Research article Special Issues

A new Beta distribution with interdisciplinary data analysis

  • Received: 22 August 2024 Revised: 08 March 2025 Accepted: 13 March 2025 Published: 14 April 2025
  • MSC : 60E05, 62F10, 62H12

  • Several families of Beta distributions, such as Beta of the first kind, Beta of the second kind, and Beta of the third kind, have been proposed in the literature for modeling random phenomena. This study introduced a new member of the Beta family called the New Beta (NE-Beta) distribution using a logarithmic transformation approach. This new model is highly flexible and capable of analyzing both positive and negative data, making it suitable for a wide range of interdisciplinary applications. The NE-Beta distribution exhibits nearly symmetric, right-skewed, or left-skewed density functions and featured an increasing or decreasing hazard functions, which are crucial for accurately modeling practical scenarios across various fields. Some properties of the new distribution were derived, and the parameter estimation was obtained by utilizing various approaches. To demonstrate the efficacy of the NE-Beta distribution, it was applied to multiple datasets, including exchange rate returns (finance), biomedical data, engineering reliability data, and hydrological data. The results indicate that the proposed NE-Beta model outperforms its competitors across these diverse domains.

    Citation: Uthumporn Panitanarak, Aliyu Ismail Ishaq, Ahmad Abubakar Suleiman, Hanita Daud, Narinderjit Singh Sawaran Singh, Abdullahi Ubale Usman, Najwan Alsadat, Mohammed Elgarhy. A new Beta distribution with interdisciplinary data analysis[J]. AIMS Mathematics, 2025, 10(4): 8495-8527. doi: 10.3934/math.2025391

    Related Papers:

  • Several families of Beta distributions, such as Beta of the first kind, Beta of the second kind, and Beta of the third kind, have been proposed in the literature for modeling random phenomena. This study introduced a new member of the Beta family called the New Beta (NE-Beta) distribution using a logarithmic transformation approach. This new model is highly flexible and capable of analyzing both positive and negative data, making it suitable for a wide range of interdisciplinary applications. The NE-Beta distribution exhibits nearly symmetric, right-skewed, or left-skewed density functions and featured an increasing or decreasing hazard functions, which are crucial for accurately modeling practical scenarios across various fields. Some properties of the new distribution were derived, and the parameter estimation was obtained by utilizing various approaches. To demonstrate the efficacy of the NE-Beta distribution, it was applied to multiple datasets, including exchange rate returns (finance), biomedical data, engineering reliability data, and hydrological data. The results indicate that the proposed NE-Beta model outperforms its competitors across these diverse domains.



    加载中


    [1] M. K. Simon, Probability distributions involving Gaussian random variables: A handbook for engineers and scientists, New York: Springer, 2002. https://doi.org/10.1007/978-0-387-47694-0
    [2] A. N. O'Connor, Probability distributions used in reliability engineering, Reliability information analysis center, 2011.
    [3] A. I. Ishaq, U. Panitanarak, A. A. Abiodun, A. A. Suleiman, H. Daud, The generalized Odd Maxwell-Kumaraswamy distribution: Its properties and applications, Contemp. Math., 5 (2024), 711–742. https://doi.org/10.37256/cm.5120242888 doi: 10.37256/cm.5120242888
    [4] J. B. McDonald, Y. J. Xu, A generalization of the Beta distribution with applications, J. Econometrics, 66 (1995), 133–152. https://doi.org/10.1016/0304-4076(94)01612-4 doi: 10.1016/0304-4076(94)01612-4
    [5] M. Y. Sulaiman, W. M. Hlaing Oo, M. Abd Wahab, A. Zakaria, Application of Beta distribution model to Malaysian sunshine data, Renew. Energy, 18 (1999), 573–579. https://doi.org/10.1016/S0960-1481(99)00002-6 doi: 10.1016/S0960-1481(99)00002-6
    [6] M. Graf, D. Nedyalkova, Modeling of income and indicators of poverty and social exclusion using the generalized Beta distribution of the second kind, Rev. Income Wewlth, 60 (2014), 821–842. https://doi.org/10.1111/roiw.12031 doi: 10.1111/roiw.12031
    [7] M. Raschke, Empirical behaviour of tests for the Beta distribution and their application in environmental research, Stoch. Environ. Res. Risk Assess., 25 (2011), 79–89. https://doi.org/10.1007/s00477-010-0410-3 doi: 10.1007/s00477-010-0410-3
    [8] B. Kim, K. F. Reinschmidt, Probabilistic forecasting of project duration using Bayesian inference and the Beta distribution, J. Constr. Eng. M., 135 (2009), 178–186. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:3(178) doi: 10.1061/(ASCE)0733-9364(2009)135:3(178)
    [9] P. Chen, X. Xiao, Novel closed-form point estimators for the Beta distribution, Stat. Theory Relat. F., 9 (2025), 12–33. http://doi.org/10.1080/24754269.2024.2419360 doi: 10.1080/24754269.2024.2419360
    [10] A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, A. I. Ishaq, R. Sokkalingam, A novel Odd Beta prime-logistic distribution: Desirable mathematical properties and applications to engineering and environmental data, Sustainability, 15 (2023), 10239. https://doi.org/10.3390/su151310239 doi: 10.3390/su151310239
    [11] L. Chen, V. Singh, Generalized Beta distribution of the second kind for flood frequency analysis, Entropy, 19 (2017), 254. https://doi.org/10.3390/e19060254 doi: 10.3390/e19060254
    [12] A. A. Suleiman, H. Daud, N. S. S. Singh, A. I. Ishaq, M. Othman, A new Odd Beta prime-burr X distribution with applications to petroleum rock sample data and COVID-19 mortality rate, Data, 8 (2023), 143. https://doi.org/10.3390/data8090143 doi: 10.3390/data8090143
    [13] J. B. McDonald, Model selection: some generalized distributions, Commun. Stat. Theor. M., 16 (1987), 1049–1074. https://doi.org/10.1080/03610928708829422 doi: 10.1080/03610928708829422
    [14] A. A. Suleiman, H. Daud, A. I. Ishaq, M. Othman, R. Sokkalingam, A. Usman, et al., The Odd Beta prime inverted Kumaraswamy distribution with application to COVID-19 mortality rate in Italy, Eng. proc., 56 (2023), 218. https://doi.org/10.3390/ASEC2023-16310 doi: 10.3390/ASEC2023-16310
    [15] A. A. Suleiman, H. Daud, M. Othman, N. S. S. Singh, A. I. Ishaq, R. Sokkalingam, et al., A novel extension of the Fréchet distribution: statistical properties and application to groundwater pollutant concentrations, J. Data Sci. Insight., 1 (2023), 8–24.
    [16] A. K. Gupta, D. K. Nagar, Matrix‐variate Beta distribution, Int. J. Math. Math. Sci., 24 (2000), 449–459. https://doi.org/10.1155/S0161171200002398 doi: 10.1155/S0161171200002398
    [17] L. Cardeno, D. K. Nagar, L. E. Sánchez, Beta type 3 distribution and its multivariate, Tamsui Oxford J. Math. Sci., 21 (2005), 225–241.
    [18] A. I. Ishaq, A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, R. Sokkaalingam, et al., Log-Kumaraswamy distribution: its features and applications, Front. Appl. Math. Stat., 9 (2023), 1258961. https://doi.org/10.3389/fams.2023.1258961 doi: 10.3389/fams.2023.1258961
    [19] A. I. Ishaq, A. A. Suleiman, A. Usman, H. Daud, R. Sokkalingam, Transformed log-burr Ⅲ distribution: Structural features and application to milk production, Eng. proc., 56 (2023), 322. https://doi.org/10.3390/ASEC2023-15289 doi: 10.3390/ASEC2023-15289
    [20] A. Usman, A. I. Ishaq, A. A. Suleiman, M. Othman, H. Daud, Y. Aliyu, Univariate and bivariate log-topp-leone distribution using censored and uncensored datasets, Comput. Sci. Math. Forum, 7 (2023), 32. https://doi.org/10.3390/IOCMA2023-14421 doi: 10.3390/IOCMA2023-14421
    [21] A. A. Suleiman, H. Daud, A. A. Ishaq, M. Kayid, R. Sokkalingam, Y. Hamed, et al., A new Weibull distribution for modeling complex biomedical data, J. Radiat. Res. Appl. Sci., 17 (2024), 101190. https://doi.org/10.1016/j.jrras.2024.101190 doi: 10.1016/j.jrras.2024.101190
    [22] H. Daud, A. A. Suleiman, A. I. Ishaq, N. Alsadat, M. Elgarhy, A. Usman, et al., A new extension of the Gumbel distribution with biomedical data analysis, J. Radiat. Res. Appl. Sci., 17 (2024), 101055. https://doi.org/10.1016/j.jrras.2024.101055 doi: 10.1016/j.jrras.2024.101055
    [23] A. M. Almarashi, M. Elgarhy, A new muth generated family of distributions with applications, J. Nonlinear Sci. Appl., 11 (2018), 1171–1184.
    [24] M. A. ul Haq, M. Elgarhy, The Odd Frechet-G family of probability distributions, J. Stat. Appl. Probab., 7 (2018), 185–201. https://doi.org/10.18576/jsap/070117 doi: 10.18576/jsap/070117
    [25] S. Alkarni, A. Z. Afify, I. Elbatal, M. Elgarhy, The extended inverse Weibull distribution: properties and applications, Complexity, 2020 (2020), 3297693. https://doi.org/10.1155/2020/3297693 doi: 10.1155/2020/3297693
    [26] M. Elgarhy, M. Shakil, G. Kibria, Exponentiated Weibull-exponential distribution with applications, Appl. Appl. Math., 12 (2017), 5.
    [27] S. A. Alyami, I. Elbatal, N. Alotaibi, E. M. Almetwally, H. M. Okasha, M. Elgarhy, Topp–Leone modified Weibull model: Theory and applications to medical and engineering data, Appl. Sci., 12 (2022), 10431. https://doi.org/10.3390/app122010431 doi: 10.3390/app122010431
    [28] M. M. Salama, E. S. A. El-Sherpieny, A. E. A. Abd-elaziz, The length-biased weighted exponentiated inverted exponential distribution: properties and estimation, Comput. J. Math. Stat. Sci., 2 (2023), 181–196. https://doi.org/10.21608/cjmss.2023.215674.1009 doi: 10.21608/cjmss.2023.215674.1009
    [29] M. Shakil, T. Hussain, Z. U. Rehman, A. Khadim, M. Sirajo, J. N. Singh, et al., A Skew product distribution with applications, Comput. J. Math. Stat.l Sci., 3 (2024), 432–453. https://doi.org/10.21608/cjmss.2024.283619.1049 doi: 10.21608/cjmss.2024.283619.1049
    [30] M. N. Atchade, A. A. Agbahide, T. Otodji, M. J. Bogninou, A. M. Djibril, A new shifted Lomax-X family of distributions: Properties and applications to actuarial and financial data, Comput. J. Math. Stat. Sci., 4 (2025), 41–71. http://doi.org/10.21608/cjmss.2024.307114.1066 doi: 10.21608/cjmss.2024.307114.1066
    [31] J. N. Kapur, H. C. Saxena, Mathematical statistics: S Chand & Co, New Delhi, 1997.
    [32] H. S. Klakattawi, Survival analysis of cancer patients using a new extended Weibull distribution, PLoS One, 17 (2022), e0264229. https://doi.org/10.1371/journal.pone.0264229 doi: 10.1371/journal.pone.0264229
    [33] A. G. Abubakari, C. C. Kandza-Tadi, E. Moyo, Modified beta inverse flexible Weibull extension distribution, Ann. Data. Sci., 10 (2023), 589–617. https://doi.org/10.1007/s40745-021-00330-3 doi: 10.1007/s40745-021-00330-3
    [34] H. M. Alshanbari, O. H. Odhah, H. Al-Mofleh, Z. Ahmad, S. K. Khosa, A. H. El-Bagoury, A new flexible Weibull extension model: Different estimation methods and modeling an extreme value data, Heliyon, 9 (2023), e21704. https://doi.org/10.1016/j.heliyon.2023.e21704 doi: 10.1016/j.heliyon.2023.e21704
    [35] A. Xu, G. Fang, L. Zhuang, C. Gu, A multivariate student-t process model for dependent tail-weighted degradation data, IISE Trans., 2024 (2024), 1–17. http://doi.org/10.1080/24725854.2024.2389538 doi: 10.1080/24725854.2024.2389538
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1659) PDF downloads(85) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog