Processing math: 100%
Research article

A new flexible Weibull distribution for modeling real-life data: Improved estimators, properties, and applications

  • Received: 09 December 2024 Revised: 28 January 2025 Accepted: 13 February 2025 Published: 18 March 2025
  • MSC : 60E05, 62F10, 62N05

  • In this paper, we proposed a novel and flexible lifetime model, the generalized Kavya–Manoharan Weibull distribution, which can be interpreted as a proportional reversed hazard model. The most remarkable feature of the proposed model is its ability to effectively capture a wide range of hazard rate patterns using only three parameters. These include decreasing, J-shaped, reverse J-shaped, and increasing patterns, as well as key nonmonotonic shapes such as the bathtub, modified bathtub, and upside-down bathtub shapes. Additionally, its density can exhibit right-skewness, left-skewness, symmetry, and reversed-J shapes. We explored several distributional properties of the proposed model and estimated its parameters using eight methods. The effectiveness of these estimators was validated through extensive simulation studies. Furthermore, we assessed the versatility of the proposed distribution using three real-world datasets, demonstrating its exceptional capacity to fit the data accurately. Our results indicated that the proposed distribution outperforms several existing generalizations of the Weibull distribution in terms of fit quality.

    Citation: Ahmed Z. Afify, Rehab Alsultan, Abdulaziz S. Alghamdi, Hisham A. Mahran. A new flexible Weibull distribution for modeling real-life data: Improved estimators, properties, and applications[J]. AIMS Mathematics, 2025, 10(3): 5880-5927. doi: 10.3934/math.2025270

    Related Papers:

    [1] Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582
    [2] Ayed. R. A. Alanzi, M. Qaisar Rafique, M. H. Tahir, Farrukh Jamal, M. Adnan Hussain, Waqas Sami . A novel Muth generalized family of distributions: Properties and applications to quality control. AIMS Mathematics, 2023, 8(3): 6559-6580. doi: 10.3934/math.2023331
    [3] Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz . Some bivariate and multivariate families of distributions: Theory, inference and application. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854
    [4] Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069
    [5] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [6] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
    [7] Dawlah Alsulami . A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data. AIMS Mathematics, 2025, 10(4): 7636-7663. doi: 10.3934/math.2025350
    [8] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for qWeibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
    [9] Mohieddine Rahmouni, Dalia Ziedan . The Weibull-generalized shifted geometric distribution: properties, estimation, and applications. AIMS Mathematics, 2025, 10(4): 9773-9804. doi: 10.3934/math.2025448
    [10] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
  • In this paper, we proposed a novel and flexible lifetime model, the generalized Kavya–Manoharan Weibull distribution, which can be interpreted as a proportional reversed hazard model. The most remarkable feature of the proposed model is its ability to effectively capture a wide range of hazard rate patterns using only three parameters. These include decreasing, J-shaped, reverse J-shaped, and increasing patterns, as well as key nonmonotonic shapes such as the bathtub, modified bathtub, and upside-down bathtub shapes. Additionally, its density can exhibit right-skewness, left-skewness, symmetry, and reversed-J shapes. We explored several distributional properties of the proposed model and estimated its parameters using eight methods. The effectiveness of these estimators was validated through extensive simulation studies. Furthermore, we assessed the versatility of the proposed distribution using three real-world datasets, demonstrating its exceptional capacity to fit the data accurately. Our results indicated that the proposed distribution outperforms several existing generalizations of the Weibull distribution in terms of fit quality.



    The Weibull distribution is extensively utilized for analyzing lifetime data and is particularly effective for modeling monotonic hazard rates (HRs). Its density functions are typically right or left-skewed, making it ideal for reliability and survival analysis. However, it falls short when dealing with non-monotonic HRs, such as those exhibiting bathtub-shaped or upside-down bathtub-shaped patterns. While the Weibull distribution is highly effective in modeling monotonic HRs, it lacks the flexibility necessary to capture more complex failure rate behaviors, which are commonly observed in real-world data across domains, such as medicine, engineering, and industrial reliability. Although numerous extensions of the Weibull distribution have been proposed to address this limitation, many of these alternatives require more than four parameters to accurately represent intricate HR patterns. Additionally, existing models often struggle to effectively capture non-monotonic HR behaviors, including J-shaped or modified bathtub curves.

    Some recent extensions of the Weibull distribution, introduced to expand its modeling capabilities across a wider range of lifetime data, include the beta Weibull [1], Kumaraswamy–Weibull [2], truncated Weibull [3], transmuted Weibull [4], exponentiated generalized Weibull [5], new extended Weibull [6], modified beta Weibull [7], Kumaraswamy complementary Weibull geometric [8], Weibull–Weibull [9], alpha power Weibull [10], odd log-logistic exponentiated Weibull [11], Lindley Weibull [12], exponentiated Weibull [13], alpha logarithmic transformed Weibull [14], alpha power exponentiated Weibull [15], odd Lomax–Weibull [16], Maxwell–Weibull [17], exponentiated additive Weibull [18], new generalized modified Weibull [19] new flexible Weibull [20], odd Burr exponentiated Weibull [21], odd log-logistic Lindley–Weibull [22], alpha power Kumaraswamy–Weibull [23], new exponentiated inverse Weibull [24], entropy-transformed Weibull [25], extended Weibull [26], and odd beta prime Weibull [27] distributions. These enhanced distributions offer increased flexibility, enabling more effective modeling of diverse datasets for practical applications.

    We aim to bridge this gap by introducing a new variant of the Weibull distribution, known as the generalized Kavya–Manoharan Weibull (GKMW) distribution, which is specifically designed to model a broader range of non-monotonic HRs with just three parameters. The GKMW distribution provides an improved and more flexible approach for modeling diverse lifetime data, making it a valuable tool for researchers and practitioners in survival analysis, and reliability theory. The GKMW distribution is derived from the generalized Kavya–Manoharan (GKM-G) family introduced by Mahran et al. [28]. One key characteristic of the GKMW distribution is its interpretation as a proportional reversed hazard (PRH) model. The PRH models play a crucial role in survival analysis and reliability theory, particularly when analyzing left-censored lifetime data and studying parallel systems [29]. Further details on PRH models can be found in references [30,31,32].

    The GKMW distribution boasts several key advantages:

    • It accurately captures J-shaped, decreasing, bathtub, increasing, upside-down bathtubs, modified bathtub, and reversed-J HR shapes. With its three parameters, the GKMW effectively models failure rates for both standard and modified bathtubs, a significant improvement over many distributions that require more than four parameters for precise representation.

    • The GKMW distribution is particularly well-suited for non-monotonic modeling, making it applicable in diverse fields such as medicine, engineering, survival analysis, and industrial reliability.

    • Our analysis demonstrates the GKMW model's superiority over seven competing lifetime distributions through real data from three distinct fields, underscoring its practical applicability.

    Our final motivation of this paper is to evaluate the performance of various frequentist estimators for the GKMW distribution across sample sizes and parameter values. Additionally, we aim to provide guidelines for selecting the most effective estimation method for the GKMW distribution, which we believe will be of interest to applied statisticians.

    The remainder of this article is organized as follows: In Section 2, we introduce the GKMW distribution. The properties of the GKMW distribution are derived in Section 3. In Section 4, we detail eight estimation methods for estimating the GKMW parameters are discussed. Numerical simulations are presented in Section 5. In Section 6, we illustrate the practical application of the GKMW distribution using three real data examples. Finally, concluding remarks and some perspectives for future research are given in Section 7.

    In this section, we introduce the GKMW distribution, using the Weibull model as the baseline within the GKM-G family proposed by Mahran et al. [28]. The GKM-G family can be regarded as a PRH family because it is derived from the exponentiated-H (exp-H) family [33], which is one of the most commonly used generalization techniques. The cumulative distribution function (CDF) and probability density function (PDF) of the GKM-G family are defined as follows:

    F(x;δ,ϑ)=ξδ[1eG(x;ϑ)]δ,xR+,δ>0 (1)

    and

    f(x;δ,ϑ)=ξδδg(x;ϑ)eG(x;ϑ)[1eG(x;ϑ)]δ1,xR+,

    where ξ=e/(e1), δ is a shape parameter and ϑ refers to the baseline parameters vector.

    The HR function (HRF) of the GKM-G family reduces to

    h(x;δ,ϑ)=δg(x;ϑ)e1G(x;ϑ)[ee1G(x;ϑ)]δ1(e1)δ[ee1G(x;ϑ)]δ,xR+.

    The PDF and CDF of the Weibull distribution are g(x;β,λ)=βλxβ1eλxβ and G(x;β,λ)=1eλxβ,λ,β>0. By substituting the CDF of the Weibull model in Eq (1), we derive the CDF of the GKMW distribution as follows:

    F(x;ω)=ξδ[1e(1eλxβ)]δ,x>0,δ,λ,β>0,

    where ω=(δ,β,λ)T.

    The PDF of the GKMW model takes the form

    f(x;ω)=ξδδβλxβ1e(1eλxβ)λxβ[1e(1eλxβ)]δ1,x>0, (2)

    where λ>0 is the scale parameter and δ and β are positive shape parameters. The scale parameter (λ) affects the spread of the GKMW distribution but does not directly influence its skewness or tail behavior. In contrast, the two shape parameters (δ and β) refine the shape of the GKMW distribution, particularly in terms of tail behavior, kurtosis and skewness. Thus, these two parameters significantly influence the asymmetry and overall shape of the distribution. Figures 13 illustrate the roles of the three parameters. The plots and numerical values, obtained for λ=1 with varying δ and β, confirm the influence of all three parameters.

    Figure 1.  Plots of the GKMW density for λ=1 and different parametric values of δ and β.
    Figure 2.  Plots of the GKMW HRF for λ=1 and different parametric values of δ and β.
    Figure 3.  Galton's skewness and Moors' kurtosis for the GKMW distribution.

    Therefore, a random variable with PDF (2) is denoted by X GKMW (δ,β,λ).

    The HRF and reversed HRF (RHRF) of the GKMW model are defined by

    h(x;ω)=δβλxβ1eeλxβλxβ(eeeλxβ)δ1(e1)δ(eeeλxβ)δ,x>0

    and

    H(x;ω)=δβλxβ1e(1eλxβ)λxβ[1e(1eλxβ)]1,x>0.

    The quantile function (QF) of the GKMW model reduces to

    ϑ(u)=λ1β(ln{1+log[1(ξδu)1δ]})1β,0<u<1,

    where ξ=e/(e1).

    Figures 1 and 2 display the PDF and HRF curves of the GKMW distribution for λ=1 and various values of δ and β. Figure 2 illustrates the HRF, which can exhibit decreasing, J-shape, increasing, reversed-J shape, bathtub, modified bathtub, and unimodal forms. A key advantage of the GKMW distribution over the W distribution is its ability to model data with bathtub, modified bathtub, or unimodal failure rates, which the W cannot.

    Furthermore, the QF can be employed to explore the relationships among the parameters. For the GKMW distribution, this function is useful for calculating Galton's skewness and Moors' kurtosis. Figure 3 presents Galton's skewness and Moors' kurtosis for the GKMW distribution at λ=1 with varying δ and β values. Overall, it is evident that parameters β and λ have a significant impact on the skewness and kurtosis of the distribution.

    In this section, we explore several properties of the GKMW distribution.

    Here, we present a mixture form for the GKMW density based on the linear representation of the GKM-G density introduced by Mahran et al. [28]. The GKM-G density can be expressed as follows:

    f(x)=k=0dkhk(x), (3)

    where dk=j=0ξδ(1)j+kjkk!(δj) and hk(x)=kg(x)G(x)k1 is the exp-G density with power parameter k. Equation (3) can be expressed using the W distribution as follows:

    f(x)=l=0vlgl+1(x), (4)

    where vl=k=0dk(1)l(l+1)k(k1l) and gl+1(x)=β(l+1)λxβ1e(l+1)λxβ denotes the W density with scale parameter (l+1)λ and shape parameter β. Then, the GKMW PDF can be expressed as a single linear combination of Weibull densities.

    Let Y be a random variable having the W distribution with PDF g(y;β,λ)=βλyβ1eλyβ,y>0,β,λ>0, then, the rth ordinary moments of Y is

    μ'r,Y=Γ(1+rβ)λrβ.

    Therefore, we can derive the rth moment of GKMW distribution from Eq (4) as follows:

    μ'r=Γ(1+rβ)i=0vl[(l+1)λ]rβ. (5)

    The mean of X, denoted by μX, follows from Eq (5) by setting r=1.

    Table 1 demonstrates that the summation in Eq (5) converges to the numerical integral (NI) of μX for various values of λ and γ as the truncated terms in this summation, say M, increase significantly. Table 2 shows that the skewness (ψ1) and kurtosis (ψ2) of the GKMW distribution range from -0.0874 to 11.1133 and from 2.5560 to 242.1702, respectively. Additionally, the GKMW distribution can exhibit left-skewed, right-skewed, or symmetric properties, and can be classified as leptokurtic (ψ2 > 3) or platykurtic (ψ2 < 3). This versatility makes the GKMW distribution well-suited for modeling skewed data effectively.

    Table 1.  Generated values of μX based on the summation formula and the NI for various parametric values at truncated M terms.
    λ δ β M Summation NI
    0.5 2 0.5 10 9.56790
    20 9.56325 9.56325
    50 9.56325
    1.5 10 1.65060
    20 1.65025 1.65025
    50 1.65025
    4 0.5 10 33.26973
    20 16.24027 16.24025
    50 16.24025
    1.5 10 3.46152
    20 2.15191 2.15191
    50 2.15191
    0.9 2 0.5 10 2.95306
    20 2.95162 2.95162
    50 2.95162
    1.5 10 1.11548
    20 1.11524 1.11524
    50 1.11524
    4 0.5 10 10.26843
    20 5.01243 5.01242
    50 5.01242
    1.5 10 2.33929
    20 1.45426 1.45426
    50 1.45426
    1.5 2 0.5 10 1.06310
    20 1.06258 1.06258
    50 1.06258
    1.5 10 0.79353
    20 0.79336 0.79336
    50 0.79336
    4 0.5 10 3.69664
    20 1.80447 1.80447
    50 1.80447
    1.5 10 1.66412
    20 1.03453 1.03453
    50 1.03453

     | Show Table
    DownLoad: CSV
    Table 2.  Moments of the GKMW distribution for λ=1 with varying values of δ and β.
    δ β μx σ2x ψ1 ψ2
    0.5 0.5 0.7139 6.7945 11.1133 242.1702
    1.5 0.4887 0.2526 1.7860 7.1495
    2.8 0.5958 0.1257 0.6322 3.0474
    3.5 0.6409 0.0996 0.3478 2.6707
    5 0.7117 0.0670 -0.0309 2.5560
    0.75 0.5 1.0338 9.8213 9.2802 169.9559
    1.5 0.6313 0.2893 1.5059 5.9591
    2.8 0.7128 0.1182 0.4924 2.9654
    3.5 0.7478 0.0874 0.2419 2.7303
    5 0.8014 0.0530 -0.0874 2.7295
    1.5 0.5 1.8882 17.8440 6.9544 97.0234
    1.5 0.9131 0.3298 1.1791 4.8586
    2.8 0.9067 0.0981 0.3788 2.9892
    3.5 0.9156 0.0655 0.1865 2.8588
    5 0.9321 0.0345 -0.0571 2.8753
    2 0.5 2.3908 22.5235 6.2248 78.4523
    1.5 1.0396 0.3379 1.0866 4.6063
    2.8 0.9823 0.0893 0.3625 3.0139
    3.5 0.9784 0.0577 0.1912 2.8969
    5 0.9785 0.0290 -0.0225 2.8929
    5 0.5 4.7553 44.1219 4.5572 43.7214
    1.5 1.4588 0.3369 0.9032 4.2015
    2.8 1.2009 0.0652 0.3653 3.1052
    3.5 1.1536 0.0386 0.2431 2.9961
    5 1.1018 0.0174 0.0954 2.9332

     | Show Table
    DownLoad: CSV

    The sth incomplete moment of the GKMW model is given by

    φs(t)=txsf(x)dx=l=0vl[(l+1)λ]sβγ(1+sβ,(l+1)λtβ), (6)

    where γ(a,ω) denote the lower incomplete gamma function (IGF), which is defined by γ(a,ω)=ω0ωa1eωdω. The first incomplete moment, say φ1(t), is derived for s=1 and can be utilized to construct Bonferroni and Lorenz curves, which are defined, for a given probability π, as follows: B(π)=φ1(q)/(πμ'1) and L(π)=φ1(q)/μ'1, where μ'1 given by (5) with r=1 and q=Q(π) is the QF of X at π.

    The conditional moments of the GKMW model can be written as

    E(Xn|X>t)=1S(t)l=0vl(l+1)λΓ(1+nβ,(l+1)λtβ),

    where Γ(a,ξ) denotes the upper IGF defined by Γ(a,ξ)=ξξa1eξdξ and S(t) is the survival function (SF) of the GKMW distribution.

    The moment-generating function (MGF) of the W distribution has the form

    M(t)=j=0tjj!λjβΓ(1+jβ). (7)

    By combining Eqs (4) and (7), the MGF of the GKMW model is expressed as follows

    MX(t)=l,j=0vltjj![(l+1)λ]jβΓ(1+jβ).

    The function φ1(t) of X can be used to derive the mean residual life (MRL) and mean inactivity time (MIT). This function follows from Eq (6) as

    ϑ1(t)=l=0vl[(l+1)λ]1βγ(1+1β,(l+1)λtβ). (8)

    The MRL represents the expected additional lifespan for a unit, which is operational at age t and is defined by mX(t)=E(Xx|X>x), for t>0. The MRL of X is

    MRLX(t)=[1φ1(t)]S(t)t. (9)

    By substituting Eq (8) into Eq (9), we obtain the MRL of the GKMW distribution as follows

    MRLX(t)=1S(t){1l=0vl[(l+1)λ]1βγ(1+1β,(l+1)λtβ)}t.

    The MIT represents the waiting time that has elapsed since the failure of an item, given that this failure occurred within the interval (0,t). The MIT is defined by MITX(t)=E(tX|Xt), for t>0. The MIT of X reduces to

    MITX(t)=tφ1(t)F(t). (10)

    Using Eqs (8) and (10), we derive the MIT of the GKMW distribution as follows

    MITX(t)=t1F(t)l=0vl[(l+1)λ]1βγ(1+1β,(l+1)λtβ).

    Order statistics are essential in quality control testing and reliability assessments, as they help predict the failure of future items by analyzing early failures. According to Mahran et al. [28], the PDF of ith order statistic of the GKM-G class, say X(i) (for i=1,n), can be expressed as follows

    fi:n(x)=k=0bkhk+1(x).

    Here, hk+1(x)=(k+1)g(x)G(x)k is the exp-G density with power parameter k+1 and

    bk=αnij=0m=0(1+m)k(1)j+m+k(k+1)!B(i,ni+1)ϕα(j+i)(n1j)(α(j+i)1m).

    Then, the PDF of X(i) for the GKMW distribution reduces to

    fX(i)(x)=r=0crβ(r+1)λxβ1e(r+1)λxβ, (11)

    where cr=k=0bk(1)r(k+1)!(r+1)!(kr)!. Equation (11) indicates that the PDF of the GKMW order statistics is a mixture of W densities, with a scale parameter of (r+1)λ and a shape parameter β. Consequently, some of their mathematical properties can be derived from those of the W distribution. For instance, the qth moment of X(i) is given by

    E(Xq(i))=Γ(1+qβ)r=0cr[(r+1)λ]qβ.

    Greenwood et al. [34] introduced probability weighted moments (PWMs) as a particular type of moment. PWMs are used to estimate the parameters and quantiles of distributions that can be represented in inverse form. These estimators exhibit moderate bias and low variance, making them comparable to maximum likelihood (ML) estimators.

    The (j,i)th PWM of X, say ρj,i, is defined by

    ρj,i=E{XjF(X)i}=xjf(x)F(x)idx,

    where j and i be non-negative integers. According to Mahran et al. [28], the PWM of the GKM-G class can be expressed as

    ρj,i=s=0dsE(Tjs+1),

    where

    ds=δl=0(1+l)s(1)l+s(s+1)!ξδ(1+i)(α(1+i)1l).

    Using Eq (5), the PWM of GKMW model can be defined as

    ρj,i=s=0dsΓ(1+jβ)[(s+1)λ]jβ.

    Entropy measures the randomness of systems and is widely used in fields such as molecular tumor imaging, physics, and sparse kernel density estimation. The Rényi entropy of the GKM-G family [28] is

    Iθ=11θlog[k=0ηkg(x)θG(x)kdx], (12)

    where

    ηk=j=0(δξγ)θ(θ+j)kk!(1)k+j(θ(γ1)j).

    Inserting the PDF and CDF of W distribution in Eq (12) and using binomial series, we obtain

    g(x)θG(x)k=(βλ)θxθ(β1)i=0(1)i(ki)e(i+θ)λxβ.

    Therefore, the Rényi entropy of the GKMW distribution follows as

    Iθ=11θlog[k,i=0ηk(1)i(ki)(βλ)θA], (13)

    where

    A=0xθ(β1)e(i+θ)λxβdx=1β[(i+θ)λ]θ(1β)1Γ(θ(β1)+1β).

    By substituting the quantity A from Eq (13), the Rényi entropy of the GKMW distribution simplifies to

    Iθ=11θlog[k,i=0ηk(1)i(ki)λθβθ1[(i+θ)λ]θ(1β)1Γ(θ(β1)+1β)],

    where θ>0 and θ1.

    The Shannon entropy can be seen as a special case of the Rényi entropy when θ approaches 1.

    In this section, we present eight methods for estimating the parameters of the GKMW distribution. These methods include maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramér–von Mises (CVM), maximum product of spacings (MPS), Anderson–Darling (AD), right-tail Anderson–Darling (RTAD), and percentile (PC) estimators.

    Let x1,,xn be a random sample from the GKMW distribution with parameters δ,β, and λ. Denote the ordered statistics as x1:n<x2:n<<xn:n.

    The log-likelihood function of the GKMW model can be expressed as follows

    =nδlogξ+nlogδ+nlogβ+nlogλ+(β1)ni=1log(xi)ni=1(1eλxβi)λni=1xβi+(δ1)ni=1log(ki),

    where ki=1e(1eλxβi).

    The MLEs for δ,β, and λ can be obtained by maximizing the previous equation with respect to these parameters or by solving the provided nonlinear equations:

    δ=nδ+nlogξ+ni=1log(ki)=0,
    β=nβ+ni=1log(xi)λni=1xβilog(xi)λni=1xβilog(xi)eλxβi+λ(δ1)ni=1xβilog(xi)(1ki)eλxβiki=0

    and

    λ=nλni=1xβini=1xβieλxβi+(δ1)ni=1xβi(1ki)eλxβiki=0.

    The LS and WLS methods are employed to estimate the parameters of the beta distribution [35]. The LS estimators (LSEs) and WLS estimators (WLSEs) for the GKMW parameters can be obtained by minimizing the following:

    V(δ,β,λ)=ni=1υi[ξδkδi:nin+1]2,

    where υi=1 for the LS method, υi=(n+1)2(n+2)/[i(ni+1)] for the WLS approach, and ki:n=1e(1eλxβi:n).

    Additionally, the LSEs and WLSEs can be derived by solving the nonlinear equations (for s=1,2,3):

    ni=1υi[ξδkδi:nin+1]Δs(xi:n|δ,β,λ)=0,

    where

    Δ1(xi:n|δ,β,λ)=δF(xi:n|δ,β,λ)=kδi:nξδ[log(ξ)+log(ki:n)], (14)
    Δ2(xi:n|δ,β,λ)=βF(xi:n|δ,β,λ)=δλξδxβi:neλxβi:n(1ki:n)kδ1i:nlog(xi:n) (15)

    and

    Δ3(xi:n|δ,β,λ)=λF(xi:n|δ,β,λ)=δξδxβi:neλxβi:n(1ki:n)kδ1i:n. (16)

    The CVM estimators (CVMEs) [36,37] can be derived from the difference between the estimated CDF and the empirical CDF. The CVMEs for the GKMW parameters are found by minimizing the following function:

    C(δ,β,λ)=112n+ni=1[ξδkδi:n2i12n]2.

    Further, the CVMEs follow by solving the nonlinear equations,

    ni=1[ξδkδi:n2i12n]Δs(xi:n|δ,β,λ)=0,

    where Δs(xi:n|δ,β,λ)=0 are defined in (14)-(16) for s=1,2,3.

    The MPS method is used for parameter estimation in continuous univariate models as an alternative to the ML method [38,39]. The uniform spacings of a random sample of size n from the GKMW distribution can be characterized by:

    Di=F(xi:n|δ,β,λ)F(xi1:n|δ,β,λ),

    where Di denotes the uniform spacings, where F(x0:n|δ,β,λ)=0,F(xn+1:n|δ,β,λ)=1 and n+1i=1Di(δ,β,λ)=1. The MPS estimators (MPSEs) of the GKMW parameters can be obtained by maximizing

    G(δ,β,λ)=1n+1n+1i=1logDi(δ,β,λ).

    Additionally, the MPSEs of the GKMW parameters can also be obtained by solving:

    1n+1n+1i=11Di(δ,β,λ)[Δs(xi:n|δ,β,λ)Δs(xi1:n|δ,β,λ)]=0,s=1,2,3.

    The AD estimators (ADEs) are another form of minimum distance estimator. The ADEs for the GKMW parameters are obtained by minimizing:

    A(δ,β,λ)=n1nni=1(2i1)[logF(xi:n|δ,β,λ)+logF(xn+1i:n|δ,β,λ)].

    The ADEs can also be determined by solving the corresponding nonlinear equations:

    ni=1(2i1)[Δs(xi:n|δ,β,λ)F(xi:n|δ,β,λ)Δj(xn+1i:n|δ,β,λ)S(xn+1i:n|δ,β,λ)]=0.

    The RTAD estimators (RTADEs) for the GKMW parameters δ,β, and λ are obtained by minimizing the following function with respect to these parameters:

    R(δ,β,λ)=n22ni=1F(xi:n|δ,β,λ)1nni=1(2i1)logF(xn+1i:n|δ,β,λ).

    The unknown parameters of the GKMW distribution can be estimated using the PC method [40], which involves matching the sample PC points with the corresponding population PCs. An unbiased estimator of F(xi:n|δ,β,λ) is given by ui=i/(n+1). The PC estimators (PCEs) for the GKMW parameters are subsequently derived by minimizing the specified function:

    P(δ,β,λ)=ni=1(xi:n1λlog{1+log[1(uiξδ)1δ]})2β.

    In this section, a Monte Carlo simulation analysis was conducted to assess the performance of various estimators for the unknown parameters of the GKMW distribution. The assessment centered on their average absolute biases (BIAS), average mean square errors (MSE), and average mean relative errors (MRE) of the estimates, defined as follows:

    BIAS=1nni=1|ˆηη|,MSE=1nni=1(ˆηη)2andMRE=1nni=1|ˆηη|/η.

    We generated 5,000 samples from the GKMW distribution for different sample sizes n={20,50,100,300,500}, selecting δ=(0.5,1.5), β=(0.25,2), and λ=(1.5,3.5). The GKMW parameters (δ,β,λ) were estimated for each combination of parameters and sample size using eight estimators, including WLSEs, LSEs, MLEs, MPSEs, CRVMEs, ADEs, RTADEs, and PCEs. Subsequently, the MSE, BIAS, and MRE of the parameters were calculated. All computations in this section were carried out using R software Version 4.2.2.

    Tables 310 present the results of all simulated outcomes. Additionally, these tables display the ranking of each estimator in every row, with curly braces indicating the ranks and Ranks representing the cumulative sum of ranks for each column within a specific sample size. The findings in Tables 310 indicate that all estimation methods exhibit the property of consistency, as BIAS, MSE, and MRE decrease with increasing sample size across all parameter combinations.

    Table 3.  Results for eight estimators with parameters δ=0.5,β=0.25,andλ=1.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 0.44805{4} 0.46606{5} 0.40387{3} 0.47616{6} 0.39067{2} 2.44726{8} 0.37975{1} 0.48266{7}
    BIAS ˆβ 0.14364{5} 0.15331{7} 0.13623{4} 0.14834{6} 0.13404{3} 0.65763{8} 0.13143{1} 0.13160{2}
    ˆλ 0.66572{4} 0.66928{8} 0.66508{3} 0.66627{6} 0.66622{5} 0.64430{1} 0.64661{2} 0.66871{7}
    ˆδ 0.20075{4} 0.21722{5} 0.16311{3} 0.22673{6} 0.15262{2} 5.98910{8} 0.14421{1} 0.23296{7}
    20 MSE ˆβ 0.02063{5} 0.02350{7} 0.01856{4} 0.02200{6} 0.01797{3} 0.43248{8} 0.01727{1} 0.01732{2}
    ˆλ 0.44319{4} 0.44793{8} 0.44233{3} 0.44392{6} 0.44384{5} 0.41513{1} 0.41811{2} 0.44717{7}
    ˆδ 0.59740{4} 0.62142{5} 0.53849{3} 0.63489{6} 0.52089{2} 0.88991{8} 0.50633{1} 0.64355{7}
    MRE ˆβ 0.28728{5} 0.30662{7} 0.27246{4} 0.29667{6} 0.26808{3} 0.32881{8} 0.26286{1} 0.26320{2}
    ˆλ 0.99362{4} 0.99892{8} 0.99265{3} 0.99444{6} 0.99435{5} 0.96165{1} 0.96509{2} 0.99807{7}
    RANKS 39.0{4} 60.0{8} 30.0{2.5} 54.0{7} 30.0{2.5} 51.0{6} 12.0{1} 48.0{5}
    ˆδ 0.25007{3} 0.29937{5} 0.24733{2} 0.31057{6} 0.22757{1} 2.37250{8} 0.25066{4} 0.31836{7}
    BIAS ˆβ 0.08437{3} 0.09749{7} 0.08281{2} 0.09732{6} 0.07884{1} 0.49530{8} 0.08464{4} 0.08707{5}
    ˆλ 0.51229{1} 0.59472{6} 0.52254{3} 0.57940{5} 0.51959{2} 0.63231{8} 0.53069{4} 0.60133{7}
    ˆδ 0.06254{3} 0.08962{5} 0.06117{2} 0.09645{6} 0.05179{1} 5.62873{8} 0.06283{4} 0.10135{7}
    50 MSE ˆβ 0.00712{3} 0.00951{7} 0.00686{2} 0.00947{6} 0.00622{1} 0.24532{8} 0.00716{4} 0.00758{5}
    ˆλ 0.26244{1} 0.35369{6} 0.27305{3} 0.33571{5} 0.26998{2} 0.39982{8} 0.28164{4} 0.36160{7}
    ˆδ 0.33343{3} 0.39916{5} 0.32978{2} 0.41409{6} 0.30342{1} 0.86273{8} 0.33422{4} 0.42447{7}
    MRE ˆβ 0.16874{3} 0.19499{7} 0.16562{2} 0.19465{6} 0.15768{1} 0.24765{8} 0.16927{4} 0.17413{5}
    ˆλ 0.76461{1} 0.88764{6} 0.77991{3} 0.86478{5} 0.77551{2} 0.94375{8} 0.79208{4} 0.89751{7}
    RANKS 21.0{2.5} 54.0{6} 21.0{2.5} 51.0{5} 12.0{1} 72.0{8} 36.0{4} 57.0{7}
    ˆδ 0.17337{3} 0.21780{6} 0.17020{2} 0.22097{7} 0.15701{1} 2.39904{8} 0.17686{4} 0.21457{5}
    BIAS ˆβ 0.05580{3} 0.06830{6} 0.05577{2} 0.06885{7} 0.05374{1} 0.41721{8} 0.05725{4} 0.06044{5}
    ˆλ 0.39296{2} 0.46927{7} 0.39857{3} 0.45336{5} 0.38016{1} 0.62525{8} 0.40082{4} 0.46343{6}
    ˆδ 0.03006{3} 0.04744{6} 0.02897{2} 0.04883{7} 0.02465{1} 5.75540{8} 0.03128{4} 0.04604{5}
    100 MSE ˆβ 0.00311{2.5} 0.00466{6} 0.00311{2.5} 0.00474{7} 0.00289{1} 0.17406{8} 0.00328{4} 0.00365{5}
    ˆλ 0.15441{2} 0.22022{7} 0.15886{3} 0.20554{5} 0.14452{1} 0.39094{8} 0.16066{4} 0.21477{6}
    ˆδ 0.23116{3} 0.29040{6} 0.22693{2} 0.29462{7} 0.20935{1} 0.87238{8} 0.23582{4} 0.28610{5}
    MRE ˆβ 0.11161{3} 0.13660{6} 0.11155{2} 0.13770{7} 0.10749{1} 0.20860{8} 0.11449{4} 0.12089{5}
    ˆλ 0.58650{2} 0.70041{7} 0.59488{3} 0.67666{5} 0.56741{1} 0.93322{8} 0.59824{4} 0.69169{6}
    RANKS 23.5{3} 57.0{6.5} 21.5{2} 57.0{6.5} 9.0{1} 72.0{8} 36.0{4} 48.0{5}
    ˆδ 0.11921{2} 0.15274{6} 0.12118{3} 0.15801{7} 0.11128{1} 2.36301{8} 0.12134{4} 0.15004{5}
    BIAS ˆβ 0.03944{2} 0.04894{6} 0.03986{4} 0.04966{7} 0.03780{1} 0.35089{8} 0.03953{3} 0.04230{5}
    ˆλ 0.28268{2} 0.35098{6} 0.28501{3} 0.35253{7} 0.27401{1} 0.61586{8} 0.29546{4} 0.35009{5}
    ˆδ 0.01421{2} 0.02333{6} 0.01469{3} 0.02497{7} 0.01238{1} 5.58381{8} 0.01472{4} 0.02251{5}
    300 MSE ˆβ 0.00156{2.5} 0.00239{6} 0.00159{4} 0.00247{7} 0.00143{1} 0.12312{8} 0.00156{2.5} 0.00179{5}
    ˆλ 0.07991{2} 0.12319{6} 0.08123{3} 0.12428{7} 0.07508{1} 0.37928{8} 0.08730{4} 0.12256{5}
    ˆδ 0.15895{2} 0.20365{6} 0.16158{3} 0.21068{7} 0.14838{1} 0.85928{8} 0.16179{4} 0.20005{5}
    MRE ˆβ 0.07887{2} 0.09787{6} 0.07972{4} 0.09932{7} 0.07560{1} 0.17545{8} 0.07905{3} 0.08460{5}
    ˆλ 0.42191{2} 0.52386{6} 0.42539{3} 0.52616{7} 0.40896{1} 0.91919{8} 0.44099{4} 0.52252{5}
    RANKS 18.5{2} 54.0{6} 30.0{3} 63.0{7} 9.0{1} 72.0{8} 32.5{4} 45.0{5}
    ˆδ 0.08419{2} 0.10545{5} 0.08572{3} 0.10981{7} 0.07707{1} 2.51646{8} 0.08962{4} 0.10567{6}
    BIAS ˆβ 0.02771{2} 0.03356{6} 0.02858{3} 0.03361{7} 0.02586{1} 0.30410{8} 0.02884{4} 0.03016{5}
    ˆλ 0.20338{1} 0.25009{5} 0.20668{3} 0.25785{7} 0.20635{2} 0.60619{8} 0.21717{4} 0.25239{6}
    ˆδ 0.00709{2} 0.01112{5} 0.00735{3} 0.01206{7} 0.00594{1} 6.33269{8} 0.00803{4} 0.01117{6}
    500 MSE ˆβ 0.00077{2} 0.00113{6.5} 0.00082{3} 0.00113{6.5} 0.00067{1} 0.09247{8} 0.00083{4} 0.00091{5}
    ˆλ 0.04136{1} 0.06255{5} 0.04272{3} 0.06649{7} 0.04258{2} 0.36747{8} 0.04716{4} 0.06370{6}
    ˆδ 0.11225{2} 0.14061{5} 0.11429{3} 0.14641{7} 0.10276{1} 0.91508{8} 0.11950{4} 0.14089{6}
    MRE ˆβ 0.05542{2} 0.06711{6} 0.05716{3} 0.06723{7} 0.05173{1} 0.15205{8} 0.05768{4} 0.06033{5}
    ˆλ 0.30355{1} 0.37327{5} 0.30848{3} 0.38486{7} 0.30798{2} 0.90477{8} 0.32413{4} 0.37671{6}
    RANKS 15.0{2} 48.5{5} 27.0{3} 62.5{7} 12.0{1} 72.0{8} 36.0{4} 51.0{6}

     | Show Table
    DownLoad: CSV
    Table 4.  Results for eight estimators with parameters δ=0.5,β=0.25,andλ=3.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 0.32426{3} 0.36749{5} 0.32579{4} 0.37178{6} 0.32305{2} 0.48308{8} 0.31426{1} 0.38908{7}
    BIAS ˆβ 0.16279{6} 0.16255{5} 0.13270{3} 0.16800{7} 0.12181{1} 0.17744{8} 0.12182{2} 0.14583{4}
    ˆλ 1.02635{2} 1.49446{6} 1.25347{4} 1.89848{8} 1.11158{3} 0.98297{1} 1.27708{5} 1.62940{7}
    ˆδ 0.10515{3} 0.13505{5} 0.10614{4} 0.13822{6} 0.10436{2} 0.23336{8} 0.09876{1} 0.15138{7}
    20 MSE ˆβ 0.02650{6} 0.02642{5} 0.01761{3} 0.02822{7} 0.01484{1.5} 0.03148{8} 0.01484{1.5} 0.02127{4}
    ˆλ 1.05340{2} 2.23340{6} 1.57119{4} 3.60423{8} 1.23560{3} 0.96623{1} 1.63094{5} 2.65496{7}
    ˆδ 0.64853{3} 0.73498{5} 0.65157{4} 0.74356{6} 0.64610{2} 0.96616{8} 0.62852{1} 0.77815{7}
    MRE ˆβ 0.65115{6} 0.65020{5} 0.53081{3} 0.67201{7} 0.48723{1} 0.70975{8} 0.48728{2} 0.58331{4}
    ˆλ 0.29324{2} 0.42699{6} 0.35813{4} 0.54242{8} 0.31759{3} 0.28085{1} 0.36488{5} 0.46554{7}
    RANKS 33.0{3.5} 48.0{5} 33.0{3.5} 63.0{8} 18.5{1} 51.0{6} 23.5{2} 54.0{7}
    ˆδ 0.26539{6} 0.25563{5} 0.20593{3} 0.26669{7} 0.18851{1} 0.49483{8} 0.20458{2} 0.23977{4}
    BIAS ˆβ 0.12742{7} 0.09473{5} 0.07337{3} 0.09606{6} 0.06554{1} 0.25000{8} 0.07268{2} 0.07792{4}
    ˆλ 0.31068{1} 0.87506{6} 0.65401{3} 0.93368{7} 0.63524{2} 1.70896{8} 0.70057{4} 0.77199{5}
    ˆδ 0.07043{6} 0.06534{5} 0.04241{3} 0.07112{7} 0.03554{1} 0.24486{8} 0.04185{2} 0.05749{4}
    50 MSE ˆβ 0.01624{7} 0.00897{5} 0.00538{3} 0.00923{6} 0.00429{1} 0.06250{8} 0.00528{2} 0.00607{4}
    ˆλ 0.09652{1} 0.76574{6} 0.42773{3} 0.87176{7} 0.40352{2} 2.92055{8} 0.49080{4} 0.59596{5}
    ˆδ 0.53078{6} 0.51125{5} 0.41186{3} 0.53337{7} 0.37702{1} 0.98966{8} 0.40915{2} 0.47955{4}
    MRE ˆβ 0.50967{7} 0.37893{5} 0.29349{3} 0.38424{6} 0.26214{1} 1.00000{8} 0.29071{2} 0.31167{4}
    ˆλ 0.08876{1} 0.25002{6} 0.18686{3} 0.26677{7} 0.18150{2} 0.48827{8} 0.20016{4} 0.22057{5}
    RANKS 42.0{5} 48.0{6} 27.0{3} 60.0{7} 12.0{1} 72.0{8} 24.0{2} 39.0{4}
    ˆδ 0.23814{7} 0.19152{5} 0.14325{2} 0.19335{6} 0.13433{1} 0.50000{8} 0.14782{3} 0.17393{4}
    BIAS ˆβ 0.12253{7} 0.06875{6} 0.04895{2} 0.06860{5} 0.04607{1} 0.25000{8} 0.05166{3} 0.05613{4}
    ˆλ 0.13396{1} 0.59512{7} 0.43461{2} 0.59336{6} 0.45566{3} 2.33232{8} 0.48957{4} 0.49276{5}
    ˆδ 0.05671{7} 0.03668{5} 0.02052{2} 0.03739{6} 0.01805{1} 0.25000{8} 0.02185{3} 0.03025{4}
    100 MSE ˆβ 0.01501{7} 0.00473{6} 0.00240{2} 0.00471{5} 0.00212{1} 0.06250{8} 0.00267{3} 0.00315{4}
    ˆλ 0.01795{1} 0.35416{7} 0.18889{2} 0.35207{6} 0.20762{3} 5.43973{8} 0.23968{4} 0.24281{5}
    ˆδ 0.47627{7} 0.38303{5} 0.28650{2} 0.38671{6} 0.26866{1} 1.00000{8} 0.29563{3} 0.34787{4}
    MRE ˆβ 0.49013{7} 0.27502{6} 0.19579{2} 0.27439{5} 0.18427{1} 1.00000{8} 0.20663{3} 0.22454{4}
    ˆλ 0.03827{1} 0.17003{7} 0.12417{2} 0.16953{6} 0.13019{3} 0.66638{8} 0.13988{4} 0.14079{5}
    RANKS 45.0{5} 54.0{7} 18.0{2} 51.0{6} 15.0{1} 72.0{8} 30.0{3} 39.0{4}
    ˆδ 0.16105{7} 0.11059{5} 0.08394{2} 0.11359{6} 0.07800{1} 0.49787{8} 0.08757{3} 0.10016{4}
    BIAS ˆβ 0.06283{7} 0.03817{5} 0.02859{2} 0.03946{6} 0.02634{1} 0.26436{8} 0.03008{3} 0.03194{4}
    ˆλ 0.09811{1} 0.32542{6} 0.26408{3} 0.33776{7} 0.26030{2} 3.29688{8} 0.27467{4} 0.27699{5}
    ˆδ 0.02594{7} 0.01223{5} 0.00705{2} 0.0129{6} 0.00608{1} 0.24788{8} 0.00767{3} 0.01003{4}
    300 MSE ˆβ 0.00395{7} 0.00146{5} 0.00082{2} 0.00156{6} 0.00069{1} 0.06989{8} 0.0009{3} 0.00102{4}
    ˆλ 0.00963{1} 0.10590{6} 0.06974{3} 0.11408{7} 0.06775{2} 10.86939{8} 0.07544{4} 0.07673{5}
    ˆδ 0.32211{7} 0.22118{5} 0.16788{2} 0.22718{6} 0.15600{1} 0.99575{8} 0.17513{3} 0.20033{4}
    MRE ˆβ 0.25131{7} 0.15269{5} 0.11437{2} 0.15786{6} 0.10537{1} 1.05746{8} 0.12030{3} 0.12777{4}
    ˆλ 0.02803{1} 0.09298{6} 0.07545{3} 0.09650{7} 0.07437{2} 0.94196{8} 0.07848{4} 0.07914{5}
    RANKS 45.0{5} 48.0{6} 21.0{2} 57.0{7} 12.0{1} 72.0{8} 30.0{3} 39.0{4}
    ˆδ 0.13682{7} 0.08518{5} 0.06806{2} 0.08903{6} 0.06143{1} 0.49767{8} 0.06854{3} 0.07835{4}
    BIAS ˆβ 0.04912{7} 0.02897{5} 0.02309{2} 0.03037{6} 0.02041{1} 0.19514{8} 0.02314{3} 0.02444{4}
    ˆλ 0.07977{1} 0.25952{6} 0.19725{2} 0.26898{7} 0.20086{3} 3.31272{8} 0.22096{5} 0.21419{4}
    ˆδ 0.01872{7} 0.00726{5} 0.00463{2} 0.00793{6} 0.00377{1} 0.24768{8} 0.00470{3} 0.00614{4}
    500 MSE ˆβ 0.00241{7} 0.00084{5} 0.00053{2} 0.00092{6} 0.00042{1} 0.03808{8} 0.00054{3} 0.00060{4}
    ˆλ 0.00636{1} 0.06735{6} 0.03891{2} 0.07235{7} 0.04034{3} 10.97413{8} 0.04883{5} 0.04588{4}
    ˆδ 0.27364{7} 0.17036{5} 0.13611{2} 0.17807{6} 0.12285{1} 0.99535{8} 0.13709{3} 0.15669{4}
    MRE ˆβ 0.19649{7} 0.11589{5} 0.09236{2} 0.12148{6} 0.08166{1} 0.78054{8} 0.09258{3} 0.09775{4}
    ˆλ 0.02279{1} 0.07415{6} 0.05636{2} 0.07685{7} 0.05739{3} 0.94649{8} 0.06313{5} 0.06120{4}
    RANKS 45.0{5} 48.0{6} 18.0{2} 57.0{7} 15.0{1} 72.0{8} 33.0{3} 36.0{4}

     | Show Table
    DownLoad: CSV
    Table 5.  Results for eight estimators with parameters δ=0.5,β=2,andλ=1.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 0.33176{3} 0.36562{5} 0.33913{4} 0.37397{6} 0.32582{2} 0.38712{7} 0.32087{1} 0.38878{8}
    BIAS ˆβ 1.12766{4} 1.27666{6} 1.07109{3} 1.35020{8} 0.96289{2} 1.28521{7} 0.94279{1} 1.17226{5}
    ˆλ 0.86191{4} 0.88497{5} 0.76644{3} 0.99457{8} 0.70889{1} 0.90068{6} 0.74792{2} 0.95949{7}
    ˆδ 0.11007{3} 0.13368{5} 0.11501{4} 0.13985{6} 0.10616{2} 0.14986{7} 0.10296{1} 0.15115{8}
    20 MSE ˆβ 1.27161{4} 1.62986{6} 1.14723{3} 1.82303{8} 0.92715{2} 1.65176{7} 0.88885{1} 1.37420{5}
    ˆλ 0.74288{4} 0.78317{5} 0.58742{3} 0.98917{8} 0.50252{1} 0.81123{6} 0.55939{2} 0.92062{7}
    ˆδ 0.66352{3} 0.73125{5} 0.67827{4} 0.74793{6} 0.65165{2} 0.77425{7} 0.64175{1} 0.77755{8}
    MRE ˆβ 0.56383{4} 0.63833{6} 0.53555{3} 0.67510{8} 0.48144{2} 0.64260{7} 0.47140{1} 0.58613{5}
    ˆλ 0.57461{4} 0.58998{5} 0.51096{3} 0.66305{8} 0.47259{1} 0.60045{6} 0.49861{2} 0.63966{7}
    RANKS 33.0{4} 48.0{5} 30.0{3} 66.0{8} 15.0{2} 60.0{6.5} 12.0{1} 60.0{6.5}
    ˆδ 0.21959{4} 0.24961{6} 0.21918{3} 0.26981{7} 0.19148{1} 0.27897{8} 0.20495{2} 0.24813{5}
    BIAS ˆβ 0.62370{3} 0.76053{7} 0.62516{4} 0.77811{8} 0.54002{1} 0.73260{6} 0.57135{2} 0.64916{5}
    ˆλ 0.45268{4} 0.48195{5} 0.42714{2} 0.52178{7} 0.39191{1} 0.56415{8} 0.43028{3} 0.51147{6}
    ˆδ 0.04822{4} 0.06230{6} 0.04804{3} 0.07280{7} 0.03666{1} 0.07783{8} 0.04200{2} 0.06157{5}
    50 MSE ˆβ 0.38900{3} 0.57840{7} 0.39083{4} 0.60546{8} 0.29162{1} 0.53670{6} 0.32644{2} 0.42141{5}
    ˆλ 0.20492{4} 0.23227{5} 0.18245{2} 0.27226{7} 0.15360{1} 0.31827{8} 0.18514{3} 0.26160{6}
    ˆδ 0.43918{4} 0.49921{6} 0.43837{3} 0.53963{7} 0.38295{1} 0.55795{8} 0.40990{2} 0.49627{5}
    MRE ˆβ 0.31185{3} 0.38026{7} 0.31258{4} 0.38906{8} 0.27001{1} 0.36630{6} 0.28568{2} 0.32458{5}
    ˆλ 0.30179{4} 0.32130{5} 0.28476{2} 0.34786{7} 0.26128{1} 0.37610{8} 0.28685{3} 0.34098{6}
    RANKS 33.0{4} 54.0{6} 27.0{3} 66.0{7.5} 9.0{1} 66.0{7.5} 21.0{2} 48.0{5}
    ˆδ 0.14671{2} 0.18823{6} 0.15343{4} 0.19493{7} 0.13279{1} 0.21007{8} 0.15276{3} 0.17687{5}
    BIAS ˆβ 0.39391{2} 0.53496{7} 0.42885{4} 0.55301{8} 0.35810{1} 0.52138{6} 0.41247{3} 0.44862{5}
    ˆλ 0.29759{3} 0.32702{5} 0.27960{2} 0.34665{6} 0.26772{1} 0.39649{8} 0.30125{4} 0.35571{7}
    ˆδ 0.02152{2} 0.03543{6} 0.02354{4} 0.03800{7} 0.01763{1} 0.04413{8} 0.02334{3} 0.03128{5}
    100 MSE ˆβ 0.15516{2} 0.28618{7} 0.18391{4} 0.30582{8} 0.12824{1} 0.27184{6} 0.17013{3} 0.20126{5}
    ˆλ 0.08856{3} 0.10694{5} 0.07818{2} 0.12017{6} 0.07167{1} 0.15720{8} 0.09075{4} 0.12653{7}
    ˆδ 0.29341{2} 0.37646{6} 0.30687{4} 0.38987{7} 0.26559{1} 0.42015{8} 0.30552{3} 0.35375{5}
    MRE ˆβ 0.19695{2} 0.26748{7} 0.21443{4} 0.27650{8} 0.17905{1} 0.26069{6} 0.20623{3} 0.22431{5}
    ˆλ 0.19839{3} 0.21801{5} 0.18640{2} 0.23110{6} 0.17848{1} 0.26433{8} 0.20083{4} 0.23714{7}
    RANKS 21.0{2} 54.0{6} 30.0{3.5} 63.0{7} 9.0{1} 66.0{8} 30.0{3.5} 51.0{5}
    ˆδ 0.08098{2} 0.10961{6} 0.08512{3} 0.11525{7} 0.07733{1} 0.12222{8} 0.08977{4} 0.10159{5}
    BIAS ˆβ 0.21831{2} 0.30112{7} 0.23615{3} 0.31930{8} 0.20764{1} 0.28937{6} 0.24578{4} 0.26022{5}
    ˆλ 0.15901{2} 0.18217{5} 0.16388{3} 0.18257{6} 0.15273{1} 0.22463{8} 0.16393{4} 0.19128{7}
    ˆδ 0.00656{2} 0.01201{6} 0.00725{3} 0.01328{7} 0.00598{1} 0.01494{8} 0.00806{4} 0.01032{5}
    300 MSE ˆβ 0.04766{2} 0.09067{7} 0.05576{3} 0.10195{8} 0.04312{1} 0.08374{6} 0.06041{4} 0.06771{5}
    ˆλ 0.02529{2} 0.03319{5} 0.02686{3} 0.03333{6} 0.02333{1} 0.05046{8} 0.02687{4} 0.03659{7}
    ˆδ 0.16196{2} 0.21922{6} 0.17024{3} 0.23050{7} 0.15466{1} 0.24444{8} 0.17953{4} 0.20317{5}
    MRE ˆβ 0.10916{2} 0.15056{7} 0.11807{3} 0.15965{8} 0.10382{1} 0.14469{6} 0.12289{4} 0.13011{5}
    ˆλ 0.10601{2} 0.12145{5} 0.10925{3} 0.12171{6} 0.10182{1} 0.14975{8} 0.10929{4} 0.12752{7}
    RANKS 18.0{2} 54.0{6} 27.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5}
    ˆδ 0.06133{2} 0.08655{6} 0.06579{3} 0.08942{7} 0.05873{1} 0.09305{8} 0.06982{4} 0.07986{5}
    BIAS ˆβ 0.16505{2} 0.23942{7} 0.17980{3} 0.24405{8} 0.15115{1} 0.21914{6} 0.18812{4} 0.20420{5}
    ˆλ 0.12258{3} 0.14193{5} 0.12071{2} 0.14351{6} 0.11629{1} 0.17353{8} 0.12581{4} 0.14648{7}
    ˆδ 0.00376{2} 0.00749{6} 0.00433{3} 0.00800{7} 0.00345{1} 0.00866{8} 0.00488{4} 0.00638{5}
    500 MSE ˆβ 0.02724{2} 0.05732{7} 0.03233{3} 0.05956{8} 0.02285{1} 0.04802{6} 0.03539{4} 0.04170{5}
    ˆλ 0.01503{3} 0.02014{5} 0.01457{2} 0.02059{6} 0.01352{1} 0.03011{8} 0.01583{4} 0.02146{7}
    ˆδ 0.12266{2} 0.17311{6} 0.13157{3} 0.17883{7} 0.11745{1} 0.18610{8} 0.13965{4} 0.15972{5}
    MRE ˆβ 0.08253{2} 0.11971{7} 0.08990{3} 0.12203{8} 0.07557{1} 0.10957{6} 0.09406{4} 0.10210{5}
    ˆλ 0.08172{3} 0.09462{5} 0.08047{2} 0.09567{6} 0.07753{1} 0.11568{8} 0.08387{4} 0.09765{7}
    RANKS 21.0{2} 54.0{6} 24.0{3} 63.0{7} 9.0{1} 66.0{8} 36.0{4} 51.0{5}

     | Show Table
    DownLoad: CSV
    Table 6.  Results for eight estimators with parameters δ=0.5,β=2,andλ=3.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 0.33110{3} 0.36615{5} 0.33585{4} 0.37061{6} 0.31868{1} 0.39913{8} 0.32453{2} 0.38922{7}
    BIAS ˆβ 1.11460{4} 1.27786{6} 1.06641{3} 1.32616{8} 0.95015{2} 1.28377{7} 0.94504{1} 1.17382{5}
    ˆλ 1.55737{5} 1.59665{6} 1.34503{3} 1.91607{8} 1.19054{1} 1.53949{4} 1.23604{2} 1.70187{7}
    ˆδ 0.10963{3} 0.13407{5} 0.11279{4} 0.13735{6} 0.10155{1} 0.15930{8} 0.10532{2} 0.15149{7}
    20 MSE ˆβ 1.24233{4} 1.63291{6} 1.13723{3} 1.75870{8} 0.90278{2} 1.64808{7} 0.89310{1} 1.37786{5}
    ˆλ 2.42540{5} 2.54930{6} 1.80910{3} 3.67132{8} 1.41739{1} 2.37004{4} 1.52779{2} 2.89636{7}
    ˆδ 0.66220{3} 0.73230{5} 0.67170{4} 0.74122{6} 0.63735{1} 0.79825{8} 0.64906{2} 0.77844{7}
    MRE ˆβ 0.55730{4} 0.63893{6} 0.53320{3} 0.66308{8} 0.47507{2} 0.64189{7} 0.47252{1} 0.58691{5}
    ˆλ 0.44496{5} 0.45619{6} 0.38429{3} 0.54745{8} 0.34016{1} 0.43986{4} 0.35315{2} 0.48625{7}
    RANKS 36.0{4} 51.0{5} 30.0{3} 66.0{8} 12.0{1} 57.0{6.5} 15.0{2} 57.0{6.5}
    ˆδ 0.21390{3} 0.26182{6} 0.22139{4} 0.27439{7} 0.19140{1} 0.28679{8} 0.20785{2} 0.24663{5}
    BIAS ˆβ 0.61150{3} 0.78181{7} 0.64730{4} 0.78486{8} 0.53103{1} 0.76841{6} 0.59128{2} 0.64931{5}
    ˆλ 0.78611{4} 0.86510{7} 0.76550{3} 0.92676{8} 0.68749{1} 0.80892{5} 0.73796{2} 0.81282{6}
    ˆδ 0.04575{3} 0.06855{6} 0.04901{4} 0.07529{7} 0.03664{1} 0.08225{8} 0.04320{2} 0.06082{5}
    50 MSE ˆβ 0.37393{3} 0.61123{7} 0.41900{4} 0.61600{8} 0.28200{1} 0.59046{6} 0.34961{2} 0.42160{5}
    ˆλ 0.61798{4} 0.74840{7} 0.58599{3} 0.85888{8} 0.47264{1} 0.65435{5} 0.54459{2} 0.66068{6}
    ˆδ 0.42780{3} 0.52365{6} 0.44278{4} 0.54878{7} 0.38281{1} 0.57358{8} 0.41571{2} 0.49325{5}
    MRE ˆβ 0.30575{3} 0.39091{7} 0.32365{4} 0.39243{8} 0.26552{1} 0.38421{6} 0.29564{2} 0.32465{5}
    ˆλ 0.22460{4} 0.24717{7} 0.21871{3} 0.26479{8} 0.19643{1} 0.23112{5} 0.21085{2} 0.23223{6}
    RANKS 30.0{3} 60.0{7} 33.0{4} 69.0{8} 9.0{1} 57.0{6} 18.0{2} 48.0{5}
    ˆδ 0.14038{2} 0.19164{6} 0.15667{4} 0.19596{7} 0.13391{1} 0.20535{8} 0.15291{3} 0.17192{5}
    BIAS ˆβ 0.38434{2} 0.54048{7} 0.42196{4} 0.56208{8} 0.36139{1} 0.51354{6} 0.42009{3} 0.45263{5}
    ˆλ 0.47694{2} 0.58765{7} 0.51182{4} 0.60332{8} 0.45658{1} 0.51860{5} 0.49143{3} 0.53797{6}
    ˆδ 0.01971{2} 0.03672{6} 0.02455{4} 0.03840{7} 0.01793{1} 0.04217{8} 0.02338{3} 0.02956{5}
    100 MSE ˆβ 0.14772{2} 0.29211{7} 0.17805{4} 0.31594{8} 0.13060{1} 0.26372{6} 0.17648{3} 0.20488{5}
    ˆλ 0.22747{2} 0.34533{7} 0.26196{4} 0.36399{8} 0.20847{1} 0.26895{5} 0.24150{3} 0.28941{6}
    ˆδ 0.28075{2} 0.38327{6} 0.31335{4} 0.39192{7} 0.26781{1} 0.41070{8} 0.30583{3} 0.34385{5}
    MRE ˆβ 0.19217{2} 0.27024{7} 0.21098{4} 0.28104{8} 0.18069{1} 0.25677{6} 0.21004{3} 0.22632{5}
    ˆλ 0.13627{2} 0.16790{7} 0.14623{4} 0.17238{8} 0.13045{1} 0.14817{5} 0.14041{3} 0.15371{6}
    RANKS 18.0{2} 60.0{7} 36.0{4} 69.0{8} 9.0{1} 57.0{6} 27.0{3} 48.0{5}
    ˆδ 0.07851{1} 0.11388{6} 0.08746{3} 0.11416{7} 0.08299{2} 0.12225{8} 0.09006{4} 0.10489{5}
    BIAS ˆβ 0.20925{1} 0.31575{7} 0.23592{3} 0.31907{8} 0.22303{2} 0.28419{6} 0.24085{4} 0.26648{5}
    ˆλ 0.26941{2} 0.33461{8} 0.27809{4} 0.33184{7} 0.24439{1} 0.27271{3} 0.28243{5} 0.29963{6}
    ˆδ 0.00616{1} 0.01297{6} 0.00765{3} 0.01303{7} 0.00689{2} 0.01495{8} 0.00811{4} 0.01100{5}
    300 MSE ˆβ 0.04379{1} 0.09970{7} 0.05566{3} 0.10180{8} 0.04974{2} 0.08077{6} 0.05801{4} 0.07101{5}
    ˆλ 0.07258{2} 0.11196{8} 0.07733{4} 0.11012{7} 0.05973{1} 0.07437{3} 0.07977{5} 0.08978{6}
    ˆδ 0.15702{1} 0.22776{6} 0.17492{3} 0.22833{7} 0.16597{2} 0.24450{8} 0.18013{4} 0.20979{5}
    MRE ˆβ 0.10463{1} 0.15787{7} 0.11796{3} 0.15953{8} 0.11152{2} 0.14210{6} 0.12042{4} 0.13324{5}
    ˆλ 0.07697{2} 0.09560{8} 0.07945{4} 0.09481{7} 0.06983{1} 0.07792{3} 0.08069{5} 0.08561{6}
    RANKS 12.0{1} 63.0{7} 30.0{3} 66.0{8} 15.0{2} 51.0{6} 39.0{4} 48.0{5}
    ˆδ 0.06024{1} 0.08637{7} 0.06664{3} 0.08502{6} 0.06628{2} 0.09635{8} 0.06819{4} 0.07999{5}
    BIAS ˆβ 0.16078{1} 0.24082{7} 0.18266{3} 0.24124{8} 0.17382{2} 0.22598{6} 0.18545{4} 0.20491{5}
    ˆλ 0.20606{2} 0.26665{8} 0.22231{5} 0.26483{7} 0.18095{1} 0.21196{3} 0.22040{4} 0.22496{6}
    ˆδ 0.00363{1} 0.00746{7} 0.00444{3} 0.00723{6} 0.00439{2} 0.00928{8} 0.00465{4} 0.00640{5}
    500 MSE ˆβ 0.02585{1} 0.05800{7} 0.03337{3} 0.05820{8} 0.03021{2} 0.05107{6} 0.03439{4} 0.04199{5}
    ˆλ 0.04246{2} 0.07110{8} 0.04942{5} 0.07014{7} 0.03274{1} 0.04493{3} 0.04858{4} 0.05061{6}
    ˆδ 0.12048{1} 0.17273{7} 0.13328{3} 0.17003{6} 0.13257{2} 0.19270{8} 0.13637{4} 0.15997{5}
    MRE ˆβ 0.08039{1} 0.12041{7} 0.09133{3} 0.12062{8} 0.08691{2} 0.11299{6} 0.09272{4} 0.10245{5}
    ˆλ 0.05887{2} 0.07619{8} 0.06352{5} 0.07567{7} 0.05170{1} 0.06056{3} 0.06297{4} 0.06427{6}
    RANKS 12.0{1} 66.0{8} 33.0{3} 63.0{7} 15.0{2} 51.0{6} 36.0{4} 48.0{5}

     | Show Table
    DownLoad: CSV
    Table 7.  Results for eight estimators with parameters δ=1.5,β=0.25,andλ=1.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 1.22185{4} 1.30796{5} 1.18799{3} 1.33931{6} 1.11412{1} 1.45636{8} 1.13362{2} 1.36998{7}
    BIAS ˆβ 0.12675{1} 0.17951{6} 0.15149{4} 0.18035{7} 0.12973{3} 0.19587{8} 0.12793{2} 0.16035{5}
    ˆλ 0.94495{3} 1.13870{5} 0.96082{4} 1.15670{6} 0.88794{1} 1.49717{8} 0.89346{2} 1.21562{7}
    ˆδ 1.49293{4} 1.71077{5} 1.41132{3} 1.79374{6} 1.24126{1} 2.12099{8} 1.28510{2} 1.87684{7}
    20 MSE ˆβ 0.01607{1} 0.03223{6} 0.02295{4} 0.03253{7} 0.01683{3} 0.03837{8} 0.01637{2} 0.02571{5}
    ˆλ 0.89294{3} 1.29664{5} 0.92317{4} 1.33795{6} 0.78844{1} 2.24151{8} 0.79826{2} 1.47773{7}
    ˆδ 0.81457{4} 0.87198{5} 0.79199{3} 0.89287{6} 0.74275{1} 0.97091{8} 0.75575{2} 0.91332{7}
    MRE ˆβ 0.50700{1} 0.71806{6} 0.60596{4} 0.72140{7} 0.51892{3} 0.78348{8} 0.51172{2} 0.64141{5}
    ˆλ 0.62997{3} 0.75913{5} 0.64055{4} 0.77113{6} 0.59196{1} 0.99811{8} 0.59564{2} 0.81041{7}
    RANKS 24.0{3} 48.0{5} 33.0{4} 57.0{6.5} 15.0{1} 72.0{8} 18.0{2} 57.0{6.5}
    ˆδ 0.79315{2} 0.99146{5} 0.84310{4} 1.01743{7} 0.72849{1} 1.46287{8} 0.80972{3} 0.99359{6}
    BIAS ˆβ 0.07620{2} 0.11078{6} 0.08734{4} 0.11296{7} 0.06930{1} 0.18453{8} 0.07794{3} 0.09839{5}
    ˆλ 0.54797{2} 0.71063{6} 0.57525{4} 0.70987{5} 0.50083{1} 1.49746{8} 0.55093{3} 0.72034{7}
    ˆδ 0.62908{2} 0.98300{5} 0.71082{4} 1.03516{7} 0.53070{1} 2.13998{8} 0.65565{3} 0.98721{6}
    50 MSE ˆβ 0.00581{2} 0.01227{6} 0.00763{4} 0.01276{7} 0.00480{1} 0.03405{8} 0.00607{3} 0.00968{5}
    ˆλ 0.30027{2} 0.50499{6} 0.33091{4} 0.50392{5} 0.25083{1} 2.24238{8} 0.30352{3} 0.51889{7}
    ˆδ 0.52876{2} 0.66097{5} 0.56207{4} 0.67829{7} 0.48566{1} 0.97524{8} 0.53982{3} 0.66239{6}
    MRE ˆβ 0.30480{2} 0.44310{6} 0.34938{4} 0.45185{7} 0.27722{1} 0.73812{8} 0.31176{3} 0.39356{5}
    ˆλ 0.36531{2} 0.47375{6} 0.38350{4} 0.47325{5} 0.33389{1} 0.99831{8} 0.36729{3} 0.48022{7}
    RANKS 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6}
    ˆδ 0.55352{2} 0.79898{7} 0.61847{4} 0.79686{6} 0.53296{1} 1.46195{8} 0.60399{3} 0.77763{5}
    BIAS ˆβ 0.05036{2} 0.07948{7} 0.05744{4} 0.07839{6} 0.04670{1} 0.18270{8} 0.05485{3} 0.06844{5}
    ˆλ 0.35861{2} 0.51616{6} 0.39537{4} 0.52199{7} 0.33928{1} 1.49165{8} 0.38740{3} 0.51469{5}
    ˆδ 0.30638{2} 0.63837{7} 0.38250{4} 0.63499{6} 0.28404{1} 2.13729{8} 0.36481{3} 0.60470{5}
    100 MSE ˆβ 0.00254{2} 0.00632{7} 0.00330{4} 0.00615{6} 0.00218{1} 0.03338{8} 0.00301{3} 0.00468{5}
    ˆλ 0.12860{2} 0.26642{6} 0.15632{4} 0.27248{7} 0.11511{1} 2.22502{8} 0.15008{3} 0.26490{5}
    ˆδ 0.36901{2} 0.53266{7} 0.41231{4} 0.53124{6} 0.35530{1} 0.97463{8} 0.40266{3} 0.51842{5}
    MRE ˆβ 0.20143{2} 0.31790{7} 0.22975{4} 0.31356{6} 0.18681{1} 0.73078{8} 0.21941{3} 0.27376{5}
    ˆλ 0.23907{2} 0.34411{6} 0.26358{4} 0.34800{7} 0.22619{1} 0.99443{8} 0.25827{3} 0.34313{5}
    RANKS 18.0{2} 60.0{7} 36.0{4} 57.0{6} 9.0{1} 72.0{8} 27.0{3} 45.0{5}
    ˆδ 0.29712{1} 0.48781{7} 0.35956{3} 0.48497{6} 0.30236{2} 1.41996{8} 0.36469{4} 0.47766{5}
    BIAS ˆβ 0.02561{2} 0.04395{7} 0.03174{4} 0.04365{6} 0.02442{1} 0.16410{8} 0.03163{3} 0.03873{5}
    ˆλ 0.18604{1} 0.29854{6} 0.22010{3} 0.28985{5} 0.18861{2} 1.38022{8} 0.22173{4} 0.29943{7}
    ˆδ 0.08828{1} 0.23796{7} 0.12929{3} 0.23520{6} 0.09142{2} 2.01629{8} 0.13300{4} 0.22816{5}
    300 MSE ˆβ 0.00066{2} 0.00193{7} 0.00101{4} 0.00191{6} 0.00060{1} 0.02693{8} 0.00100{3} 0.00150{5}
    ˆλ 0.03461{1} 0.08912{6} 0.04845{3} 0.08401{5} 0.03557{2} 1.90500{8} 0.04917{4} 0.08966{7}
    ˆδ 0.19808{1} 0.32521{7} 0.23971{3} 0.32331{6} 0.20157{2} 0.94664{8} 0.24313{4} 0.31844{5}
    MRE ˆβ 0.10244{2} 0.17578{7} 0.12698{4} 0.17461{6} 0.09767{1} 0.65638{8} 0.12653{3} 0.15491{5}
    ˆλ 0.12403{1} 0.19902{6} 0.14674{3} 0.19323{5} 0.12574{2} 0.92015{8} 0.14782{4} 0.19962{7}
    RANKS 12.0{1} 60.0{7} 30.0{3} 51.0{5.5} 15.0{2} 72.0{8} 33.0{4} 51.0{5.5}
    ˆδ 0.25086{2} 0.38648{6} 0.28600{3} 0.38981{7} 0.07680{1} 1.39954{8} 0.29130{4} 0.36782{5}
    BIAS ˆβ 0.02112{2} 0.03402{7} 0.02419{3} 0.03401{6} 0.01531{1} 0.15183{8} 0.02464{4} 0.02929{5}
    ˆλ 0.15715{2} 0.22582{6} 0.17344{3} 0.22961{7} 0.10142{1} 1.32012{8} 0.17784{4} 0.22455{5}
    ˆδ 0.06293{2} 0.14937{6} 0.08180{3} 0.15195{7} 0.00590{1} 1.95872{8} 0.08486{4} 0.13529{5}
    500 MSE ˆβ 0.00045{2} 0.00116{6.5} 0.00059{3} 0.00116{6.5} 0.00023{1} 0.02305{8} 0.00061{4} 0.00086{5}
    ˆλ 0.02470{2} 0.05100{6} 0.03008{3} 0.05272{7} 0.01029{1} 1.74272{8} 0.03163{4} 0.05042{5}
    ˆδ 0.16724{2} 0.25766{6} 0.19067{3} 0.25987{7} 0.05120{1} 0.93303{8} 0.19420{4} 0.24521{5}
    MRE ˆβ 0.08448{2} 0.13606{7} 0.09677{3} 0.13603{6} 0.06123{1} 0.60731{8} 0.09858{4} 0.11714{5}
    ˆλ 0.10477{2} 0.15055{6} 0.11562{3} 0.15307{7} 0.06761{1} 0.88008{8} 0.11856{4} 0.14970{5}
    RANKS 18.0{2} 56.5{6} 27.0{3} 60.5{7} 9.0{1} 72.0{8} 36.0{4} 45.0{5}

     | Show Table
    DownLoad: CSV
    Table 8.  Results for eight estimators with parameters δ=1.5,β=0.25,andλ=3.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 1.22894{4} 1.28950{5} 1.18086{3} 1.33073{7} 1.07161{1} 1.46572{8} 1.13889{2} 1.32101{6}
    BIAS ˆβ 0.12828{2} 0.17671{7} 0.15224{4} 0.17548{6} 0.12637{1} 0.25000{8} 0.13350{3} 0.15810{5}
    ˆλ 1.39638{4} 1.74017{7} 1.43119{5} 1.95764{8} 1.18946{1} 1.36218{3} 1.33183{2} 1.70681{6}
    ˆδ 1.51029{4} 1.66282{5} 1.39442{3} 1.77085{7} 1.14834{1} 2.14833{8} 1.29707{2} 1.74507{6}
    20 MSE ˆβ 0.01645{2} 0.03123{7} 0.02318{4} 0.03079{6} 0.01597{1} 0.06250{8} 0.01782{3} 0.02500{5}
    ˆλ 1.94988{4} 3.02819{7} 2.04831{5} 3.83234{8} 1.41481{1} 1.85553{3} 1.77378{2} 2.91320{6}
    ˆδ 0.81929{4} 0.85967{5} 0.78724{3} 0.88716{7} 0.71440{1} 0.97715{8} 0.75926{2} 0.88067{6}
    MRE ˆβ 0.51311{2} 0.70683{7} 0.60895{4} 0.70191{6} 0.50547{1} 1.00000{8} 0.53399{3} 0.63242{5}
    ˆλ 0.39897{4} 0.49719{7} 0.40891{5} 0.55932{8} 0.33985{1} 0.38919{3} 0.38052{2} 0.48766{6}
    RANKS 30.0{3} 57.0{6.5} 36.0{4} 63.0{8} 9.0{1} 57.0{6.5} 21.0{2} 51.0{5}
    ˆδ 0.77632{2} 1.00262{6} 0.83470{4} 0.99986{5} 0.74758{1} 1.49055{8} 0.80751{3} 1.00385{7}
    BIAS ˆβ 0.07277{2} 0.11010{6} 0.08714{4} 0.11377{7} 0.06972{1} 0.25000{8} 0.07820{3} 0.09997{5}
    ˆλ 0.64433{2} 0.84802{5} 0.70844{4} 0.93484{7} 0.61040{1} 3.02012{8} 0.67029{3} 0.85822{6}
    ˆδ 0.60268{2} 1.00524{6} 0.69673{4} 0.99972{5} 0.55887{1} 2.22174{8} 0.65208{3} 1.00772{7}
    50 MSE ˆβ 0.00530{2} 0.01212{6} 0.00759{4} 0.01294{7} 0.00486{1} 0.06250{8} 0.00612{3} 0.00999{5}
    ˆλ 0.41517{2} 0.71914{5} 0.50188{4} 0.87393{7} 0.37259{1} 9.12110{8} 0.44929{3} 0.73654{6}
    ˆδ 0.51755{2} 0.66841{6} 0.55647{4} 0.66657{5} 0.49838{1} 0.99370{8} 0.53834{3} 0.66924{7}
    MRE ˆβ 0.29110{2} 0.44040{6} 0.34855{4} 0.45506{7} 0.27886{1} 1.00000{8} 0.31281{3} 0.39987{5}
    ˆλ 0.18410{2} 0.24229{5} 0.20241{4} 0.26710{7} 0.17440{1} 0.86289{8} 0.19151{3} 0.24521{6}
    RANKS 18.0{2} 51.0{5} 36.0{4} 57.0{7} 9.0{1} 72.0{8} 27.0{3} 54.0{6}
    ˆδ 0.52877{2} 0.75982{5} 0.61324{4} 0.79300{7} 0.50211{1} 1.49311{8} 0.59239{3} 0.76087{6}
    BIAS ˆβ 0.04745{2} 0.07544{6} 0.05512{4} 0.07800{7} 0.04411{1} 0.24115{8} 0.05318{3} 0.06564{5}
    ˆλ 0.41302{2} 0.54237{5} 0.44237{4} 0.55690{7} 0.40469{1} 3.40952{8} 0.43465{3} 0.54540{6}
    ˆδ 0.27959{2} 0.57732{5} 0.37606{4} 0.62885{7} 0.25211{1} 2.22937{8} 0.35092{3} 0.57892{6}
    100 MSE ˆβ 0.00225{2} 0.00569{6} 0.00304{4} 0.00608{7} 0.00195{1} 0.05816{8} 0.00283{3} 0.00431{5}
    ˆλ 0.17058{2} 0.29416{5} 0.19569{4} 0.31014{7} 0.16378{1} 11.62479{8} 0.18892{3} 0.29747{6}
    ˆδ 0.35251{2} 0.50654{5} 0.40883{4} 0.52867{7} 0.33474{1} 0.99540{8} 0.39493{3} 0.50724{6}
    MRE ˆβ 0.18979{2} 0.30177{6} 0.22048{4} 0.31201{7} 0.17643{1} 0.96461{8} 0.21274{3} 0.26254{5}
    ˆλ 0.11800{2} 0.15496{5} 0.12639{4} 0.15912{7} 0.11563{1} 0.97415{8} 0.12419{3} 0.15583{6}
    RANKS 18.0{2} 48.0{5} 36.0{4} 63.0{7} 9.0{1} 72.0{8} 27.0{3} 51.0{6}
    ˆδ 0.30459{2} 0.47883{6} 0.34599{3} 0.49318{7} 0.26509{1} 1.49412{8} 0.36119{4} 0.47006{5}
    BIAS ˆβ 0.02610{2} 0.04267{6} 0.03044{3} 0.04300{7} 0.02472{1} 0.19207{8} 0.03073{4} 0.03788{5}
    ˆλ 0.22180{2} 0.28352{5} 0.23322{3} 0.29399{6} 0.21278{1} 3.31702{8} 0.24050{4} 0.29989{7}
    ˆδ 0.09277{2} 0.22927{6} 0.11971{3} 0.24323{7} 0.07027{1} 2.23239{8} 0.13046{4} 0.22096{5}
    300 MSE ˆβ 0.00068{2} 0.00182{6} 0.00093{3} 0.00185{7} 0.00061{1} 0.03689{8} 0.00094{4} 0.00143{5}
    ˆλ 0.04919{2} 0.08038{5} 0.05439{3} 0.08643{6} 0.04528{1} 11.00263{8} 0.05784{4} 0.08994{7}
    ˆδ 0.20306{2} 0.31922{6} 0.23066{3} 0.32879{7} 0.17673{1} 0.99608{8} 0.24079{4} 0.31337{5}
    MRE ˆβ 0.10439{2} 0.17067{6} 0.12174{3} 0.17200{7} 0.09888{1} 0.76827{8} 0.12292{4} 0.15151{5}
    ˆλ 0.06337{2} 0.08101{5} 0.06663{3} 0.08400{6} 0.06080{1} 0.94772{8} 0.06872{4} 0.08568{7}
    RANKS 18.0{2} 51.0{5.5} 27.0{3} 60.0{7} 9.0{1} 72.0{8} 36.0{4} 51.0{5.5}
    ˆδ 0.23897{2} 0.38214{7} 0.25570{3} 0.37845{6} 0.16914{1} 1.48632{8} 0.28414{4} 0.37467{5}
    BIAS ˆβ 0.01978{2} 0.03282{7} 0.02240{3} 0.03281{6} 0.01819{1} 0.18313{8} 0.02426{4} 0.03009{5}
    ˆλ 0.16576{2} 0.21315{6} 0.17902{3} 0.20973{5} 0.16236{1} 3.09819{8} 0.18473{4} 0.23445{7}
    ˆδ 0.05711{2} 0.14603{7} 0.06538{3} 0.14322{6} 0.02861{1} 2.20913{8} 0.08074{4} 0.14037{5}
    500 MSE ˆβ 0.00039{2} 0.00108{6.5} 0.00050{3} 0.00108{6.5} 0.00033{1} 0.03354{8} 0.00059{4} 0.00091{5}
    ˆλ 0.02748{2} 0.04543{6} 0.03205{3} 0.04399{5} 0.02636{1} 9.59881{8} 0.03413{4} 0.05496{7}
    ˆδ 0.15931{2} 0.25476{7} 0.17047{3} 0.25230{6} 0.11276{1} 0.99088{8} 0.18943{4} 0.24978{5}
    MRE ˆβ 0.07914{2} 0.13129{7} 0.08961{3} 0.13125{6} 0.07275{1} 0.73250{8} 0.09705{4} 0.12037{5}
    ˆλ 0.04736{2} 0.06090{6} 0.05115{3} 0.05992{5} 0.04639{1} 0.88520{8} 0.05278{4} 0.06698{7}
    RANKS 18.0{2} 59.5{7} 27.0{3} 51.5{6} 9.0{1} 72.0{8} 36.0{4} 51.0{5}

     | Show Table
    DownLoad: CSV
    Table 9.  Results for eight estimators with parameters δ=1.5,β=2,andλ=1.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 1.21790{4} 1.30887{6} 1.21865{5} 1.34306{7} 1.11438{1} 1.21283{3} 1.17647{2} 1.35914{8}
    BIAS ˆβ 1.05826{2} 1.39100{7} 1.23608{5} 1.44930{8} 1.03052{1} 1.18538{4} 1.06741{3} 1.27677{6}
    ˆλ 0.93963{2} 1.12156{6} 0.98145{4} 1.15279{7} 0.87281{1} 1.02784{5} 0.94055{3} 1.17198{8}
    ˆδ 1.48329{4} 1.71313{6} 1.48511{5} 1.80380{7} 1.24185{1} 1.47095{3} 1.38408{2} 1.84725{8}
    20 MSE ˆβ 1.11992{2} 1.93489{7} 1.52788{5} 2.10047{8} 1.06198{1} 1.40512{4} 1.13937{3} 1.63014{6}
    ˆλ 0.88290{2} 1.25789{6} 0.96325{4} 1.32892{7} 0.76181{1} 1.05646{5} 0.88463{3} 1.37353{8}
    ˆδ 0.81194{4} 0.87258{6} 0.81243{5} 0.89537{7} 0.74292{1} 0.80855{3} 0.78431{2} 0.90609{8}
    MRE ˆβ 0.52913{2} 0.69550{7} 0.61804{5} 0.72465{8} 0.51526{1} 0.59269{4} 0.53371{3} 0.63839{6}
    ˆλ 0.62642{2} 0.74771{6} 0.65430{4} 0.76853{7} 0.58188{1} 0.68523{5} 0.62703{3} 0.78132{8}
    RANKS 24.0{2.5} 57.0{6} 42.0{5} 66.0{7.5} 9.0{1} 36.0{4} 24.0{2.5} 66.0{7.5}
    ˆδ 0.79539{3} 1.00353{6} 0.85786{4} 1.01445{7} 0.75478{1} 0.91041{5} 0.79011{2} 1.01556{8}
    BIAS ˆβ 0.59966{2} 0.90678{7} 0.70921{4} 0.91942{8} 0.56750{1} 0.72809{5} 0.62593{3} 0.77242{6}
    ˆλ 0.53020{2} 0.72106{6} 0.59163{4} 0.72648{7} 0.52005{1} 0.64409{5} 0.54187{3} 0.75003{8}
    ˆδ 0.63265{3} 1.00707{6} 0.73592{4} 1.02910{7} 0.56970{1} 0.82884{5} 0.62427{2} 1.03136{8}
    50 MSE ˆβ 0.35960{2} 0.82226{7} 0.50298{4} 0.84533{8} 0.32206{1} 0.53012{5} 0.39178{3} 0.59663{6}
    ˆλ 0.28111{2} 0.51992{6} 0.35002{4} 0.52777{7} 0.27045{1} 0.41485{5} 0.29363{3} 0.56255{8}
    ˆδ 0.53026{3} 0.66902{6} 0.57190{4} 0.67630{7} 0.50319{1} 0.60694{5} 0.52674{2} 0.67704{8}
    MRE ˆβ 0.29983{2} 0.45339{7} 0.35461{4} 0.45971{8} 0.28375{1} 0.36405{5} 0.31296{3} 0.38621{6}
    ˆλ 0.35347{2} 0.48070{6} 0.39442{4} 0.48432{7} 0.34670{1} 0.42939{5} 0.36125{3} 0.50002{8}
    RANKS 21.0{2} 57.0{6} 36.0{4} 66.0{7.5} 9.0{1} 45.0{5} 24.0{3} 66.0{7.5}
    ˆδ 0.56242{2} 0.77628{6} 0.61241{4} 0.80807{8} 0.54109{1} 0.68672{5} 0.59950{3} 0.77986{7}
    BIAS ˆβ 0.39983{2} 0.61330{7} 0.43840{4} 0.63189{8} 0.38098{1} 0.49069{5} 0.43820{3} 0.56198{6}
    ˆλ 0.36312{2} 0.49911{6} 0.38759{4} 0.52894{8} 0.35611{1} 0.45134{5} 0.38358{3} 0.52830{7}
    ˆδ 0.31631{2} 0.60261{6} 0.37505{4} 0.65298{8} 0.29278{1} 0.47158{5} 0.35940{3} 0.60819{7}
    100 MSE ˆβ 0.15986{2} 0.37613{7} 0.19220{4} 0.39929{8} 0.14515{1} 0.24078{5} 0.19202{3} 0.31582{6}
    ˆλ 0.13185{2} 0.24911{6} 0.15023{4} 0.27978{8} 0.12682{1} 0.20370{5} 0.14714{3} 0.27910{7}
    ˆδ 0.37494{2} 0.51752{6} 0.40827{4} 0.53871{8} 0.36073{1} 0.45781{5} 0.39966{3} 0.51991{7}
    MRE ˆβ 0.19991{2} 0.30665{7} 0.21920{4} 0.31595{8} 0.19049{1} 0.24535{5} 0.21910{3} 0.28099{6}
    ˆλ 0.24208{2} 0.33274{6} 0.25839{4} 0.35263{8} 0.23741{1} 0.30089{5} 0.25572{3} 0.35220{7}
    RANKS 18.0{2} 57.0{6} 36.0{4} 72.0{8} 9.0{1} 45.0{5} 27.0{3} 60.0{7}
    ˆδ 0.32323{2} 0.49569{8} 0.36255{4} 0.48956{7} 0.30782{1} 0.41508{5} 0.35994{3} 0.48713{6}
    BIAS ˆβ 0.22461{2} 0.35416{7} 0.25156{3} 0.35426{8} 0.19092{1} 0.27075{5} 0.25279{4} 0.31981{6}
    ˆλ 0.20246{2} 0.30157{7} 0.21812{3} 0.29793{6} 0.17845{1} 0.25460{5} 0.22575{4} 0.30237{8}
    ˆδ 0.10448{2} 0.24571{8} 0.13144{4} 0.23967{7} 0.09475{1} 0.17229{5} 0.12955{3} 0.23729{6}
    300 MSE ˆβ 0.05045{2} 0.12543{7} 0.06328{3} 0.12550{8} 0.03645{1} 0.07331{5} 0.06390{4} 0.10228{6}
    ˆλ 0.04099{2} 0.09095{7} 0.04757{3} 0.08876{6} 0.03184{1} 0.06482{5} 0.05096{4} 0.09143{8}
    ˆδ 0.21549{2} 0.33046{8} 0.24170{4} 0.32637{7} 0.20521{1} 0.27672{5} 0.23996{3} 0.32475{6}
    MRE ˆβ 0.11231{2} 0.17708{7} 0.12578{3} 0.17713{8} 0.09546{1} 0.13538{5} 0.12640{4} 0.15991{6}
    ˆλ 0.13497{2} 0.20105{7} 0.14541{3} 0.19862{6} 0.11897{1} 0.16974{5} 0.15050{4} 0.20158{8}
    RANKS 18.0{2} 66.0{8} 30.0{3} 63.0{7} 9.0{1} 45.0{5} 33.0{4} 60.0{6}
    ˆδ 0.24699{2} 0.39408{8} 0.27937{3} 0.38856{7} 0.06292{1} 0.32464{5} 0.29210{4} 0.36675{6}
    BIAS ˆβ 0.16520{2} 0.27112{8} 0.18661{3} 0.26750{7} 0.10938{1} 0.20723{5} 0.20130{4} 0.23228{6}
    ˆλ 0.15305{2} 0.23378{8} 0.16744{3} 0.22923{7} 0.10184{1} 0.20077{5} 0.17960{4} 0.22513{6}
    ˆδ 0.06100{2} 0.15530{8} 0.07805{3} 0.15098{7} 0.00396{1} 0.10539{5} 0.08532{4} 0.13450{6}
    500 MSE ˆβ 0.02729{2} 0.07350{8} 0.03482{3} 0.07155{7} 0.01196{1} 0.04295{5} 0.04052{4} 0.05395{6}
    ˆλ 0.02343{2} 0.05465{8} 0.02804{3} 0.05255{7} 0.01037{1} 0.04031{5} 0.03226{4} 0.05068{6}
    ˆδ 0.16466{2} 0.26272{8} 0.18625{3} 0.25904{7} 0.04195{1} 0.21643{5} 0.19473{4} 0.24450{6}
    MRE ˆβ 0.08260{2} 0.13556{8} 0.09331{3} 0.13375{7} 0.05469{1} 0.10362{5} 0.10065{4} 0.11614{6}
    ˆλ 0.10203{2} 0.15585{8} 0.11163{3} 0.15282{7} 0.06789{1} 0.13385{5} 0.11973{4} 0.15008{6}
    RANKS 18.0{2} 72.0{8} 27.0{3} 63.0{7} 9.0{1} 45.0{5} 36.0{4} 54.0{6}

     | Show Table
    DownLoad: CSV
    Table 10.  Results for eight estimators with parameters δ=1.5,β=2,andλ=3.5.
    n Est. Est. Par. MLEs LSEs WLSEs CRVMEs MPSEs PCEs ADEs RADEs
    ˆδ 1.23462{5} 1.31283{7} 1.20528{3} 1.31253{6} 1.10360{1} 1.22863{4} 1.14760{2} 1.36649{8}
    BIAS ˆβ 1.05009{3} 1.40142{7} 1.24705{5} 1.42459{8} 1.02087{1} 1.20712{4} 1.04620{2} 1.28075{6}
    ˆλ 1.50774{5} 1.68716{6} 1.45155{4} 2.02470{8} 1.20515{1} 1.41364{3} 1.31014{2} 1.72834{7}
    ˆδ 1.52429{5} 1.72353{7} 1.45270{3} 1.72274{6} 1.21793{1} 1.50952{4} 1.31698{2} 1.86730{8}
    20 MSE ˆβ 1.10269{3} 1.96399{7} 1.55514{5} 2.02944{8} 1.04218{1} 1.45713{4} 1.09454{2} 1.64033{6}
    ˆλ 2.27328{5} 2.84649{6} 2.10700{4} 4.09940{8} 1.45239{1} 1.99839{3} 1.71647{2} 2.98715{7}
    ˆδ 0.82308{5} 0.87522{7} 0.80352{3} 0.87502{6} 0.73573{1} 0.81908{4} 0.76507{2} 0.91099{8}
    MRE ˆβ 0.52504{3} 0.70071{7} 0.62353{5} 0.71229{8} 0.51044{1} 0.60356{4} 0.52310{2} 0.64038{6}
    ˆλ 0.43078{5} 0.48204{6} 0.41473{4} 0.57848{8} 0.34433{1} 0.40390{3} 0.37433{2} 0.49381{7}
    RANKS 39.0{5} 60.0{6} 36.0{4} 66.0{8} 9.0{1} 33.0{3} 18.0{2} 63.0{7}
    ˆδ 0.80023{2} 0.99949{7} 0.86165{4} 1.00938{8} 0.75322{1} 0.92477{5} 0.80210{3} 0.97979{6}
    BIAS ˆβ 0.60978{2} 0.90738{8} 0.71608{4} 0.89419{7} 0.56524{1} 0.73706{5} 0.62063{3} 0.75250{6}
    ˆλ 0.68845{3} 0.85525{7} 0.71642{4} 0.92531{8} 0.62309{1} 0.72238{5} 0.66644{2} 0.85091{6}
    ˆδ 0.64037{2} 0.99899{7} 0.74245{4} 1.01885{8} 0.56734{1} 0.85521{5} 0.64336{3} 0.95999{6}
    50 MSE ˆβ 0.37183{2} 0.82334{8} 0.51277{4} 0.79957{7} 0.31950{1} 0.54325{5} 0.38519{3} 0.56626{6}
    ˆλ 0.47397{3} 0.73146{7} 0.51326{4} 0.85620{8} 0.38824{1} 0.52183{5} 0.44414{2} 0.72404{6}
    ˆδ 0.53349{2} 0.66633{7} 0.57444{4} 0.67292{8} 0.50215{1} 0.61652{5} 0.53473{3} 0.65319{6}
    MRE ˆβ 0.30489{2} 0.45369{8} 0.35804{4} 0.44709{7} 0.28262{1} 0.36853{5} 0.31032{3} 0.37625{6}
    ˆλ 0.19670{3} 0.24436{7} 0.20469{4} 0.26437{8} 0.17803{1} 0.20639{5} 0.19041{2} 0.24312{6}
    RANKS 21.0{2} 66.0{7} 36.0{4} 69.0{8} 9.0{1} 45.0{5} 24.0{3} 54.0{6}
    ˆδ 0.55451{2} 0.78491{8} 0.64174{4} 0.77990{6} 0.53134{1} 0.70296{5} 0.62483{3} 0.78258{7}
    BIAS ˆβ 0.39869{2} 0.61053{7} 0.46633{4} 0.61217{8} 0.37452{1} 0.50410{5} 0.46542{3} 0.55297{6}
    ˆλ 0.42451{2} 0.53326{6} 0.45485{3} 0.57349{8} 0.40630{1} 0.49665{5} 0.45643{4} 0.56196{7}
    ˆδ 0.30748{2} 0.61608{8} 0.41183{4} 0.60824{6} 0.28232{1} 0.49416{5} 0.39041{3} 0.61243{7}
    100 MSE ˆβ 0.15895{2} 0.37274{7} 0.21747{4} 0.37475{8} 0.14027{1} 0.25412{5} 0.21662{3} 0.30578{6}
    ˆλ 0.18021{2} 0.28437{6} 0.20689{3} 0.32889{8} 0.16508{1} 0.24667{5} 0.20833{4} 0.31580{7}
    ˆδ 0.36967{2} 0.52327{8} 0.42783{4} 0.51993{6} 0.35423{1} 0.46864{5} 0.41655{3} 0.52172{7}
    MRE ˆβ 0.19934{2} 0.30526{7} 0.23317{4} 0.30608{8} 0.18726{1} 0.25205{5} 0.23271{3} 0.27649{6}
    ˆλ 0.12129{2} 0.15236{6} 0.12996{3} 0.16385{8} 0.11609{1} 0.14190{5} 0.13041{4} 0.16056{7}
    RANKS 18.0{2} 63.0{7} 33.0{4} 66.0{8} 9.0{1} 45.0{5} 30.0{3} 60.0{6}
    ˆδ 0.31588{2} 0.49339{7} 0.36347{3} 0.49549{8} 0.30500{1} 0.41165{5} 0.38186{4} 0.48256{6}
    BIAS ˆβ 0.21678{2} 0.35354{8} 0.25102{3} 0.35267{7} 0.19375{1} 0.26734{5} 0.26120{4} 0.31289{6}
    ˆλ 0.21739{1} 0.29760{7} 0.23903{3} 0.29268{6} 0.22287{2} 0.26049{5} 0.24469{4} 0.31120{8}
    ˆδ 0.09978{2} 0.24344{7} 0.13211{3} 0.24551{8} 0.09302{1} 0.16946{5} 0.14581{4} 0.23287{6}
    300 MSE ˆβ 0.04700{2} 0.12499{8} 0.06301{3} 0.12438{7} 0.03754{1} 0.07147{5} 0.06823{4} 0.09790{6}
    ˆλ 0.04726{1} 0.08857{7} 0.05713{3} 0.08566{6} 0.04967{2} 0.06786{5} 0.05987{4} 0.09684{8}
    ˆδ 0.21059{2} 0.32893{7} 0.24231{3} 0.33033{8} 0.20333{1} 0.27443{5} 0.25457{4} 0.32171{6}
    MRE ˆβ 0.10839{2} 0.17677{8} 0.12551{3} 0.17633{7} 0.09688{1} 0.13367{5} 0.13060{4} 0.15645{6}
    ˆλ 0.06211{1} 0.08503{7} 0.06829{3} 0.08362{6} 0.06368{2} 0.07443{5} 0.06991{4} 0.08891{8}
    RANKS 15.0{2} 66.0{8} 27.0{3} 63.0{7} 12.0{1} 45.0{5} 36.0{4} 60.0{6}
    ˆδ 0.24597{2} 0.38259{7} 0.28932{3} 0.38364{8} 0.11464{1} 0.32482{5} 0.29036{4} 0.37746{6}
    BIAS ˆβ 0.16657{2} 0.26821{7} 0.19443{3} 0.26895{8} 0.12803{1} 0.21010{5} 0.19701{4} 0.24031{6}
    ˆλ 0.16887{1} 0.21270{6} 0.18628{4} 0.22333{7} 0.17062{2} 0.20334{5} 0.18523{3} 0.22863{8}
    ˆδ 0.06050{2} 0.14637{7} 0.08371{3} 0.14718{8} 0.01314{1} 0.10551{5} 0.08431{4} 0.14247{6}
    500 MSE ˆβ 0.02775{2} 0.07194{7} 0.03780{3} 0.07233{8} 0.01639{1} 0.04414{5} 0.03881{4} 0.05775{6}
    ˆλ 0.02852{1} 0.04524{6} 0.03470{4} 0.04988{7} 0.02911{2} 0.04135{5} 0.03431{3} 0.05227{8}
    ˆδ 0.16398{2} 0.25506{7} 0.19288{3} 0.25576{8} 0.07643{1} 0.21655{5} 0.19357{4} 0.25164{6}
    MRE ˆβ 0.08329{2} 0.13411{7} 0.09722{3} 0.13448{8} 0.06401{1} 0.10505{5} 0.09851{4} 0.12015{6}
    ˆλ 0.04825{1} 0.06077{6} 0.05322{4} 0.06381{7} 0.04875{2} 0.05810{5} 0.05292{3} 0.06532{8}
    RANKS 15.0{2} 60.0{6.5} 30.0{3} 69.0{8} 12.0{1} 45.0{5} 33.0{4} 60.0{6.5}

     | Show Table
    DownLoad: CSV

    The partial and total rankings of the estimators under consideration are presented in Table 11. The estimation method with the lowest overall score is regarded as the best approach. Based on Table 11, the eight estimation methods can be ranked from best to worst as follows: MPS, ML, AD, WLS, RAD, OLS, PC, and CRVM. It is important to note that, based on the results of the detailed simulation study, the MPS method, which achieved the lowest overall rank of 45.5, is considered the most effective estimation method. This lower rank indicates that the MPS method consistently produces better results, as measured by MSE, BIAS, and MRE, across sample sizes and different parameter values studied. Hence, the MPS approach, overall score of 45.5, outperforms all other approaches. Consequently, our results confirm the superiority of MPS method for estimating the GKMW parameters.

    Table 11.  Partial and overall rankings of all estimation methods for various combinations of η.
    ηT n MLE OLSE WLSE CRVME MPS PCE ADE RADE
    (δ=0.5,β=0.25,λ=1.5) 20 4 8 2.5 7 2.5 6 1 5
    50 2.5 6 2.5 5 1 8 4 7
    100 3 6.5 2 6.5 1 8 4 5
    300 2 6 3 7 1 8 4 5
    500 2 5 3 7 1 8 4 6
    (δ=0.5,β=0.25,λ=3.5) 20 3.5 5 3.5 8 1 6 2 7
    50 5 6 3 7 1 8 2 4
    100 5 7 2 6 1 8 3 4
    300 5 6 2 7 1 8 3 4
    500 5 6 2 7 1 8 3 4
    (δ=0.5,β=2,λ=1.5) 20 4 5 3 8 2 6.5 1 6.5
    50 4 6 3 7.5 1 7.5 2 5
    100 2 6 3.5 7 1 8 3.5 5
    300 2 6 3 7 1 8 4 5
    500 2 6 3 7 1 8 4 5
    (δ=0.5,β=2,λ=3.5) 20 4 5 3 8 1 6.5 2 6.5
    50 3 7 4 8 1 6 2 5
    100 2 7 4 8 1 6 3 5
    300 1 7 3 8 2 6 4 5
    500 1 8 3 7 2 6 4 5
    (δ=1.5,β=0.25,λ=1.5) 20 3 5 4 6.5 1 8 2 6.5
    50 2 5 4 7 1 8 3 6
    100 2 7 4 6 1 8 3 5
    300 1 7 3 5.5 2 8 4 5.5
    500 2 6 3 7 1 8 4 5
    (δ=1.5,β=0.25,λ=3.5) 20 3 6.5 4 8 1 6.5 2 5
    50 2 5 4 7 1 8 3 6
    100 2 5 4 7 1 8 3 6
    300 2 5.5 3 7 1 8 4 5.5
    500 2 7 3 6 1 8 4 5
    (δ=1.5,β=2,λ=1.5) 20 2.5 6 5 7.5 1 4 2.5 7.5
    50 2 6 4 7.5 1 5 3 7.5
    100 2 6 4 8 1 5 3 7
    300 2 8 3 7 1 5 4 6
    500 2 8 3 7 1 5 4 6
    (δ=1.5,β=2,λ=3.5) 20 5 6 4 8 1 3 2 7
    50 2 7 4 8 1 5 3 6
    100 2 7 4 8 1 5 3 6
    300 2 8 3 7 1 5 4 6
    500 2 6.5 3 8 1 5 4 6.5
    Ranks 106.5 252 131 286 45.5 270 124 225
    Overall Rank 2 6 4 8 1 7 3 5

     | Show Table
    DownLoad: CSV

    In this section, we analyze three real datasets to demonstrate the flexibility of the proposed GKMW model. The first dataset comprises 63 observations of gauge lengths of 10 mm from Kundu and Raqab [41]. The second dataset is uncensored and comes from Murty et al. [42], representing the failure times (in weeks) of 50 components that were put into use at a certain time. The third dataset details the distances from the transect line for 68 stakes detected while walking along a length of 1000 m and searching 20 m on each side of the line [43]. The three datasets are provided in Appendix A. We compare the fits of the GKMW distribution with several other competitive models, as presented in Table 12.

    Table 12.  The list of competitive distributions.
    Distribution Abbreviation Author
    Modified beta Weibull MBW Khan [7]
    Beta Weibull BW Lee and Famoye [1]
    Odd log-logistic exponentiated Weibull OLLEW Afify et al. [11]
    Exponentiated generalized Weibull EGW Cordeiro et al. [5]
    Lindley Weibull LiW Cordeiro et al. [12]
    Exponentiated Weibull EW Mudholkar and Srivastava [13]
    Transmuted Weibull TW Aryal and Tsokos [4]

     | Show Table
    DownLoad: CSV

    For model comparison, we employ four widely recognized statistics: Akaike information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn information criterion (HQIC), as well as Cramér–von Mises (W) statistics, Anderson–Darling (A), minus log-likelihood (L), and the Kolmogorov–Smirnov (KS) distance along with its associated pvalue. Smaller values for these statistics indicate a better fit. Visual comparisons of the TTT, HRF, PDF, CDF, SF, and probability-probability (PP) plots for the GKMW model are also provided for the three datasets.

    Tables 1315 present the estimated parameters obtained through ML estimation, along with their corresponding standard errors (SE) (in parentheses). The goodness-of-fit measures for the fitted models are provided in Tables 1618. The findings from these tables demonstrate the superiority of the GKMW model compared to other distributions for the three analyzed datasets.

    Table 13.  ML estimates and SE from the gauge lengths dataset for the fitted distributions.
    Distribution ML estimates and SE
    GKMW ˆδ= 45.2721 ˆβ= 1.5646 ˆλ= 0.6627
    (108.9500) (0.9374) (1.1158)
    MBW ˆδ= 0.1328 ˆβ= 0.5224 ˆa= 236.8925 ˆb= 3.9570 ˆc= 0.4084
    (0.2897) (0.3417) (1389.4352) (7.5948) (2.4858)
    BW ˆδ=1.5535 ˆβ= 0.9162 ˆa= 102.4980 ˆb= 2.0925
    (5.6168) (2.0369) (517.5903) (8.0543)
    OLLEW ˆδ= 69.5586 ˆβ=3.4425 ˆγ= 0.0641 ˆθ= 19.5547
    (306.6782) (6.6654) (0.0384) (27.8608)
    EGW ˆδ= 3.7852 ˆa= 5.6583 ˆb= 37.1571 ˆc= 1.4540
    (181.1960) (393.8165) (79.3795) (0.7599)
    LiW ˆδ= 0.1238 ˆβ= 5.0487 ˆθ= 90.5958
    (0.5147) (0.4560) (1882.5304)
    EW ˆδ= 0.8180 ˆβ= 1.4532 ˆθ= 37.2311
    (1.1200) (0.7583) (79.4533)
    TW ˆδ= 3.6164 ˆβ= 5.4807 ˆλ=0.7453
    (0.1515) (0.5021) (0.2633)

     | Show Table
    DownLoad: CSV
    Table 14.  ML estimates and SE from the failure times dataset for the fitted distributions.
    Distribution ML estimates and SE
    GKMW ˆδ= 0.4582 ˆβ= 1.3987 ˆλ= 0.0184
    (0.1995) (0.4033) (0.0272)
    MBW ˆδ=4.3285 ˆβ=0.3702 ˆa= 1.6702 ˆb= 22.2114 ˆc=0.0342
    (54.3129) (0.6122) (1.1828) (265.3049) (0.1894)
    BW ˆδ= 0.0252 ˆβ=1.663 ˆa=0.5592 ˆb= 3.5694
    (0.0813) (0.4550) (0.3169) (12.7630)
    OLLEW ˆδ= 72.9308 ˆβ= 3.2596 ˆγ= 0.0769 ˆθ= 2.2419
    (0.3032) (0.2568) (0.0084) (0.2703)
    EGW ˆδ= 2.0863 ˆa= 0.1545 ˆb= 0.5983 ˆc=1.1009
    (37.6697) (3.0671) (0.3183) (0.3915)
    LiW ˆδ= 0.2790 ˆβ= 0.7193 ˆθ= 0.9699
    (0.7219) (0.1332) (1.4562)
    EW ˆδ=0.0687 ˆβ= 1.1011 ˆθ= 0.5982
    (0.0978) (0.3874) (0.3150)
    TW ˆδ= 6.9739 ˆβ= 0.8004 ˆλ= 0.0010
    (5.0869) (0.1739) (0.9657)

     | Show Table
    DownLoad: CSV
    Table 15.  The ML estimates and SE from the distance dataset for the fitted distributions.
    Distribution ML estimates and SE
    GKMW ˆδ= 0.4596 ˆβ= 2.1497 ˆλ= 0.0055
    (0.0924) (0.2449) (0.0038)
    MBW ˆδ= 22.8768 ˆβ= 1.3294 ˆa= 0.7716 ˆb= 26.1991 ˆc=0.1360
    (52.4569) (2.0900) (1.3573) (169.7519) (0.9503)
    BW ˆδ=0.0948 ˆβ=1.7636 ˆa=0.5664 ˆb= 1.3142
    (0.2660) (0.7832) (0.3403) (5.5844)
    OLLEW ˆδ=20.1065 ˆβ= 5.3078 ˆγ= 0.0921 ˆθ=1.6927
    (0.3340) (0.2855) (0.0099) (0.1816)
    EGW ˆδ= 2.3954 ˆa= 0.1067 ˆb= 0.5795 ˆc=1.7274
    (16.6021) (1.2706) (0.3050) (0.6189)
    LiW ˆδ= 0.2309 ˆβ=1.1040 ˆθ= 1.0343
    (0.4284) (0.2085) (1.7142)
    EW ˆδ= 0.0237 ˆβ= 1.7264 ˆθ=0.5797
    (0.0359) (0.5159) (0.2574)
    TW ˆδ= 6.2398 ˆβ= 1.2250 ˆλ=0.0010
    (2.4596) (0.2312) (0.7996)

     | Show Table
    DownLoad: CSV
    Table 16.  Findings from the gauge lengths dataset for the fitted distributions.
    Distribution AIC CAIC BIC HQIC W A L KS pvalue
    GKMW 118.5520 118.9588 124.9814 121.0807 0.0601 0.3216 56.2760 0.0795 0.821305
    MBW 122.6182 123.6708 133.3338 126.8327 0.0615 0.3272 56.3091 0.0800 0.815108
    BW 120.6346 121.3242 129.2071 124.0062 0.0612 0.3268 56.3173 0.0796 0.820005
    OLLEW 123.9248 124.6144 132.4973 127.2964 0.0866 0.5041 57.9624 0.0916 0.665628
    EGW 120.6216 121.3112 129.1941 123.9932 0.0619 0.3287 56.3108 0.0813 0.799515
    LiW 129.9178 130.3246 136.3472 132.4465 0.1285 0.8922 61.9589 0.0876 0.718911
    EW 118.6216 119.0284 125.0510 121.1503 0.0619 0.3288 56.3108 0.0813 0.799320
    TW 127.1226 127.5294 133.5520 129.6513 0.1100 0.7623 60.5613 0.0835 0.772281

     | Show Table
    DownLoad: CSV
    Table 17.  Findings from the failure times dataset for the fitted distributions.
    Distribution AIC CAIC BIC HQIC W A L KS pvalue
    GKMW 306.4025 306.9242 312.1386 308.5868 0.0575 0.2948 150.2012 0.0934 0.775179
    MBW 310.5294 311.8931 320.0895 314.1700 0.0582 0.2974 150.2647 0.0948 0.759432
    BW 308.4788 309.3677 316.1269 311.3913 0.0587 0.2990 150.2394 0.0957 0.750141
    OLLEW 309.0636 309.9525 316.7117 311.9760 0.0757 0.3810 150.5318 0.0999 0.700003
    EGW 308.5187 309.4076 316.1668 311.4311 0.0599 0.3044 150.2593 0.0965 0.740273
    LiW 306.7964 307.3181 312.5325 308.9807 0.0709 0.3539 150.3982 0.1018 0.677787
    EW 306.5187 307.0404 312.2548 308.7030 0.0599 0.3044 150.2593 0.0965 0.740475
    TW 307.3553 307.8771 313.0914 309.5396 0.0857 0.4275 150.6777 0.1119 0.558858

     | Show Table
    DownLoad: CSV
    Table 18.  Findings from the distance dataset for the fitted distributions.
    Distribution AIC CAIC BIC HQIC W A L KS pvalue
    GKMW 377.1478 377.5228 383.8063 379.7861 0.0385 0.2474 185.5739 0.0804 0.771339
    MBW 381.2396 382.2073 392.3371 385.6368 0.0420 0.2673 185.6198 0.0843 0.719002
    BW 379.3222 379.9571 388.2002 382.8399 0.0398 0.2547 185.6611 0.0818 0.753500
    OLLEW 379.0712 379.7061 387.9492 382.5890 0.0421 0.2739 185.5356 0.0807 0.767901
    EGW 379.3276 379.9625 388.2057 382.8454 0.0399 0.2553 185.6638 0.0820 0.751070
    LiW 377.8265 378.2015 384.4850 380.4648 0.0402 0.2658 185.9133 0.0820 0.749931
    EW 377.3276 377.7026 383.9862 379.9659 0.0399 0.2553 185.6638 0.0821 0.749379
    TW 378.3411 378.7161 384.9997 380.9794 0.0487 0.3192 186.1706 0.0887 0.659154

     | Show Table
    DownLoad: CSV

    Figures 46 illustrate the fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the three datasets, respectively. These figures reinforce the results shown in Tables 1618, indicating that the proposed distribution offers a close fit for all datasets.

    Figure 4.  Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the gauge lengths dataset.
    Figure 5.  Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the failure times dataset.
    Figure 6.  Fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the distance dataset.

    The GKMW distribution effectively models a wide range of data behaviors, including skewness and heavy tails, providing a better fit for the three datasets compared to other models. Its parameterization enables more accurate estimation and captures underlying patterns that may be missed by more restrictive models. Additionally, the GKMW model yields the lowest goodness-of-fit values and the highest p-values, confirming its superior fit.

    Additionally, Figures 79 display the histograms of the three datasets along with the fitted densities for the GKMW distribution and other competing distributions. The GKMW distribution consistently outperforms the other Weibull extensions across all three datasets. Moreover, the PP plots for these datasets, shown in Figures 1012, further illustrate that the GKMW distribution provides a superior fit compared to the other distributions analyzed.

    Figure 7.  The fitted GKMW PDF alongside the PDFs of other fitted distributions for the gauge lengths dataset.
    Figure 8.  The fitted GKMW PDF alongside the PDFs of other fitted distributions for the failure times dataset.
    Figure 9.  The fitted GKMW PDF alongside the PDFs of other fitted distributions for the distance dataset.
    Figure 10.  The PP plots comparing the GKMW distribution with other distributions for the gauge lengths dataset.
    Figure 11.  The PP plots comparing the GKMW distribution with other distributions for the failure times dataset.
    Figure 12.  The PP plots comparing the GKMW distribution with other distributions for the distance dataset.

    The TTT and HRF plots of the GKMW distribution for the gauge lengths, failure time, and transect line datasets are presented in Figures 1315. The TTT plots reveal concave shapes for the gauge lengths and distances datasets, indicating increasing HRFs, while it appears convex for the failure time dataset, suggesting a decreasing HRF. The GKMW model can accommodate both increasing and decreasing HRF, making it well-suited for modeling all datasets.

    Figure 13.  TTT plot for the gauge lengths dataset and the GKMW HRF plot for the same dataset.
    Figure 14.  TTT plot for the failure times dataset and the GKMW HRF plot for the same dataset.
    Figure 15.  TTT plot for the distance dataset and the GKMW HRF plot for the same dataset.

    In this paper, we present the extended Kavya–Manoharan Weibull (GKMW) distribution, a novel extension of the Weibull distribution that provides a versatile and adaptable way to model diverse types of data. The proposed model is notable for its ability to support a wide range of distribution shapes, including symmetric, right-skewed, reversed-J, and left-skewed densities, making it adaptable to a variety of real-world datasets. Furthermore, it can model both non-monotonic and monotonic failure rates, increasing its applicability in a variety of statistical settings.

    The mathematical properties of the GKMW model are investigated. Additionally, its parameters are estimated using eight alternative estimation techniques. Simulation studies show that the maximum product of the spacing estimation method outperforms all other estimators for reliably calculating GKMW parameters. This finding has significant implications for increasing the precision of statistical modeling in real-world applications.

    The GKMW distribution is applied to three real-life datasets and outperforms existing Weibull distributions, highlighting its potential for improved data processing. The GKMW model's practical importance stems from its capacity to improve modeling flexibility and accuracy, especially in fields such as survival analysis, where it can provide more reliable insights into failure rates and data behavior.

    In future work, we will focus on expanding the GKMW distribution's applications beyond survival analysis, including its use with large-scale datasets and refining computational methods for parameter estimation. Key areas for future research include:

    • Improving parameter estimation techniques, such as maximum likelihood or Bayesian methods for censored data, to enhance the GKMW model's robustness and accuracy.

    • Exploring non-parametric or semi-parametric versions of the model for broader applicability.

    • Applying Bayesian methods for both parameter estimation and model comparison, offering a promising extension to the GKMW framework.

    • Developing a discrete version of the GKMW model to facilitate its use in modeling count data in diverse applied fields.

    A.Z.A.: Conceptualization, Methodology, Software, Project administration, Writing-original draft preparation, Writing-review and editing; R.A. and A.S.A.: Validation, Formal analysis, Investigation, Resources, Writing-review and editing; H.A.M.: Conceptualization, Methodology, Software, Writing-original draft preparation, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to express their gratitude to the editor and reviewers for their valuable suggestions, which have significantly improved this manuscript.

    The authors declare no competing interests.

    The three datasets used to evaluate the performance of the proposed GKMW model.

    Gauge lengths dataset
    1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
    2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
    2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
    2.996 3.125 2.977 3.030 3.139 3.145 3.220 3.223 3.235 3.243
    3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
    3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
    4.225 4.395 5.020
    Failure times dataset
    0.013 0.065 0.111 0.111 0.163 0.309 0.426 0.535 0.684 0.747
    0.997 1.284 1.304 1.647 1.829 2.336 2.838 3.269 3.977 3.981
    4.520 4.789 4.849 5.202 5.291 5.349 5.911 6.018 6.427 6.456
    6.572 7.023 7.087 7.291 7.787 8.596 9.388 10.261 10.713 11.658
    13.006 13.388 13.842 17.152 17.283 19.418 23.471 24.777 32.795 48.105
    Distance dataset
    2.0 0.5 10.4 3.6 0.9 1.0 3.4 2.9 8.2 6.5
    5.7 3.0 4.0 0.1 11.8 14.2 2.4 1.6 13.3 6.5
    8.3 4.9 1.5 18.6 0.4 0.4 0.2 11.6 3.2 7.1
    10.7 3.9 6.1 6.4 3.8 15.2 3.5 3.1 7.9 18.2
    10.1 4.4 1.3 13.7 6.3 3.6 9.0 7.7 4.9 9.1
    3.3 8.5 6.1 0.4 9.3 0.5 1.2 1.7 4.5 3.1
    3.1 6.6 4.4 5.0 3.2 7.7 18.2 4.1

     | Show Table
    DownLoad: CSV


    [1] C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Stat. Meth., 6 (2007), 173–186.
    [2] G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin I., 347 (2010), 1399–1429.https://doi.org/10.1016/j.jfranklin.2010.06.010 doi: 10.1016/j.jfranklin.2010.06.010
    [3] T. Zhang, M. Xie, On the upper truncated Weibull distribution and its reliability implications, Reliab. Eng. Syst. Safe., 96 (2011), 194–200.https://doi.org/10.1016/j.ress.2010.09.004 doi: 10.1016/j.ress.2010.09.004
    [4] G. R. Aryal, C. P. Tsokos, Transmuted Weibull distribution: a generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math., 4 (2011), 89–102.
    [5] G. M. Cordeiro, E. M. M. Ortega, D. C. C. da Cunha, The exponentiated generalized class of distributions, Journal of Data Science, 11 (2013), 1–27.https://doi.org/10.6339/JDS.2013.11(1).1086 doi: 10.6339/JDS.2013.11(1).1086
    [6] X. Peng, Z. Yan, Estimation and application for a new extended Weibull distribution, Reliab. Eng. Syst. Safe., 121 (2014), 34–42.https://doi.org/10.1016/j.ress.2013.07.007 doi: 10.1016/j.ress.2013.07.007
    [7] M. N. Khan, The modified beta Weibull distribution, Hacet. J. Math. Stat., 44 (2015), 1553–1568.
    [8] A. Z. Afify, G. M. Cordeiro, N. S. Butt, E. M. M. Ortega, A. K. Suzuki, A new lifetime model with variable shapes for the hazard rate, Braz. J. Probab. Stat., 31 (2017), 516–541.https://doi.org/10.1214/16-BJPS322 doi: 10.1214/16-BJPS322
    [9] T. H. M. Abouelmagd, S. Al-mualim, M. Elgarhy, A. Z. Afify, M. Ahmad, Properties of the four-parameter Weibull distribution and its applications, Pak. J. Statist., 33 (2017), 449–466.
    [10] M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: properties and applications, Commun. Stat. -Theory M., 46 (2017), 10236–10252.https://doi.org/10.1080/03610926.2016.1231816 doi: 10.1080/03610926.2016.1231816
    [11] A. Z. Afify, M. Alizadeh, M. Zayed, T. G. Ramires, F. Louzada, The odd log-logistic exponentiated Weibull distribution: regression modeling, properties, and applications, Iran. J. Sci. Technol. Trans. Sci., 42 (2018). 2273–2288.https://doi.org/10.1007/s40995-018-0524-x doi: 10.1007/s40995-018-0524-x
    [12] G. M. Cordeiro, A. Z. Afify, H. M. Yousof, S. Cakmakyapan, G. Ozel, The Lindley Weibull distribution: properties and applications, An. Acad. Bras. Ciênc., 90 (2018), 2579–2598.https://doi.org/10.1590/0001-3765201820170635 doi: 10.1590/0001-3765201820170635
    [13] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42 (1993), 299–302.https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
    [14] M. Nassar, A. Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457.https://doi.org/10.1016/j.cam.2017.12.001 doi: 10.1016/j.cam.2017.12.001
    [15] M. E. Mead, G. M. Cordeiro, A. Z. Afify, H. Al Mofleh, The alpha power transformation family: properties and applications, Pak. J. Stat. Oper. Res., 15 (2019), 525–545.https://doi.org/10.18187/pjsor.v15i3.2969 doi: 10.18187/pjsor.v15i3.2969
    [16] G. M. Cordeiro, A. Z. Afify, E. M. Ortega, A. K. Suzuki, M. E. Mead, The odd Lomax generator of distributions: properties, estimation and applications, J. Comput. Appl. Math., 347 (2019), 222–237.https://doi.org/10.1016/j.cam.2018.08.008 doi: 10.1016/j.cam.2018.08.008
    [17] A. I. Ishaq, A. A. Abiodun, The Maxwell–Weibull distribution in modeling lifetime datasets, Ann. Data Sci., 7 (2020), 639–662.https://doi.org/10.1007/s40745-020-00288-8 doi: 10.1007/s40745-020-00288-8
    [18] A. EL-Baset A. Ahmad, M. G. M. Ghazal, Exponentiated additive Weibull distribution, Reliab. Eng. Syst. Safe., 193 (2020), 106663.https://doi.org/10.1016/j.ress.2019.106663 doi: 10.1016/j.ress.2019.106663
    [19] M. Alizadeh, M. N. Khan, M. Rasekhi, G. G. Hamedani, A new generalized modified Weibull distribution, Statistics, Optimization & Information Computing, 9 (2021), 17–34.https://doi.org/10.19139/soic-2310-5070-1014 doi: 10.19139/soic-2310-5070-1014
    [20] H. M. Alshanbari, O. H. Odhah, H. Al-Mofleh, Z. Ahmad, S. K. Khosa, A. A. A. H. El-Bagoury, A new flexible Weibull extension model: different estimation methods and modeling an extreme value data, Heliyon, 9 (2023), e21704. https://doi.org/10.1016/j.heliyon.2023.e21704 doi: 10.1016/j.heliyon.2023.e21704
    [21] M. K. Refaie, A. A. Yaqoob, M. A. Selim, E. I. A. Ali, A novel version of the exponentiated Weibull distribution: copulas, mathematical properties and statistical modeling, Pak. J. Stat. Oper. Res., 19 (2023), 491–519. https://doi.org/10.18187/pjsor.v19i3.4089 doi: 10.18187/pjsor.v19i3.4089
    [22] M. M. Al Sobhi, The extended Weibull distribution with its properties, estimation and modeling skewed data, J. King Saud Univ. Sci., 34 (2022), 101801.https://doi.org/10.1016/j.jksus.2021.101801 doi: 10.1016/j.jksus.2021.101801
    [23] H. S. Klakattawi, Survival analysis of cancer patients using a new extended Weibull distribution, PLoS ONE, 17 (2022), e0264229.https://doi.org/10.1371/journal.pone.0264229 doi: 10.1371/journal.pone.0264229
    [24] P. Kumar, L. P. Sapkota, V. Kumar, N. Bam, Exploring the new exponentiated inverse weibull distribution: properties, estimation, and analysis via classical and Bayesian approaches, Contemp. Math., 6 (2025), 827–849.https://doi.org/10.37256/cm.6120256255 doi: 10.37256/cm.6120256255
    [25] T. N. Sindhu, A. Shafiq, S. A. Lone, Q. M. Al-Mdallal, T. A. Abushal, Distributional properties of the entropy transformed Weibull distribution and applications to various scientific fields, Sci. Rep., 14 (2024), 31827.https://doi.org/10.1038/s41598-024-83132-w doi: 10.1038/s41598-024-83132-w
    [26] H. M. Alshanbari, Z. Ahmad, A. H. El-Bagoury, O. H. Odhah, G. S. Rao, A new modification of the Weibull distribution: model, theory, and analyzing engineering data sets, Symmetry, 16 (2024), 611.https://doi.org/10.3390/sym16050611 doi: 10.3390/sym16050611
    [27] A. A. Suleiman, H. Daud, A. I. Ishaq, M. Kayid, R. Sokkalingam, Y. Hamed, et al., A new Weibull distribution for modeling complex biomedical data, J. Radiat. Res. Appl. Sci., 17 (2024), 101190.https://doi.org/10.1016/j.jrras.2024.101190 doi: 10.1016/j.jrras.2024.101190
    [28] H. Mahran, M. M. Mansour, E. M. Abd Elrazik, A. Z. Afify, A new one-parameter flexible family with variable failure rate shapes: properties, inference, and real-life applications, AIMS Math., 9 (2024), 11910–11940.https://doi.org/10.3934/math.2024582 doi: 10.3934/math.2024582
    [29] P. G. Sankaran, V. L. Gleeja, Proportional reversed hazard and frailty models, Metrika, 68 (2008), 333–342.https://doi.org/10.1007/s00184-007-0165-0 doi: 10.1007/s00184-007-0165-0
    [30] P. G. Sankaran, V. L. Gleeja, On proportional reversed hazards frailty models, Metron, 69 (2011), 151–173.https://doi.org/10.1007/BF03263554 doi: 10.1007/BF03263554
    [31] A. Di Crescenzo, Some results on the proportional reversed hazards model, Stat. Probabil. Lett., 50 (2000), 313–321.https://doi.org/10.1016/S0167-7152(00)00127-9 doi: 10.1016/S0167-7152(00)00127-9
    [32] R. C. Gupta, R. D. Gupta, Proportional reversed hazard rate model and its applications, J. Stat. Plan. Infer., 137 (2007), 3525–3536.https://doi.org/10.1016/j.jspi.2007.03.029 doi: 10.1016/j.jspi.2007.03.029
    [33] E. L. Lehmann, The power of rank tests, Ann. Math. Stat., 24 (1953), 23–43.
    [34] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form, Water Resour. Res., 15 (1979), 1049–1054.https://doi.org/10.1029/WR015i005p01049 doi: 10.1029/WR015i005p01049
    [35] J. J. Swain, S. Venkatraman, J. R. Wilson, Least squares estimation of distribution function in Johnson's translation system, J. Stat. Comput. Sim., 29 (1988), 271–297.https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [36] H. Cramér, On the composition of elementary errors, Scand. Actuar. J., 1928 (1928), 13–74.https://doi.org/10.1080/03461238.1928.10416862 doi: 10.1080/03461238.1928.10416862
    [37] R. E. Von Mises, Wahrscheinlichkeit statistik und wahrheit, Basel: Springer, 1928.
    [38] R. C. H. Cheng, N. A. K. Amin, Maximum product of spacings estimation with application to the lognormal distribution, Cardiff: University of Wales Institute of Science and Technology, 1979, Math Report 79-1.
    [39] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc. B, 45 (1983), 394–403.https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
    [40] J. H. K. Kao, Computer methods for estimating Weibull parameters in reliability studies, IRE Transactions on Reliability and Quality Control, 13 (1958), 15–22.https://doi.org/10.1109/IRE-PGRQC.1958.5007164 doi: 10.1109/IRE-PGRQC.1958.5007164
    [41] D. Kundu, M. Z. Raqab, Estimation of R = P (Y < X) for three-parameter Weibull distribution, Stat. Probabil. Lett., 79 (2009), 1839–1846.https://doi.org/10.1016/j.spl.2009.05.026 doi: 10.1016/j.spl.2009.05.026
    [42] D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, Hoboken: Wiley, 2004.https://doi.org/10.1002/047147326X
    [43] G. P. Patil, C. R. Rao, Volume 12: Environmental statistics, Handbook of statistics, Elsevier, 1994.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(406) PDF downloads(38) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog