Gait analysis is a branch of biomechanics where its purpose is the study of mechanical laws relating to the way the body moves from one place to another. In most cases, the data sets for human gait analysis consist of continuous recordings of multiple physical activities, including kinematics and muscle performance. Despite the registered data being functions, the most common practice to detect any anomalies among experimental conditions consists of analyzing the vector of discrete observations or even summary measures of the curves. This fact causes an important information loss since the continuous nature of the data is being ignored. A suitable solution is to apply functional data analysis for analyzing continuous biomechanical data as functions, revealing the true nature of movement and allowing us to model and forecast the data with more precision. In the current paper, a new functional methodology for the analysis of variance with repeated measures was introduced. In particular, since functional data variability can be summarized by their first principal component scores, we proposed to turn the functional model into a multivariate one for the response of the most explicative principal components, and then, considered a semi-parametric approach to overcome the restrictive assumptions required in the classic repeated measures design. The motivation of this research was to contrast the differences in gait patterns of elementary school students when walking to school, depending on the type of bag they use to carry their school materials. The analysis reveals that gait joint movement is influenced by sex and the type of schoolbag, regardless of the load carried.
Citation: Helena Ortiz, Christian Acal, Manuel Escabias, Ana M. Aguilera. Characterizing the functional ANOVA model for repeated measures via PCA application to biomechanical data[J]. AIMS Mathematics, 2025, 10(4): 8468-8494. doi: 10.3934/math.2025390
Gait analysis is a branch of biomechanics where its purpose is the study of mechanical laws relating to the way the body moves from one place to another. In most cases, the data sets for human gait analysis consist of continuous recordings of multiple physical activities, including kinematics and muscle performance. Despite the registered data being functions, the most common practice to detect any anomalies among experimental conditions consists of analyzing the vector of discrete observations or even summary measures of the curves. This fact causes an important information loss since the continuous nature of the data is being ignored. A suitable solution is to apply functional data analysis for analyzing continuous biomechanical data as functions, revealing the true nature of movement and allowing us to model and forecast the data with more precision. In the current paper, a new functional methodology for the analysis of variance with repeated measures was introduced. In particular, since functional data variability can be summarized by their first principal component scores, we proposed to turn the functional model into a multivariate one for the response of the most explicative principal components, and then, considered a semi-parametric approach to overcome the restrictive assumptions required in the classic repeated measures design. The motivation of this research was to contrast the differences in gait patterns of elementary school students when walking to school, depending on the type of bag they use to carry their school materials. The analysis reveals that gait joint movement is influenced by sex and the type of schoolbag, regardless of the load carried.
| [1] |
R. K. Fukuchi, C. A. Fukuchi, M. Duarte, A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics, PeerJ, 5 (2017), e3298. http://doi.org/10.7717/peerj.3298 doi: 10.7717/peerj.3298
|
| [2] |
E. Orantes-González, J. Heredia-Jiménez, V. M. Soto-Hermoso, The effect of school trolley load on spatiotemporal gait parameters of children, Gait Posture, 42 (2015), 390–393. https://doi.org/10.1016/j.gaitpost.2015.06.004 doi: 10.1016/j.gaitpost.2015.06.004
|
| [3] |
D. A. Santos, M. Duarte, A public data set of human balance evaluations, PeerJ, 4 (2016), e2648. http://doi.org/10.7717/peerj.2648 doi: 10.7717/peerj.2648
|
| [4] | J. O. Ramsay, B. W. Silverman, Applied functional data analysis: Methods and case studies, 1 Eds., New York, NY: Springer, 2002. https://doi.org/10.1007/b98886 |
| [5] | J. O. Ramsay, B. W. Silverman, Functional data analysis, 2 Eds., New York, NY: Springer, 2005. https://doi.org/10.1007/b98888 |
| [6] | J. O. Ramsay, B. W. Silverman, G. Graves, Functional data analysis with R and MATLAB, New York, NY: Springer, 2009. https://doi.org/10.1007/978-0-387-98185-7 |
| [7] | F. Ferraty, P. Vieu, Nonparametric functional data analysis: Theory and practice, New York, NY: Springer, 2006. https://doi.org/10.1007/0-387-36620-2 |
| [8] | L. Horváth, P. Kokoszka, Inference for functional data with applications, New York, NY: Springer, 2012. https://doi.org/10.1007/978-1-4614-3655-3 |
| [9] | D. G. E. Robertson, G. E. Caldwell, J. Hamill, G. Kamen, S. Whittlesey, Research methods in biomechanics, 2Eds., Human Kinetics, 2013. |
| [10] |
J. Park, M. K. Seeley, D. Francom, C. S. Reese, J. T. Hopkins, Functional vs. traditional analysis in biomechanical gait data: An alternative statistical approach, J. Hum. Kinet., 60 (2017), 39–49. https://doi.org/10.1515/hukin-2017-0114 doi: 10.1515/hukin-2017-0114
|
| [11] |
J. Warmenhoven, A. Harrison, M. A. Robinson, J. Vanrenterghem, N. Bargary, R. Smith, et al., A force profile analysis comparison between functional data analysis, statistical parametric mapping and statistical non-parametric mapping in on-water single sculling, J. Sci. Med. Sport, 21 (2018), 1100–1105. https://doi.org/10.1016/j.jsams.2018.03.009 doi: 10.1016/j.jsams.2018.03.009
|
| [12] |
L. V. de Paula, G. T. de Oliveira, R. M. Ferreira, E. R. Soares, Functional data analysis of the force unsteadiness, J. Appl. Physiol., 136 (2024), 1270. https://doi.org/10.1152/japplphysiol.00200.2024 doi: 10.1152/japplphysiol.00200.2024
|
| [13] | E. Crane, D. Childers, G. Gerstner, E. Rothman, Functional data analysis for biomechanics, In: Theoretical biomechanics, 2011, 77–92. http://doi.org/10.5772/22382 |
| [14] |
J. Dannenmaier, C. Kaltenbach, T. Kölle, G. Krischak, Application of functional data analysis to explore movements: walking, running and jumping–A systematic review, Gait Posture, 77 (2020), 182–189. https://doi.org/10.1016/j.gaitpost.2020.02.002 doi: 10.1016/j.gaitpost.2020.02.002
|
| [15] | J. T. Zhang, Analysis of variance for functional data, Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b15005 |
| [16] |
T. Górecki, L. Smaga, A Comparison of tests for the one-way ANOVA problem for functional data, Comput. Stat., 30 (2015), 987–1010. https://doi.org/10.1007/s00180-015-0555-0 doi: 10.1007/s00180-015-0555-0
|
| [17] |
P. Martinez-Camblor, N. Corral, Repeated measures analysis for functional data, Comput. Stat. Data Anal., 55 (2011), 3244–3256. https://doi.org/10.1016/j.csda.2011.06.007 doi: 10.1016/j.csda.2011.06.007
|
| [18] |
L. Smaga, A note on repeated measures analysis for functional data, AStA Adv. Stat. Anal., 104 (2020), 117–139. https://doi.org/10.1007/s10182-018-00348-8 doi: 10.1007/s10182-018-00348-8
|
| [19] |
C. Acal, A. M. Aguilera, A. Sarra, A. Evangelista, T. Di Battista, S. Palermi, Functional ANOVA approaches for detecting changes in air pollution during the COVID-19 pandemic, Stoch. Environ. Res. Risk Assess., 36 (2022), 1083–1101. https://doi.org/10.1007/s00477-021-02071-4 doi: 10.1007/s00477-021-02071-4
|
| [20] |
C. Acal, A. M. Aguilera, Basis expansion approaches for functional analysis of variance with repeated measures, Adv. Data Anal. Classif., 17 (2023), 291–321. https://doi.org/10.1007/s11634-022-00500-y doi: 10.1007/s11634-022-00500-y
|
| [21] | M. Escabias, A. M. Aguilera, J. M. Heredia-Jiménez, E. Orantes-González, Functional data analysis in kinematics of children going to school, In: Functional statistics and related fields, Springer, 2017, 95–103. https://doi.org/10.1007/978-3-319-55846-2_13 |
| [22] |
J. Warmenhoven, N. Bargary, D. Liebl, A. Harrison, M. A. Robinson, E. Gunning, G. Hooker, PCA of waveforms and functional PCA: A primer for biomechanics, J. Biomech., 116 (2021), 110106. https://doi.org/10.1016/j.jbiomech.2020.110106 doi: 10.1016/j.jbiomech.2020.110106
|
| [23] |
K. E. Roach, V. Pedoia, J. J. Lee, T. Popovic, T. M. Link, S. Majumdar, et al., Multivariate functional principal component analysis identifies waveform features of gait biomechanics related to early-to-moderate hip osteoarthritis, J. Orthop. Res., 39 (2021), 1722–1731. https://doi.org/10.1002/jor.24901 doi: 10.1002/jor.24901
|
| [24] |
K. Yoshida, D. Commandeur, S. Hundza, M. Klimstra, Detecting differences in gait initiation between older adult fallers and non-fallers through multivariate functional principal component analysis, J. Biomech., 144 (2022), 111342. https://doi.org/10.1016/j.jbiomech.2022.111342 doi: 10.1016/j.jbiomech.2022.111342
|
| [25] |
A. M. Aguilera, R. Gutiérrez, F. A. Ocaña, M. J. Valderrama, Computational approaches to estimation in the principal component analysis of a stochastic process, Appl. Stoch. Models Data Anal., 11 (1995), 279–299. https://doi.org/10.1002/asm.3150110402 doi: 10.1002/asm.3150110402
|
| [26] |
P. Hall, M. Hosseini-Nasab, On properties of functional principal components analysis, J. R. Stat. Soc. B, 68 (2006), 109–126. https://doi.org/10.1111/j.1467-9868.2005.00535.x doi: 10.1111/j.1467-9868.2005.00535.x
|
| [27] |
C. Acal, A. M. Aguilera, M. Escabias, New modeling approaches based on Varimax rotation of functional principal components, Mathematics, 8 (2020), 2085. https://doi.org/10.3390/math8112085 doi: 10.3390/math8112085
|
| [28] |
B. Shi, P. Wei, X. Huang, Functional principal component based landmark analysis for the effects of longitudinal cholesterol profiles on the risk of coronary heart disease, Stat. Med., 40 (2020), 650–667. https://doi.org/10.1002/sim.8794 doi: 10.1002/sim.8794
|
| [29] |
J. Jacques, C. Preda, Functional data clustering: A survey, Adv. Data Anal. Classif., 8 (2014), 231–255. https://doi.org/10.1007/s11634-013-0158-y doi: 10.1007/s11634-013-0158-y
|
| [30] |
F. Fortuna, F. Maturo, K-means clustering of item characteristic curves and item information curves via functional principal component analysis, Qual. Quant., 53 (2019), 2291–2304. https://doi.org/10.1007/s11135-018-0724-7 doi: 10.1007/s11135-018-0724-7
|
| [31] |
F. Maturo, Unsupervised classification of ecological communities ranked according to their biodiversity patterns via a functional principal component decomposition of Hill's numbers integral functions, Ecol. Indic., 90 (2018), 305–315. https://doi.org/10.1016/j.ecolind.2018.03.013 doi: 10.1016/j.ecolind.2018.03.013
|
| [32] |
F. Maturo, R. Verde, Pooling random forest and functional data analysis for biomedical signals supervised classification: Theory and application to electrocardiogram data, Stat. Med., 41 (2022), 2247–2275. https://doi.org/10.1002/sim.9353 doi: 10.1002/sim.9353
|
| [33] |
M. C. Aguilera-Morillo, A. M. Aguilera, M. Escabias, M. J. Valderrama, Penalized spline approaches for functional logit regression, Test, 22 (2013), 251–277. https://doi.org/10.1007/s11749-012-0307-1 doi: 10.1007/s11749-012-0307-1
|
| [34] |
M. Escabias, A. M. Aguilera, M. C. Aguilera-Morillo, Functional PCA and base-line logit models, J. Classif., 31 (2014), 296–324. https://doi.org/10.1007/s00357-014-9162-y doi: 10.1007/s00357-014-9162-y
|
| [35] |
A. Evangelista, C. Acal, A. M. Aguilera, A. Sarra, T. Di Battista, S. Palermi, High-dimensional variable selection through group Lasso for multiple function-on-function linear regression: A case study in PM10 monitoring, Environmetrics, 36 (2024), e2852. https://doi.org/10.1002/env.2852 doi: 10.1002/env.2852
|
| [36] |
B. Shi, R. T. Ogden, Inference in functional mixed regression models with applications to Positron Emission Tomography imaging data, Stat. Med., 40 (2021), 4640–4659. https://doi.org/10.1002/sim.9087 doi: 10.1002/sim.9087
|
| [37] |
A. M. Aguilera, C. Acal, M. C. Aguilera-Morillo, F. Jiménez-Molinos, J. B. Roldán, Homogeneity problem for basis expansion of functional data with applications to resistive memories, Math. Comput. Simulat., 186 (2021), 41–51. https://doi.org/10.1016/j.matcom.2020.05.018 doi: 10.1016/j.matcom.2020.05.018
|
| [38] | N. H. Timm, 2 Multivariate analysis of variance of repeated measurements, In: Handbook of Statistics, 1, Elsevier, 1980, 41–87. https://doi.org/10.1016/S0169-7161(80)01004-8 |
| [39] |
R. J. Boik, The mixed model for multivariate repeated measures: Validity conditions and an approximate test, Psychometrika, 53 (1988), 469–486. https://doi.org/10.1007/BF02294401 doi: 10.1007/BF02294401
|
| [40] |
R. J. Boik, Scheffés mixed model for multivariate repeated measures: A relative efficiency evaluation, Commun. Stat.-Theory M., 20 (1991), 1233–1255. https://doi.org/10.1080/03610929108830562 doi: 10.1080/03610929108830562
|
| [41] |
F. Konietschke, A. C. Bathke, S. W. Harrar, M. Pauly, Parametric and nonparametric bootstrap methods for general MANOVA, J. Multivariate Anal., 140 (2015), 291–301. https://doi.org/10.1016/j.jmva.2015.05.001 doi: 10.1016/j.jmva.2015.05.001
|
| [42] |
A. C. Bathke, S. Friedrich, M. Pauly, F. Konietschke, W. Staffen, N. Strobl, et al., Testing mean differences among groups: Multivariate and repeated measures analysis with minimal assumptions, Multivar. Behav. Res., 53 (2018), 348–359. https://doi.org/10.1080/00273171.2018.1446320 doi: 10.1080/00273171.2018.1446320
|
| [43] |
E. Orantes-González, J. Heredia-Jiménez, G. J. Beneck, Children require less gait kinematic adaptations to pull a trolley than to carry a backpack, Gait Posture, 52 (2017), 189–193. https://doi.org/10.1016/j.gaitpost.2016.11.041 doi: 10.1016/j.gaitpost.2016.11.041
|
| [44] |
E. Orantes-González, J. Heredia-Jiménez, M. A. Robinson, A kinematic comparison of gait with a backpack versus a trolley for load carriage in children, Appl. Ergon., 80 (2019), 28–34. https://doi.org/10.1016/j.apergo.2019.05.003 doi: 10.1016/j.apergo.2019.05.003
|
| [45] |
N. E. Helwig, K. A. Shorter, P. Ma, E. T. Hsiao-Wecksler, Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data, J. biomech., 49 (2016), 3216–3222. https://doi.org/10.1016/j.jbiomech.2016.07.035 doi: 10.1016/j.jbiomech.2016.07.035
|
| [46] | C. Gu, Smoothing spline ANOVA models, 2 Eds., New York, NY: Springer, 2013. https://doi.org/10.1007/978-1-4614-5369-7 |
| [47] | H. Cardot, F. Ferraty, P. Sarda, Functional linear model, Stat. Probabil. Lett., 45 (1999), 11–22. https://doi.org/10.1016/S0167-7152(99)00036-X |
| [48] |
J. Jiang, H. Lin, Q. Zhong, Y. Li, Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach, J. Multivariate Anal., 189 (2022), 104888. https://doi.org/10.1016/j.jmva.2021.104888 doi: 10.1016/j.jmva.2021.104888
|
| [49] |
N. Ling, P. Vieu, Nonparametric modelling for functional data: Selected survey and tracks for future, Statistics, 52 (2018), 934–949. https://doi.org/10.1080/02331888.2018.1487120 doi: 10.1080/02331888.2018.1487120
|
| [50] |
R. S. Zoh, Y. Luan, L. Xue, D. B. Allison, C. D. Tekwe, A Bayesian semi-parametric scalar-on-function regression with measurement error using instrumental variables, Stat. Med., 43 (2024), 4043–4054. https://doi.org/10.1002/sim.10165 doi: 10.1002/sim.10165
|
| [51] |
J. Dauxois, A. Pousse, Y. Romain, Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference, J. Multivariate Anal., 12 (1982), 136–154. https://doi.org/10.1016/0047-259X(82)90088-4 doi: 10.1016/0047-259X(82)90088-4
|
| [52] | I. Jolliffe, Principal component analysis, Springer, 2005. https://doi.org/10.1002/0470013192.bsa501 |
| [53] |
S. Friedrich, E. Brunner, M. Pauly, Permuting longitudinal data in spite of the dependencies, J. Multivariate Anal., 153 (2017), 255–265. https://doi.org/10.1016/j.jmva.2016.10.004 doi: 10.1016/j.jmva.2016.10.004
|
| [54] |
H. Guillermou, C. Abraham, I. Annesi-Maesano, N. Molinari, Multiple hypothesis testing in allergy and hypersensitivity diseases investigation: A pedagogical perspective, JAHD, 3-4 (2024), 100014. https://doi.org/10.1016/j.jahd.2024.100014 doi: 10.1016/j.jahd.2024.100014
|
| [55] |
S. K. Sarkar, Z. Zhao, Local false discovery rate based methods for multiple testing of one-way classified hypotheses, Electron. J. Stat., 16 (2022), 6043–6085. https://doi.org/10.1214/22-EJS2080 doi: 10.1214/22-EJS2080
|
| [56] | S. Friedrich, F. Konietschke, M. Pauly, Resampling-based analysis of multivariate data and repeated measures designs with the R package MANOVA.RM, R J., 11 (2019), 380–400. |
| [57] |
E. Orantes-González, J. Heredia-Jiménez, Does schoolbag carriage equally affect obese/overweight and healthy-weight children? Appl. Ergon., 90 (2021), 103236. https://doi.org/10.1016/j.apergo.2020.103236 doi: 10.1016/j.apergo.2020.103236
|