2020.104882
|
| [48] |
M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus, 135 (2020), 1–23. https://doi.org/10.1140/epjp/s13360-020-00557-8 doi: 10.1140/epjp/s13360-020-00557-8
|
| [49] |
I. Jadoon, A. Ahmed, A. Rehman, M. Shoaib, M. A. Z. Raja, Integrated meta-heuristics finite difference method for the dynamics of nonlinear unipolar electro hydrodynamic pump flow model, Appl. Soft Comput., 97 (2020), 106791. https://doi.org/10.1016/j.asoc.2020.106791 doi: 10.1016/j.asoc.2020.106791
|
| [50] |
S. E. Awan, M. A. Z. Raja, F. Gul, Z. A. Khan, A. Mehmood, M. Shoaib, Numerical computing paradigm for investigation of micropolar nanofluid flow between parallel plates system with impact of electrical MHD and Hall current, Arab. J. Sci. Eng., 46 (2021), 645–662. https://doi.org/10.1007/s13369-020-04736-8 doi: 10.1007/s13369-020-04736-8
|
| [51] |
Z. Sabir, M. Umar, J. L. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden–Fowler equation, Neural Comput. Appl., 33 (2021), 3417–3436. https://doi.org/10.1007/s00521-020-05187-w doi: 10.1007/s00521-020-05187-w
|
| [52] |
I. Ahmad, M. A. Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically, Neural Comput. Appl., 33 (2021), 5753–5769. https://doi.org/10.1007/s00521-020-05355-y doi: 10.1007/s00521-020-05355-y
|
| [53] |
F. Faisal, M. Shoaib, M. A. Z. Raja, A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines, Eur. Phys. J. Plus, 135 (2020), 1–29. https://doi.org/10.1140/epjp/s13360-019-00066-3 doi: 10.1140/epjp/s13360-019-00066-3
|
| [54] |
T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study, Comput. Method. Appl. Mech. Eng., 315 (2017), 467–477. https://doi.org/10.1016/j.cma.2016.11.002 doi: 10.1016/j.cma.2016.11.002
|
| [55] |
M. Awais, S. E. Awan, M. A. Z. Raja, M. Shoaib, Effects of gyro-tactic organisms in bio-convective nano-material with heat immersion, stratification, and viscous dissipation, Arab. J. Sci. Eng., 46 (2021), 5907–5920. https://doi.org/10.1007/s13369-020-05070-9 doi: 10.1007/s13369-020-05070-9
|
| [56] |
M. Sheikholeslami, M. B. Gerdroodbary, R. Moradi, A. Shafee, Z. Li, Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel, Comput. Methods Appl. Mech. Eng., 344 (2019), 1–12. https://doi.org/10.1016/j.cma.2018.09.025 doi: 10.1016/j.cma.2018.09.025
|
| [57] |
Z. Sabir, D. Baleanu, M. Shoaib, M. A. Z. Raja, Design of stochastic numerical solver for the solution of singular three-point second-order boundary value problems, Neural Comput. Appl., 33 (2021), 2427–2443. https://doi.org/10.1007/s00521-020-05143-8 doi: 10.1007/s00521-020-05143-8
|
| [58] |
Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex. Eng. J., 60 (2021), 2641–2659. https://doi.org/10.1016/j.aej.2021.01.004 doi: 10.1016/j.aej.2021.01.004
|