One important area of statistical theory and its applications to bivariate data modeling is the construction of families of bivariate distributions with specified marginals. This motivates the proposal of a bivariate distribution employing the Farlie-Gumbel-Morgenstern (FGM) copula and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple function shape and dependence on a single scale parameter make it an ideal choice for marginals in the suggested new bivariate distribution. The statistical properties of the EP-EX-FGM model are examined, including product moments, coefficient of correlation between the internal variables, moment generating function, conditional distribution, concomitants of order statistics (OSs), mean residual life function, and vitality function. In addition, we calculated reliability and information measures including the hazard function, reversed hazard function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is illustrated using actual data sets.
Citation: H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed. Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data[J]. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
[1] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[4] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
[5] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[6] | Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574 |
[7] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[8] | Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231 |
[9] | Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075 |
[10] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
One important area of statistical theory and its applications to bivariate data modeling is the construction of families of bivariate distributions with specified marginals. This motivates the proposal of a bivariate distribution employing the Farlie-Gumbel-Morgenstern (FGM) copula and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple function shape and dependence on a single scale parameter make it an ideal choice for marginals in the suggested new bivariate distribution. The statistical properties of the EP-EX-FGM model are examined, including product moments, coefficient of correlation between the internal variables, moment generating function, conditional distribution, concomitants of order statistics (OSs), mean residual life function, and vitality function. In addition, we calculated reliability and information measures including the hazard function, reversed hazard function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is illustrated using actual data sets.
Fractional calculus is an emerging field drawing attention from both theoretical and applied disciplines. In particular, fractional calculus is a powerful tool for explaining problems in ecology, biology, chemistry, physics, mechanics, networks, flow in porous media, electricity, control systems, viscoelasticity, mathematical biology, fitting of experimental data, and so forth. One may see the papers [1,2,3,4,5] and the references therein.
Fractional difference calculus or discrete fractional calculus is a very new field for mathematicians. Some real-world phenomena are being studied with the assistance of fractional difference operators. Basic definitions and properties of fractional difference calculus can be found in the book [6]. Fractional boundary value problems can be found in the books [7,8]. Now, the studies of boundary value problems for fractional difference equations are extended to be more complex. Excellent papers related to discrete fractional boundary value problems can be found in [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] and references cited therein. In particular, there are some recent papers that present the Caputo fractional difference calculus [36,37,38,39,40,41]. In the literature, there are apparently few research works studying boundary value problems for Caputo fractional difference-sum equations. For example, [42] studied a boundary value problem for p−Laplacian Caputo fractional difference equations with fractional sum boundary conditions of the forms
{ΔαC[ϕp(ΔβCx)](t)=f(t+α+β−1,x(t+α+β−1)),t∈N0,T:={0,1,…,T},ΔβCx(α−1)=0,x(α+β+T)=ρΔ−γx(η+γ). | (1.1) |
In [43], investigated a nonlocal fractional sum boundary value problem for a Caputo fractional difference-sum equation of the form
ΔαCu(t)=F[t+α−1,ut+α−1,ΔβCu(t+α−β)],t∈N0,T,ΔγCu(α−γ−1)=0,u(T+α)=ρΔ−ωu(η+ω). | (1.2) |
In addition, [44] considered a periodic boundary value problem for Caputo fractional difference-sum equations of the form
ΔαCu(t)=F[t+α−1,u(t+α−1),Ψγu(t+α−1)],t∈N0,T,t+α−1≠tk,Δu(tk)=Ik(u(tk−1)),k=1,2,...,p,Δ(Δ−βu(tk+β))=Jk(Δ−βu(tk+β−1)),k=1,2,...,p,Au(α−1)+BΔ−βu(α+β−1)=Cu(T+α)+DΔ−βu(T+α+β). | (1.3) |
We aim to fill the gaps related to the boundary value problem of Caputo fractional difference-sum equations. The goal of this paper is to enrich this new research area by using the unknown function of Caputo fractional difference and fractional sum in the problem. So, in this paper, we consider a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary value conditions of the form
CΔααCΔβα+β−1x(t)=H[t+α+β−1,x(t+α+β−1),CΔνα+β−1x(t+α+β−ν),Ψμ(t+α+β−1,x(t+α+β−1))],t∈N0,T,ρ1x(α+β−2)=x(T+α+β),ρ2CΔγα+β−2x(α+β−γ−1)=CΔγα+β−2x(T+α+β−γ+1), | (1.4) |
where ρ1,ρ2∈R, 0<α,β,γ,ν,μ≤1, 1<α+β≤2 are given constants, H∈C(Nα+β−2,T+α+β×R3,R), and for φ∈C(⊙×R2,[0,∞)), ⊙:={(t,r):t,r∈Nα+β−2,T+α+βandr≤t}. The operator Ψμ is defined by
Ψμ(t,x(t)):=t−μ∑s=α+β−μ−2(t−σ(s))μ−1_Γ(μ)φ(t,s+μ,x(s+μ),CΔνα+β−2x(s+μ−ν+1)). |
The plan of this paper is as follows. In Section 2, we recall some definitions and basic lemmas. Also, we derive the solution of (1.4) by converting the problem to an equivalent equation. In Section 3, we prove existence and uniqueness results of the problem (1.4) using the Banach contraction principle and Schaefer's theorem. Furthermore, we also show the existence of a positive solution to (1.4). An illustrative example is presented in Section 4.
In the following, there are notations, definitions and lemmas which are used in the main results.
Definition 2.1. [10] We define the generalized falling function by tα_:=Γ(t+1)Γ(t+1−α), for any t and α for which the right-hand side is defined. If t+1−α is a pole of the Gamma function and t+1 is not a pole, then tα_=0.
Lemma 2.1. [9] Assume the following factorial functions are well defined. If t≤r, then tα_≤rα_ for any α>0.
Definition 2.2. [10] For α>0 and f defined on Na:={a,a+1,…}, the α-order fractional sum of f is defined by
Δ−αaf(t)=Δ−αf(t):=1Γ(α)t−α∑s=a(t−σ(s))α−1_f(s), |
where t∈Na+α and σ(s)=s+1.
Definition 2.3. [11] For α>0 and f defined on Na, the α-order Caputo fractional difference of f is defined by
CΔαaf(t)=ΔαCf(t):=Δ−(N−α)aΔNf(t)=1Γ(N−α)t−(N−α)∑s=a(t−σ(s))N−α−1_ΔNf(s), |
where t∈Na+N−α and N∈N is chosen so that 0≤N−1<α<N. If α=N, then ΔαCf(t)=ΔNf(t).
Lemma 2.2. [11] Assume that α>0 and 0≤N−1<α≤N. Then,
Δ−αa+N−αCΔαay(t)=y(t)+C0+C1t1_+C2t2_+...+CN−1tN−1_, |
for some Ci∈R, 0≤i≤N−1.
To study the solution of the boundary value problem (1.4), we need the following lemma that deals with a linear variant of the boundary value problem (1.4) and gives a representation of the solution.
Lemma 2.3. Let Λ(ρ1−1)≠0, 0<α,β,γ,ν,μ≤1, 1<α+β≤2 and h∈C(Nα+β−1,T+α+β−1,R) be given. Then, the problem
CΔααCΔβα+β−1x(t)=h(t+α+β−1),t∈N0,T | (2.1) |
{ρ1x(α+β−2)=x(T+α+β),ρ2CΔγα+β−2x(α+β−γ−1)=CΔγα+β−2x(T+α+β−γ+1), | (2.2) |
has the unique solution
x(t)=T+(ρ1−1)(t−α−β)+2ρ1Λ(ρ1−1)Γ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1)+1(ρ1−1)Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1)+1Γ(β)Γ(α)t−β∑s=αs−α∑ξ=0(t−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α−1), | (2.3) |
where
Λ=ρ2−Γ(T−γ+4)Γ(2−γ)Γ(T+3). | (2.4) |
Proof. Using the fractional sum of order α∈(0,1] for (2.1) and from Lemma 2.2, we obtain
CΔβα+β−2x(t)=C1+1Γ(α)t−α∑s=0(t−σ(s))α−1_h(s+α+β−1), | (2.5) |
for t∈Nα−1,T+α.
Using the fractional sum of order 0<β≤1 for (2.5), we obtain
x(t)=C2+C1t+1Γ(β)Γ(α)t−β∑s=αs−α∑ξ=0(t−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1), | (2.6) |
for t∈Nα+β−2,T+α+β.
By substituting t=α+β−2,T+α+β into (2.6) and employing the first condition of (2.2), we obtain
−C2(ρ1−1)+C1[(T−(ρ1−1)(α+β)+2ρ1]=−1Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1). | (2.7) |
Using the fractional Caputo difference of order 0<γ≤1 for (2.6), we obtain
CΔγα+β−2x(t)=C1Γ(1−γ)t+γ−1∑s=α+β−2(t−σ(s))−γ_+1Γ(1−γ)Γ(β)Γ(α)×t+γ−1∑s=α+β−2(t−σ(s))−γ_sΔ[s−β∑r=αr−α∑ξ=0(s−σ(r))β−1_(r−σ(ξ))α−1_h(ξ+α+β−1)]=C1Γ(1−γ)t+γ−1∑s=α+β−2(t−σ(s))−γ_+1Γ(1−γ)Γ(β−1)Γ(α)×t+γ−1∑s=α+β−2s−β+1∑r=αr−α∑ξ=0(t−σ(s))−γ_(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1), | (2.8) |
for Nα+β−γ−1,T+α+β−γ+1.
By substituting t=α+β−γ−1,T+α+β−γ+1 into (2.8) and employing the second condition of (2.2), it implies
C1=−1ΛΓ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1). |
The constant C2 can be obtained by substituting C1 into (2.7). Then, we get
C2=T−(ρ1−1)(α+β)+2ρ1(ρ1−1)ΛΓ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1)+1(ρ1−1)Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1), |
where Λ is defined by (2.4). Substituting the constants C1 and C2 into (2.6), we obtain (2.3).
In this section, we wish to establish the existence results for the problem (1.4). We denote C=C(Nα+β−2,T+α+β,R) as the Banach space of all functions x with the norm defined by
‖x‖C=‖x‖+‖ΔνCx‖, |
where ‖x‖=maxt∈Nα+β−2,T+α+β|x(t)| and \|\Delta^{\nu}_Cx\| = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}}\big|\Delta^{\nu}_{C}x(t-\nu+1)\big| .
The following assumptions are assumed:
\textbf{(A1)} {\mathcal{H}}[t, x, y, z]:{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^3\rightarrow \mathbb{R} is a continuous function.
\textbf{(A2)} There exist constants K_1, K_2 > 0 such that for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} and all x_i, y_i, z_i\in {\mathbb{R}}, \; i = 1, 2 , we have
\Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big| \leq K_1\,\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big], |
and
K_2 = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}} \Big|{\mathcal{H}}[t,0,0,\Psi^\mu (t,0) ]\Big|, |
where \; \Psi^\mu (t, 0): = \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\, \varphi\Big(t, s+\mu, 0, 0\Big) .
\textbf{(A3)} \varphi:\odot \times {\mathbb{R}}^2\rightarrow {\mathbb{R}} is continuious for (t, s)\in \odot , and there exists a constant L > 0 , such that for each (t, s)\in \odot and all x_i, y_i\in \mathcal{C}, \; i = 1, 2 we have
\Big|\varphi(t,s+\mu,x_1,y_1)-\varphi(t,s+\mu,x_2,y_2)\Big|\leq L\,\Big[|x_1-x_2|+|y_1-y_2|\Big]. |
Let us define the operator {\widetilde{\mathcal{H}}}[t, x(t)] by
\begin{align} \; \,{\widetilde{\mathcal{H}}}[t,x(t)]: = {\mathcal{H}}\Big[&t,x(t),\Delta^\nu_C x(t-\nu+1),\Psi^\mu (t,x(t))\Big], \end{align} | (3.1) |
for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x\in {\mathcal{C}} .
Note that \; \Delta^{-\beta} \Delta^{-\alpha}\, {\widetilde{\mathcal{H}}}[t, x(t)] and \Delta^{\nu}_C\, \Delta^{-\beta} \Delta^{-\alpha} \, {\widetilde{\mathcal{H}}}[t, x(t)]\; exist when \; \nu < \alpha+\beta\leq2.
Lemma 3.1. Assume that (A1)–(A3) hold. Then, the following property holds:
(A4) There exits a positive constant \Theta such that
\Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \leq \Theta\,\|x_1-x_2\|_{\mathcal{C}}, |
for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , where
\begin{align} \Theta: = K_1\left[1+ \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\right]. \end{align} | (3.2) |
Proof. By \textbf{(A3)} , for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , we obtain
\begin{align*} &\Big|(\Psi^\mu x_1)(t)-(\Psi^\mu x_2)(t)\Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\,\\ & \Big|\varphi\Big(t,s+\mu,x_1(s+\mu),\Delta^\nu_C x_1(s+\mu-\nu+1)\Big)\\ &\; -\varphi\Big(t,s+\mu,x_2(s+\mu),\Delta^\nu_C x_2(s+\mu-\nu+1)\Big) \Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{T+\alpha+\beta-\mu}(T+\alpha+\beta-\sigma(s))^{\underline{\mu-1}}\times\\ &\; L\,\Big[\big|x_1(s+\mu)-x_2(s+\mu)\big|+\\ &\big|\Delta^\nu_C x_1(s+\mu-\nu+1)-\Delta^\nu_C x_2(s+\mu-\nu+1)\big|\Big]\\ \leq&\; \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}, \end{align*} |
and hence
\begin{align*} &\Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \\ \leq&\; K_1\,\Big[\big|x_1(t)-x_2(t)\big|+\big|\Delta^\nu_C x_1(t-\nu+1)-\Delta^\nu_C x_2(t-\nu+1)\big|\Big]\\ &\; +\frac{K_1L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}\\ = &\; \Theta\,\|x_1-x_2\|_{\mathcal{C}}.\end{align*} |
Next, we define the operator {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} by
\begin{align} &({\mathcal{F}}x)(t) \\ = & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,{\widetilde{\mathcal{H}}}\\ & [\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} \frac{(T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}}{\left(\rho_1-1\right)\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}\frac{(t-\sigma(s))^{\underline{\beta-1}} (s-\sigma(\xi))^{\underline{\alpha-1}}}{\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] , \end{align} | (3.3) |
where
\begin{align} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) : = &\; \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\times\\ &\; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}. \end{align} | (3.4) |
By Lemma 2.3, we find that any solution of the problem (1.4) is the fixed point of the operator {\mathcal{F}} .
Lemma 3.2. Assume that the function {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) satisfies the following properties:
(A5) {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha-1, T+\alpha+1}\times {\mathbb{N}}_{0, T+2} = :\mathcal{D} , and there exist two constants \; \Omega_1, \Omega_2 > 0 , such that
\begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}\Big| {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_1,\\ \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_2, \end{align*} |
where
\begin{align} \Omega_1: = &\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right]\frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(2-\gamma)\Gamma(\alpha+\beta)[\Gamma(T+2)]^2} , \end{align} | (3.5) |
\begin{align} \Omega_2: = &\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}, \end{align} | (3.6) |
and \; _t\Delta_C^{\nu}\; is the Caputo fractional difference with respect to t .
Proof. It is obvious that {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathcal{D}} . Next, we consider
\begin{align*} & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\Bigg|\, \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1) \Gamma(\alpha)}\,\Bigg|\times\nonumber \\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ & \frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(T+2)\Gamma(T+2)\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\; = \; \Omega_1, \end{align*} |
and
\begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}& \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\\ &\Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1}(t-\sigma(s))^{\underline{-\nu}} {_s}\Delta \left[ T+(\rho_1-1)(s-\alpha-\beta)+2\rho_1 \right] }{\Lambda\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\Bigg|\times\\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{T+\alpha+\beta+\nu-1}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(1-\alpha-\beta)}{\Lambda\Gamma(1-\nu)}\Bigg| \\ & \,\frac{\Gamma(T-\gamma+3)\Gamma(T+\alpha+\beta+1)}{[\Gamma(T+2)]^2\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\nonumber \\ \leq&\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \\ &\frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}\; = \; \Omega_2. \end{align*} |
Thus, the condition \textbf{(A5)} holds.
In what follows, we consider the existence and uniqueness of a solution to the problem (1.4) using the Banach contraction principle.
Theorem 3.1. Assume that (A1)–(A5) hold. If
\begin{equation} \Theta \big[\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big]\; < \; 1, \end{equation} | (3.7) |
where \Omega_1, \Omega_2 are defined as (3.5)–(3.6), and
\begin{align} \phi_1 = &\left[\frac{1+|\rho_1-1|}{|\rho_1-1|}\right] \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)}, \end{align} | (3.8) |
\begin{align} \phi_2 = &\frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2}, \end{align} | (3.9) |
then, the problem (1.4) has a unique solution in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}.
Proof. Choose a constant R satisfying
\begin{equation*} R\geq\frac{K_2 \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }{1-\Theta \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }. \end{equation*} |
We will show that {\mathcal{F}}(B_R)\subset B_R, where B_R = \{x \in \mathcal{C}: \|x\|_{\mathcal{C}} \leq R\} . For all x\in B_R, we have
\begin{align*} &|({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\Bigg|\,\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; \; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg|\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_1 +\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\left(\frac{1+|\rho_1-1|}{\Gamma(\beta)\Gamma(\alpha)\,|\rho_1-1|}\right)\times\nonumber \\ &\; \,\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\,\|x\|_{\mathcal{C}}+K_2\right) \Bigg\{ \Omega_1+\left(\frac{1+|\rho_1-1|}{|\rho_1-1|}\right) \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)} \Bigg\}\\ \leq&\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*} |
and
\begin{align*} &|(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ & +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big|\nonumber \\ &\; \; \; +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg]\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_2+\frac{\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)}{\Gamma(1-\nu) \Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Bigg\{\Omega_2 + \frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2} \Bigg\}\nonumber \\ \leq&\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*} |
Thus,
\| {\mathcal{F}}x \|_{\mathcal{C}}\; \leq\; \left(\Theta R+K_2\right)\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; \leq\; R, |
and hence, {\mathcal{F}}(B_R)\subset B_R .
We next show that \mathcal{F} is a contraction. For all x, y\in \mathcal{C} and for each t\in \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} , we have
\begin{align*} &\; \big|({\mathcal{F}}x)(t)-({\mathcal{F}}y)(t)\big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big| \,\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,\\ &{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\,\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}}\Omega_1 +\Theta\,\|x-y\|_{\mathcal{C}}\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\times\nonumber \\ &\; \sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Theta\,\big[\,\Omega_1+\phi_1\,\big]\,\|x-y\|_{\mathcal{C}}, \end{align*} |
and
\begin{align*} &\; |(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\nonumber \\ & \; +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\,\sum\limits_{s = \alpha+\beta-1}^{t+\nu-1} \\ & \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(t-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}} \,\Omega_2+\Theta\,\|x-y\|_{\mathcal{C}}\,\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \Theta\,\big[\,\Omega_2+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}. \end{align*} |
Thus,
\begin{equation} \nonumber \|{\mathcal{F}}x-{\mathcal{F}}y\|_{\mathcal{C}}\leq \Theta\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}\leq \|x-y\|_{\mathcal{C}}. \end{equation} |
Therefore, {\mathcal{F}} is a contraction. Hence, by using Banach fixed point theorem, we get that {\mathcal{F}} has a fixed point which is a unique solution of the problem (1.4).
We next deduce the existence of a solution to (1.4) by using the following Schaefer's fixed point theorem.
Theorem 3.2. [45] (Arzelá-Ascoli Theorem) A set of functions in C[a, b] with the sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b] .
Theorem 3.3. [45] If a set is closed and relatively compact, then it is compact.
Theorem 3.4. [46] Let X be a Banach space and T: X\rightarrow X be a continuous and compact mapping. If the set
\{x\in X\; :\; x = \lambda T(x),\; {{for \;some}}\; \lambda\in(0, 1) \} |
is bounded, then T has a fixed point.
Theorem 3.5. Suppose that (A1)–(A5) hold. Then, the problem (1.4) has at least one solution on \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} .
Proof. We shall use Schaefer's fixed point theorem to prove that the operator F defined by (3.3) has a fixed point. It is clear that {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} is completely continuous. So, it remains to show that the set
E = \Big\lbrace u\in C({\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}):u = \lambda {\mathcal{F}}u\; {\rm{for \;some\; }} 0 < \lambda < 1\Big\rbrace \rm{\; \; is \;bounded.} |
Let u\in E . Then,
u(t) = \lambda (Fu)(t)\; {\rm{\; \; for \;some\; }}\;0 < \lambda < 1. |
Thus, for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} , we have
\begin{align*} &|\lambda({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\\ &\Big|\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \; \big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\Gamma(\beta)\Gamma(\alpha)} \sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}} \\ & (s-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\\ < &\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*} |
and
\begin{align*} &|\lambda(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\nonumber \\ & +\frac{\lambda}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\\ &\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\,\Bigg]\\ < &\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*} |
Hence,
\big\|\lambda({\mathcal{F}}x)(t)\big\|\; < \; {\widetilde{\Theta}}_{R}\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; < \; R. |
This shows that E is bounded. By Schaefer's fixed point theorem, we conclude that the problem (1.4) has at least one solution.
In the sequel, we discuss the positivity of the obtained solution x\in\mathcal{C} . To this end, we add adequate assumptions and provide the following theorem.
We note that a positive solution of (1.4) in \mathcal{C} is a function x(t) > 0 which has \Delta^\nu_C\, x(t-\nu+1) > 0 for all t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .
Theorem 3.6. Suppose that (A1)–(A5) are fulfilled in {\mathbb{R}^+} , where \; \mathcal{H}\in C\big({\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^+\times {\mathbb{R}}^+\times {\mathbb{R}}^+, \mathbb{R}^{+}\big)\; and \; \varphi \in C\big(\odot\times {\mathbb{R}^{+}}\times {\mathbb{R}^{+}}, {\mathbb{R}}^{+}\big) . If condition (3.7) is satisfied, for \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1), and in addition
\rho_1 > 1 \; \; {{and}}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}, |
then a solution in \mathcal{C} of the problem (1.4) is positive.
Proof. By Theorem 3.1 and the fact that, for \; \rho_1 > 1 \; \; \rm{and}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)} , the condition (3.7) is a particular case, the problem (1.4) admits a unique solution in \mathcal{C} .
Moreover, since \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1) , we obtain for each (t, s, r, \xi)\in {\mathcal{D}} ,
\begin{align*} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) = &\; \Bigg[ \frac{ T+(\rho_1-1)(t-\alpha-\beta)+2\rho_1}{(\rho_1-1)\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg] \times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0, \end{align*} |
and
\begin{align*} &\; _t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\nonumber\\ = &\; \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} \Bigg[ \frac{(t-\sigma(s))^{\underline{-\nu}}(s-\alpha-\beta) }{\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg]\times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0. \end{align*} |
It results that the unique solution x(t) of problem (1.4) which satisfies with (3.3) is positive for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .
In this section, we present an example to illustrate our results.
Example. Consider the following fractional difference boundary value problem:
\begin{align} {^C}\Delta^{\frac{2}{3}}_{\frac{2}{3}}\,{^C}\Delta^{\frac{5}{6}}_{\frac{1}{2}}x(t) = &\frac{x\left(t+\frac{1}{2}\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|x\left(t+\frac{1}{2}\right)|\big]} +\\ &\frac{{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)|\big]}\; \; \\ &+\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right),\quad t\in N_{0,4},\\ 2x\left(-\frac{1}{2}\right) = &\; x\left(\frac{11}{2}\right),\; \; \; \; \; 20\Delta^{\frac{1}{3}}x\left(\frac{1}{6}\right) = \Delta^{\frac{1}{3}}x\left(\frac{37}{6}\right), \end{align} | (4.1) |
\begin{array}{l} {\rm{where\; \; \; }}\;\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right) =\\ \sum\limits_{s = -\frac{3}{4}}^{t-\frac{1}{4}}\frac{(t-\sigma(s))^{-\frac{3}{4}}}{\Gamma\left(\frac{1}{4}\right)}\Bigg[\frac{e^{-(s+\frac{1}{4})}\big[x\left(s+\frac{1}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|x(s+\frac{1}{4})|\big]} \\ + \frac{e^{-(s+\frac{1}{4})}\big[{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x\left(s+\frac{3}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x(s+\frac{3}{4})|\big]}\Bigg]. \end{array} |
By letting \; \alpha = \frac{2}{3}, \; \beta = \frac{5}{6}, \; \gamma = \frac{1}{3}, \; \nu = \frac{1}{2}, \; \mu = \frac{1}{4}, \; T = 4, \; \rho_1 = 2, \; \rho_2 = 20 , {\mathcal{H}}[t, x, y, z] = \frac{1}{(t+5)^5}\left[\frac{x}{1+|x|} + \frac{y}{1+|y|} + z \right] {\rm{\; and }}\; \varphi[t+\frac{1}{2}, s+\frac{1}{4}, x, y] = \frac{e^{-s}}{(t+5)^2}\left[\frac{x+1}{3+|x|} + \frac{y+1}{3+|y|} \right], we can show that
\Lambda\approx16.0098,\; \; \Theta\approx0.000199,\; \; {\Omega_1\approx35.0489,\; \; \Omega_2\approx19.7664},\\ \Phi_1\approx18.0469{\rm{\; \; \; and \; \; }}\;\Phi_2\approx2.9653. |
Observe that (A1)–(A5) hold for all x_i, y_i, z_i\in \mathbb{R}, \; i = 1, 2 , and for each t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain
\Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big|\leq \frac{1}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big]. |
So, K_1 = \left(\frac{2}{11}\right)^5\approx 0.000199, \; and \; K_2 = \max\limits_{t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}}{\widetilde{\mathcal{H}}[t, 0]}\approx0.0000394.
Next, for all x_i, y_i\in \mathbb{R}, \; i = 1, 2, and each (t, s)\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}\times \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain
\Big|\varphi[t,s+\frac{3}{4},x_1,y_1]-{\mathcal{H}}[t,s+\frac{3}{4},x_2,y_2]\Big|\leq \frac{e^{-s}}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|\Big]. |
So, K_2 = e^{-\frac{1}{2}}\left(\frac{2}{11}\right)^5\approx 0.000121.
Finally, we can show that
\Theta\left[\Omega_1+\Omega_2+\Phi_1+\Phi_2\right]\approx {0.0151} < 1. |
Hence, by Theorem 3.1, the problem (4.1) has a unique solution.
Moreover, by Theorem 3.5, the problem (4.1) has at least one solution on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} .
Furthermore, {\mathcal{H}}, \varphi \in {\mathbb{R}}^+, and
\; \rho_1 = 2 > 1,\; \; \rho_2 = 20 > \frac{\Gamma\left(\frac{25}{3}\right)}{\Gamma\left(\frac{5}{3}\right)\Gamma\left(7\right)}\approx 15.293. |
Therefore, the solution of the problem (4.1) is positive on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} by Theorem 3.6.
In the present research, we considered a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions. Notice that the unknown function of this problem is in the form of Caputo fractional difference and fractional sum with different orders, which expands the research scope of the problems in [42,43,44]. Existence results are established by a Banach contraction principle and Schaefer's fixed point theorem. {The results of the paper are new and enrich the subject of boundary value problems for Caputo fractional difference-sum equations. In future work, we may extend this work by considering new boundary value problems.
This research was funded by the National Science, Research and Innovation Fund (NSRF) and Suan Dusit University with Contract no. 64-FF-06.
The authors declare no conflict of interest.
[1] |
M. A. Abd Elgawad, H. M. Barakat, M. A. Alawady, D. A. Abd El-Rahman, I. A. Husseiny, A. F. Hashem, et al., Extropy and some of its more recent related measures for concomitants of K-record values in an extended FGM family, Mathematics, 11 (2023), 4934. https://doi.org/10.3390/math11244934 doi: 10.3390/math11244934
![]() |
[2] |
M. A. Abd Elgawad, H. M. Barakat, M. A. Alawady, Concomitants of generalized order statistics under the generalization of Farlie-Gumbel-Morgenstern- type bivariate distributions, Bull. Iran. Math. Soc., 47 (2021), 1045–1068. https://doi.org/10.1007/s41980-020-00427-0 doi: 10.1007/s41980-020-00427-0
![]() |
[3] |
H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the relationship between processor and memory reliability in data science: a bivariate model approach, Mathematics, 11 (2023), 2142. http://doi.org/10.3390/math11092142 doi: 10.3390/math11092142
![]() |
[4] |
E. M. Almetwally, H. Z. Muhammed, On a bivariate Frechet distribution, J. Stat. Appl. Probab., 9 (2020), 71–91. http://doi.org/10.18576/jsap/090108 doi: 10.18576/jsap/090108
![]() |
[5] |
E. M. Almetwally, H. Z. Muhammed, E. S. A. El-Sherpieny, Bivariate Weibull distribution: properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5
![]() |
[6] |
A. Alkhazaalh, L. Al-Zoubi, Epanechnikov-exponential distribution: properties and applications, General Math., 29 (2021), 13–29. https://doi.org/10.2478/gm-2021-0002 doi: 10.2478/gm-2021-0002
![]() |
[7] |
N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Commun. Stat.-Theory Meth., 51 (2022), 6250–6267. https://doi.org/10.1080/03610926.2020.1860222 doi: 10.1080/03610926.2020.1860222
![]() |
[8] |
H. M. Barakat, E. M. Nigm, I. A. Husseiny, Measures of information in order statistics and their concomitants for the single iterated Farlie-Gumbel-Morgenstern bivariate distribution, Math. Popul. Stud., 28 (2021), 154–175. https://doi.org/10.1080/08898480.2020.1767926 doi: 10.1080/08898480.2020.1767926
![]() |
[9] |
H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. A. Abd Elgawad, A more flexible counterpart of a Haung-Kotzs copula-type, CR Acad. Bulg. Sci., 75 (2022), 952–958. https://doi.org/10.7546/CRABS.2022.07.02 doi: 10.7546/CRABS.2022.07.02
![]() |
[10] |
H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from generalization of FGM bivariate-generalized exponential distribution, J. Stat. Theory Appl., 18 (2019), 309–322. https://doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001
![]() |
[11] |
A. P. Basu, Bivariate failure rate, J. Am. Stat. Assoc., 66 (1971), 103–104. https://doi.org/10.1080/01621459.1971.10482228 doi: 10.1080/01621459.1971.10482228
![]() |
[12] | H. A. David, H. N. Nagaraja, Concomitants of order statistics, Bull. Int. Stat. Inst., 45 (1973), 295–300. |
[13] |
S. Dey, S. Singh, Y. M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted exponential distribution, Stat. Methodol., 32 (2016), 185–202. https://doi.org/10.1016/j.stamet.2016.05.007 doi: 10.1016/j.stamet.2016.05.007
![]() |
[14] |
D. J. G. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47 (1960), 307–323. https://doi.org/10.2307/2333302 doi: 10.2307/2333302
![]() |
[15] |
A. Fayomi, E. M. Almetwally, M. E. Qura, A novel bivariate Lomax-G family of distributions: properties, inference, and applications to environmental, medical, and computer science data, AIMS Math., 8 (2023), 17539–17584. https://doi.org/10.3934/math.2023896 doi: 10.3934/math.2023896
![]() |
[16] | G. Grover, A. Sabharwal, J. Mittal, Application of multivariate and bivariate normal distributions to estimate duration of diabetes, Int. J. Stat. Appl., 4 (2014), 46–57. |
[17] | F. M. Guess, F. Proschan, Mean residual life: theory and applications, In: Handbook of statistics, 7 (1988), 215–224. https://doi.org/10.1016/S0169-7161(88)07014-2 |
[18] | R. D. Gupta, D. Kundu, Generalized exponential distributions: statistical inferences, J. Stat. Theory Appl., 1 (2002), 101–118. |
[19] | A. Hamdy, E. M. Almetwally, Bayesian and non-Bayesian inference for the generalized power akshaya distribution with application in medical, Comput. J. Math. Stat. Sci., 2 (2023), 31–51. |
[20] |
I. A. Husseiny, A. H. Syam, The extropy of concomitants of generalized order statistics from Huang-Kotz-Morgenstern bivariate distribution, J. Math., 2022 (2022), 6385998. https://doi.org/10.1155/2022/6385998 doi: 10.1155/2022/6385998
![]() |
[21] |
I. A. Husseiny, H. M. Barakat, G. M. Mansour, M. A. Alawady, Information measures in record and their concomitants arising from Sarmanov family of bivariate distributions, J. Comput. Appl. Math., 408 (2022), 114120. https://doi.org/10.1016/j.cam.2022.114120 doi: 10.1016/j.cam.2022.114120
![]() |
[22] | I. Iordanov, N. Chervenov, Copulas on Sobolev spaces, CR Acad. Bulg. Sci., 68 (2015), 11–19. |
[23] |
S. M. A. Jahanshahi, H. Zarei, A. H. Khammar, On cumulative residual extropy, Probab. Eng. Inf. Sci., 34 (2020), 605–625. https://doi.org/10.1017/S0269964819000196 doi: 10.1017/S0269964819000196
![]() |
[24] | H. Joe, N. Chervenov, Multivariate models and dependence concepts, New York: Chapman and Hall/CRC, 1997. https://doi.org/10.1201/9780367803896 |
[25] |
N. L. Johnson, S. Kotz, A vector multivariate hazard rate, J. Multivariate Anal., 5 (1975), 53–66. https://doi.org/10.1016/0047-259X(75)90055-X doi: 10.1016/0047-259X(75)90055-X
![]() |
[26] |
X. Jia, D. Wang, P. Jiang, B. Guo, Inference on the reliability of Weibull distribution with multiply type-I censored data, Reliab. Eng. Syst. Safe., 150 (2016), 171–181. https://doi.org/10.1016/j.ress.2016.01.025 doi: 10.1016/j.ress.2016.01.025
![]() |
[27] |
S. Kotz, D. N. Shanbhag, Some new approaches to probability distributions, Adv. Appl. Probab., 12 (1980), 903–921. https://doi.org/10.2307/1426748 doi: 10.2307/1426748
![]() |
[28] |
J. Kupka, S. Loo, The hazard and vitality measures of ageing, J. Appl. Probab., 26 (1989), 532–542. https://doi.org/10.2307/3214411 doi: 10.2307/3214411
![]() |
[29] |
F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
![]() |
[30] |
E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. https://doi.org/10.1214/aoms/1177699260 doi: 10.1214/aoms/1177699260
![]() |
[31] | D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitt. Math. Stat., 8 (1956), 234–235. |
[32] |
M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, et al., Inference and other aspects for q-Weibull distribution via generalized order statistics with applications to medical datasets, AIMS Math., 9 (2024), 8311–8338. https://doi.org/10.3934/math.2024404 doi: 10.3934/math.2024404
![]() |
[33] | R. B. Nelsen, An introduction to copulas, 2 Eds., Springer-Verlag, New York, 2006. https://doi.org/10.1007/0-387-28678-0 |
[34] |
R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst. Safe., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528
![]() |
[35] | P. G. Sankaran, N. U. Nair, On bivariate vitality functions, Proceeding of National Symposium on Distribution Theory, 1991. |
[36] |
J. Scaria, N. U. Nair, Distribution of extremes of rth concomitant from the Morgenstern family, Stat. Pap., 49 (2008), 109–119. https://doi.org/10.1007/s00362-006-0365-0 doi: 10.1007/s00362-006-0365-0
![]() |
[37] |
W. R. Schucany, W. C. Parr, J. E. Boyer, Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrika, 65 (1978), 650–653. https://doi.org/10.2307/2335922 doi: 10.2307/2335922
![]() |
[38] |
D. N. Shanbag, S. Kotz, Some new approaches to multivariate probability distributions, J. Multivariate Anal., 22 (1987), 189–211. https://doi.org/10.1016/0047-259X(87)90085-6 doi: 10.1016/0047-259X(87)90085-6
![]() |
[39] | A. Sklar, Random variables, joint distributions, and copulas, Kybernetica, 9 (1973), 449–460. |
[40] |
N. Sreelakshmi, An introduction to copula-based bivariate reliability concepts, Commun. Stat.-Theory Meth., 47 (2018), 996–1012. https://doi.org/10.1080/03610926.2017.1316396 doi: 10.1080/03610926.2017.1316396
![]() |
[41] |
J. L. Teugels, Some representations of the multivariate Bernoulli and binomial distributions, J. Multivariate Anal., 32 (1990), 256–268. https://doi.org/10.1016/0047-259X(90)90084-U doi: 10.1016/0047-259X(90)90084-U
![]() |
[42] |
V. S. Vaidyanathan, A. Sharon Varghese, Morgenstern type bivariate Lindley distribution, Stat. Optim. Inf. Comp., 4 (2016), 132–146. https://doi.org/10.19139/soic.v4i2.183 doi: 10.19139/soic.v4i2.183
![]() |