AIMS Mathematics, 9(11): 32299-32327.
DOI: 10.3934/math.20241550
AIMS Mathematics Received: 30 July 2024

Revised: 05 November 2024

Accepted: 11 November 2024
http://www.aimspress.com/journal/Math Published: 15 November 2024

Research article

Bivariate Epanechnikov-exponential distribution: statistical properties,
reliability measures, and applications to computer science data

H. M. Barakat', M. A. Alawady'*, I. A. Husseiny', M. Nagy?, A. H. Mansi’ and M. O.
Mohamed'

! Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

2 Department of Statistics and Operations Research, College of Science, King Saud University,
P.O.Box 2455, Riyadh 11451, Saudi Arabia

3 DICA, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, MI, Italy
* Correspondence: Email: ma_alawady @yahoo.com; m_elawady @zu.edu.eg.

Abstract: One important area of statistical theory and its applications to bivariate data modeling
is the construction of families of bivariate distributions with specified marginals. This motivates
the proposal of a bivariate distribution employing the Farlie-Gumbel-Morgenstern (FGM) copula
and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX
distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple
function shape and dependence on a single scale parameter make it an ideal choice for marginals
in the suggested new bivariate distribution. The statistical properties of the EP-EX-FGM model
are examined, including product moments, coeflicient of correlation between the internal variables,
moment generating function, conditional distribution, concomitants of order statistics (OSs), mean
residual life function, and vitality function. In addition, we calculated reliability and information
measures including the hazard function, reversed hazard function, positive quadrant dependence
feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy.
Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence
intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull
FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is
illustrated using actual data sets.
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1. Introduction

The use of bivariate distributions is essential in a wide variety of fields since they are used to
represent and analyze the relationship between random variables (RVs). A substantial quantity of
research is involved in developing bivariate distributions. = Morgenstern [31] introduced a
straightforward technique for creating a two-variable set of distributions by utilizing marginal values.
Farlie [14] introduced a broader version of Morgenstern’s approach, referred to as the FGM family of
distributions. Several researchers have devised and investigated numerous bivariate distributions. For
example, a new bivariate Fréchet distribution based on FGM and Ali-Mikhail-Haq copulas was
proposed by Almetwally and Muhammed [4]. Furthermore, based on the FGM copula, Almetwally
et al. [5] introduced a bivariate Weibull distribution and obtained some properties of it. Using
generalized OSs, Nagy et al. [32] examined the statistical properties of the g-Weibull distribution in
univariate and bivariate situations. Recently, Fayomi et al. [15] derived several structural statistical
properties for a novel family of bivariate continuous Lomax generators.

Sklar [39] proposed a joint distribution function (JDF) of given two RVs W, and W, by using a
copula C(u, v), and the two marginals DFs Fy, (w;) = P(W; < w)) and Fy,(w;) = P(W, < w,) as

FWI,WZ(Wl» wy) = C(FW1 (w1), FWQ(Wz))- (L.1)

When the JDF is absolutely continuous, we get

fWI,Wz(le wa) = fwl (Wl)sz(WZ)C(FWl (wy), FWg(WZ))’ (1.2)

where fy, w,(w1, w,) is the joint probability density function (JPDF) of Fy, w, (w1, w;) and c(u, v) is the
PDF of the copula C(u, v) (for more details about copula and the Sklar theorem, see Barakat et al. [9],
Iordanov and Chervenov [22], Joe [24], and Nelsen [33].

One of the most widespread and beneficial copula is the FGM copula C(u, v) = uv[1 + 6(1 — u)(1 -
V], 0<uv<1, —1<06<1, (cf. Nelsen, [33], Eq 3.2.10). The corresponding bivariate DF is the
FGM model

Fuvw,w1,w2) = Fiy, w1)F, (w2) [ 1+ 6w, (wi)F, ()] (1.3)

where I_:Wl.(wl-) is the survival function (or the reliability function I_:Wi(w,-) = P(W; > w;)) of Fy.(w)), i =
1,2. The PDF of the distribution (1.3) is given by

fwiws (Wi, w2) = fw, (Wb, (w2) [1 + 6(2Fw, (w1) = D(2Fw,(w2) — D] (1.4)

Thanks to the simple shape of the FGM copula, this copula provides numerous benefits when
modeling bivariate distributions. The FGM copula has its versatility in representing a broad spectrum
of dependence structures. Finance, actuarial science, and bioinformatics are a few fields where the
FGM copula is used (cf. Teugels, [41]). Furthermore, the FGM copula enables the creation of
bivariate distributions that encompass a diverse set of marginals, including both continuous and
discrete marginals, cf. Nelsen [33]. In addition, the FGM copula has a straightforward structure,
making it computationally efficient and straightforward to implement in practical applications, cf.
Joe [24]. The FGM distribution is a flexible and valuable family in applications as long as the
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correlation between the variables is not too high. Schucany et al. [37] showed that the correlation
coefficient, p, between the two marginal DFs Fy, (w;) and Fy,(w,) satisfies —% < p < i, whenever
these margins are continuous distributions with bounded nonzero variances. Additionally, for uniform
margins, p reaches its maximum, %

In statistics, a parsimonious model fits the data well by utilizing a small number of independent
variables, as well as a small number of unknown parameters. Models that are parsimony aim towards
simplicity. This idea is consistent with Occam’s razor, which states that if there are two possible
explanations for a given situation, the simplest one is typically correct. The parsimony principle, when
used in statistical models, seeks to explain data with the fewest number of parameters while yet offering
essential advantages.

Alkhazaalh and Al-Zoubi [6] proposed a new continuous distribution using the Epanechnikov kernel
function and the EX distribution. Therefore, this distribution was named the Epanechnikov-exponential
distribution and is denoted as the EP-EX distribution. The DF and PDF of the EP-EX distribution are

respectively given by
Fw(w; @) = % (6_3“”” - 36_2“’W) +1, ¢>0, w>0, (1.5)
and
fow(w; @) = 37“’ (2e72" = e7"), >0, w>0, (1.6)

where ¢ is the scale parameter. The EP-EX distribution is considered a parsimonious model with no
shape parameter like the EX distribution. Furthermore, the EX and EP-EX distributions have an
analytically straightforward shape. Alkhazaalh and Al-Zoubi [6] demonstrated that the EP-EX
distribution (1.5) is more adaptable and powerful than the EX distribution through an application to an
actual data set. However, theoretically, each of the two distributions can describe groups of various
kinds of data sets, meaning that neither is superior to the other because the kurtosis, 7.7734, and
skewness, 1.7945, of the EP-EX distribution are smaller than the kurtosis, 9, and skewness, 2, of the
EX distribution, respectively. This makes the two distributions complementary to each other rather
than competitors. However, the EP-EX distribution has a non-constant hazard function, unlike the EX
distribution, which gives the EP-EX distribution an advantage in processing the reliability data.
Alkhazaalh and Al-Zoubi [6] showed that the mean, variance, and moment generating function
(MGF) of EP-EX distribution are given, respectively, by

3¢ 3¢ t

o—1 200-0 %772

7
p=EW)=1>-

20’ Var(W) = O'%V =

%43902, and My(t) = >

Two parsimonious and complementary bivariate DFs that may describe different kinds of bivariate
data sets are obtained using the FGM copula and the EX and EP-EX marginals. Each of these models
has a single shape parameter, 6. We concentrate on the second model with the EP-EX marginals here
because the first model with the EX marginals has been well-examined in the literature (e.g., see EX-
FGM as a special case of Weibull-FGM bivariate DF introduced by Almetwally et al. [5]). We examine
this model from several statistical angles and information theory.
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The paper is organized in the following manner. Sections 2 and 3 provide a detailed description of
the distributional characteristics of the EP-EX-FGM model. Furthermore, Section 4 explores the
reliability measures, such as the hazard function, reversed hazard (RH) function, and positive
quadrant dependence feature. Moreover, recent information measures such as bivariate extropy,
bivariate weighted extropy, and bivariate cumulative residual extropy (bivariate CREX) are evaluated.
Section 5 employs the maximum likelihood (ML) and Bayesian techniques to estimate the parameters
of the model. Furthermore, the model’s parameter is calculated using confidence intervals based on
asymptotic methods. In Section 6, Monte Carlo simulations were employed to approximate the ML
and Bayesian estimators. The evaluation of bivariate real-world data sets in Section 7 produced
outstanding outcomes. Section 8 serves as the conclusion of the paper.

2. The Epanechnikov-exponential FGM distribution

Let W, ~ EP-EX(¢;) and W, ~ EP-EX(¢,). Thus, according to (1.1), the JDF of bivariate EP-EX
based on FGM copula, denoted by EP-EX-FGM(¢; ¢»), is given by

1 1
Fwow,(Wi, wy) = (§(€_3¢1W1 — 3e 2y 4 1)(5(6_3‘0”2 — 3e72) ¢ 1) 1+6

1 1
% (1 _ (E(e—&plwl _ 36—2<,olw1)+1))(1_(5(6—3¢2W2 _ 3€—2¢>2W2)+ 1)) . (21)
Moreover, according to (1.2), the corresponding JPDF of the JDF (2.1) is given by
_ 9901902 201w —3p1wq 20w 3wy
fw,w,(Wi,wa) = T(Ze PIVL ¢ )(Ze w2 o2 ) 1+6
1 1
X (1 -2 (E(e-MWI 3¢V 4 1))(1 -2 (E(e_3‘”2W2 —3e72m) 4 1)) . (2.2)

The 3D Figure 1 illustrates the JPDF for specific parameter values. The graphs depicted in Figure 1
illustrate the remarkable wealth and versatility of this family since it is capable of handling several
forms of data.

AIMS Mathematics Volume 9, Issue 11, 32299-32327.



32303

(6)901:3,(,02=1.5,(5=0.2

(2)¢1=0.1,0=09,5=03 (h) g1 =09, ¢, =04,5=-06
Figure 1. EP-EX-FGM JPDF dimensions.
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3. Properties of EP-EX-FGM

3.1. Moments

It is easy to show that the (s, s2)th, 51,5, = 1,2, ..., product moments of the EP-EX-FGM(¢; ¢»)
are given by

9
Bwwe) = 22 Mg (e - ) e - o)1

1
x(l -2 ( 5(e e — 3T 4 1))(1 -2 (z(e-%’zwz —3e7") + 1))

IaI'(1 I'(1
( + Si? Ez + Sz) [(2—s1 _ 3—s1—])(2—sz _ 3—sz—l) + 5(6_S1_1(1 + 2s1+1)
49, ¢,

+ 2732 - =567 (1 + 22y 23 x 27 - 1) - 5-”)] .
3.1)

dW]dW2

Thus, by using (3.1) at s; = s, = 1, we get

E(W W>)

__ 49 [, 54489
1440, 19600 |

Therefore, the coefficient of correlation between W; and W, is

4489
Pwws = 17200

We notice that p,, , = 0 when ¢ = 0, which implies that W, and W, are independent. The maximum
and minimum values of p,, ,, from EP-EX-FGM(¢1; ¢,) are 0.261 and —0.261, respectively.
By using (2.2), the MGF of W, and W, is given by

My, (. 12) = Z Z], S D 3@ 3 66 2
()01902

+273x 27 = 1) = 57) (677 (1 + 2 + 273 x 277 - 1) - 57)].

3.2. Conditional distribution and concomitants of OSs

After simple algebra, the conditional PDF and DF of W, given W, = w, are respectively given by

% (26—2<P2W2 _ 6—3902W2)

1
1+ 5(1 -2 (E(e_S‘D‘W' — 37 M) + 1))

fww, (Walwy) =

1
X (1 -2 (E(e-w — 3e72) 4 1)) ,
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and

1 1 ,
Fowyw, (walwy) = (5(6_3“’2”” —3e7") + 1) 1+ 5(1 -2 (5(6_3“’”’1 —3e7) + 1))

_ l =3pawr 220w
X (1 (2(6 ¢ 3¢ ¥ )+1))}.

Consequently, for the EP-EX-FGM(¢g;; ¢,), the regression curve for W, given W; = wy is

7 676 1
EW,|W, = = 1—-—1|1=2[= =3p1iwi1 _ 7, 201w 1 )
(WalWy = wy) 120, [ 120 ( (2(6 3e )+ ))]

Thus, the conditional expectation is non-linear with respect to wy.

The concomitants are a vital tool when selection and prediction problems are involved. The idea
of concomitants of OSs was first proposed by David [12]. Many studies have been published on the
concomitants of the OS model. Researchers such as Abd Elgawad et al. [2], Barakat et al. [8, 10], and
Scaria and Nair [36] have studied this issue.

Let (Wy;, Wa),i = 1,2, ...,n, be a random sample from a continuous bivariate DF Fy, w,(wi, wy).
If we denote W,,., as the rth OS of the W, sample values, then the W, values associated with Wj,.,
are called the concomitants of the rth OS and are denoted by Wy,.,;, ¥ = 1,2, ...,n. The PDF of the
concomitant of the rth OS is given by

f2[r:n](w2):f Swaw, Walw D1 (wy)dwy,

where f;,,(w;) is the PDF of the rth OS of Wy;,i = 1,2, ..., n. Thus, the PDF of W,,.,,; is given by

f2[r:n] (wy) = f fW2|W. (walwy )flr,n(Wl )dw,
wi=0

o f ,
- [ el G,
w1=0

fw, (w1)
n! « sz Wi (WZ’ Wl) r—1 n-r
S oW T P F 1-F
v—mm—mjéofmwn e P Conl L= B vl
_ 9‘101‘102 n! - 201w 31w 20w —3pow
= 1 (r_l)!(n_r)!ﬁlzo(ze PIWL _ 7¢I 1)(26 W2 T2 z)[1+5

1 1
X (1 -2 (E(e—W'WI — 37 + 1)) (1 -2 (5(6_3“’”2 —3e77") + 1))

r-1 n—r
X (1(6—390”\/1 _ 36—2901w1) + 1) (_71(6—3%“’1 _ 36_2"0”‘)1)) dWl

2
_ 3‘102 —2pawn =3pown n—2r+1 1 3w —2pow
= = (2e e )1+5 — -2 3e y+ 11|

Also, the MGF of Wj,.,) is given by
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“ 3
MWZ[r:n] (t) = %eth (26—2<ﬁzw2 _ e—3¢2w2)
wo=0

-2r+1 1

x |1+ = (1 -2 s e = 3¢y 1 1)) | aws
n+1 2

3 (1 2\ ¥et-2r+ D (ot el - Bt e e

) 2902 t=3py t—-2¢ 2(n+1)

The {th moment of W,,.,,; is given by

40 3¢2 22 3¢
o] f _WZ( e 22 e 2W2)
wo=0 2

n—-2r+1 1 “3oawn Y
[1+5( P )(1 2(2(6 3e )+1

y-t-13~¢ (3£+1 _ 2{) (pgfr(f +1)

X

dW2

+

4-t-115-¢ (55 (zf 402041 4 3042 _ 6”1) _ 22£+135+1) 5¢5€F(€ + D =2r+1)

n+1

3.3. Mean residual life (MRL)

The MRL is the average life of a unit after it has survived for a specific amount of time ¢. The
MRL function is like the PDF or the characteristic function for a distribution with a finite mean, the
MRL completely determines the distribution via an inversion formula (cf. Guess and Proschan, [17]).
The MRL is not only used for parametric modeling, but also for nonparametric modeling. Actuaries
apply MRL to set rates and benefits for life insurance. In the biomedical setting, researchers analyze
survivorship studies by MRL. Shanbag and Kotz [38] introduced the concept of the MRL for vector-

valued RVs as
m(wy, wp) = (my(wy, wa), my(wi, wr)),
where
mi(wi,wp) = E(W; —wi|[W; > w, W, > w,)
and

my(wi, wr) = E(Wy — wa|Wy > wy, Wy > wyp).

The expressions for m;(wy, w,) and m,(wy, w,) in EP-EX-FGM(¢y; ¢,) are obtained as

(1~ 5602)

my(wy, wa) = 5
(Be2emm — ed¢m) [1+ 2(1 + Dy)(1 + Dy)

and

% (1 %D

my(wi, wa) = . ,
(Be2emw2 — e2) [1+ 4(1 + Dy)(1 + Dy)]

(3.2)

(3.3)

(3.4)

where D; = (2(4(e7%™ - 3e72™)+1) - 1), j = 1,2. Substituting (3.3) and (3.4) in (3.2) yields

EP-EX-FGM’s MRL.
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3.4. Vitality function

The vitality function is a helpful tool for modeling lifetime data. It was thoroughly explored by
Kupka and Loo [28] in relation to their research on the aging process. This idea was applied by Kotz
and Shanbhag [27] to produce multiple lifetime distribution characterizations. The vitality function
offers a more direct assessment of the failure pattern since it is expressed in terms of an increased
average lifespan, whereas the hazard rate represents the chance of sudden death within a lifespan. The
vitality function linked to a non-negative RV W is defined as m(w) = E(W|W > w). The bivariate
vitality function of a random vector (W;, W) is defined on a positive domain as a binomial vector as

V(wi, wp) = (Vi(wi, wa), Va(wi, wa)), (3.5)
where
Viwi, wa) = E(W (Wi 2wy, Wy > ws)
and
Vo(wi, wa) = E(WL|[Wy > wy, Wy > wy).
For more details, see Sankaran and Nair [35]. Also, V;(wy, w») is related to m;(w;, w;) by
Vilwi, wo) = w; + my(wy,wy), i=1,2. (3.6)

Here, V;(w;,w;) computes the expected lifetime of the first component as the sum of current age
w; and the average lifetime remaining for it, assuming the second component has survived past age
wsy. Vao(wy, wy) has a similar interpretation. Using (3.3) and (3.4) in (3.6), we obtain V;(w;,w;) and
Vz(Wl, W2) of EP-EX-FGM as

2 (1= @Dz
Vi(wi, wy) = o (1~ F02) +wy 3.7)
(Be2emm — edm) [1+ 2(1 + Dy)(1 + Dy)]
and
(1= @l)l
Vo(wi, wa) = o ( 0 ) + w;. (3.8)

(Be2em — 73e2) |1+ £(1+ Dy)(1 + Dy)|
From (3.7) and (3.8), the vitality function of EP-EX-FGM can be obtained using (3.5).

4. Reliability and information measures

In this section, we derive reliability measures such as hazard function, RH function, MRL, vitality
function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and
bivariate CREX in the context of EP-EX-FGM(¢1; ¢,). Sreelakshmi [40] introduced the relationship
between copula and reliability function, which is defined as follows:

R(wi,wp) = 1 = Fy, (W) = Fiy,(w2) + C (Fw,(w1), Fyw,(w2)) .

The reliability function R(wy, wy) = P(W; > wy, W, > w,) for the EP-EX-FGM(¢y; ¢,) is

1 1
Rwi,wy) = Z (38—290”1/1 _ e—3¢1w1)(3e—2902wz _ e—3¢,azwz) [1 + 5(5(8—3%% _ 36—2¢1w1) i1

X (%(ﬁm =37 + 1)
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4.1. Hazard function

The bivariate hazard function at a point (wy, w,) is defined, according to Basu [11], by H(wy, w») =
fwyw, (Wi w2)
R(wi,w2)

. Thus, we get

9()01()02(26_2‘“W' _ e—3w1W|)(26—2szz _ e_3“’2W2) [1+6D,D,]

H(wi,wy) = .
(Be2em — ger)(3e20m — e3erm) [1 4 2(1 + Dy)(1 + D))

4.1)

One of the key constraints of Basu [11] is that H(w;, w,), as defined by (4.1), is not a vector quantity,
as defined by R*> — R. The bivariate hazard function was created in vector form by Johnson et al. [25]
and Sreelakshmi [40] to get around this restriction.

—01In R(W] , Wz) —-0In R(W1 , Wz)

4.2
(9W1 6w2 ’ ( )

Hwi,wy) = (

where R denotes the bivariate reliability function for the FGM copula. For the FGM copula,
Vaidyanathan [42] studied the elements in vector (4.2). For the EP-EX-FGM copula, we can, after
simple algebra, get the following relations:

—0InR(wy,wy) 31 (2e721 — e7911) 2(Be 2 — e ¥¢)(1 + D) 43)
awi (Be2m — g=dam) |1+ 801+ D)1 + Dy '
and
—0InR(wi, wy) _ 3py(2e7222 — g7 §(3e 2 — e )(1 + Dy) )
ow, (3¢ 20 — g [1+ 201+ D)1+ Dy)] |

The vector hazard function of EP-EX-FGM(¢; ¢,) is obtained by substituting (4.3) and (4.4) in (4.2).
Figure 2 depicts 3D plots of the joint hazard function (JHF) of an EP-EX-FGM for various parameter
values.
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© ¢ =09,0,=15,6=05 () g1 = 0.01, ¢, =0.6,6=0.1

(21 =06,p=06,0=-0.2 (h) o1 =1.5,¢2=09,6 =-09
Figure 2. EP-EX-FGM JHF dimensions.
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4.2. Reversed hazard function

fwy.w, (W1,w2)
Fw,.w,(wi,wa)

The RH function at a point (wy, w,) is defined as RH(wy, w,) = Thus, we get

91y (2e™241M1 — 731W1) (272022 — g=3¢22) [1 + 6Dy Ds]
RH(Wla WZ) =
(1+Dy)(1+ Dyf1+ 3 (1= D) (1 - Dy)

4.3. Positive quadrant dependence

Our goal in this section is to examine the positive quadrant dependence property, denoted by PQD,
(negative quadrant dependence, denoted by NQD) of the RVs W, and W, associated with the EP-EX-
FGM. As a type of RV dependence, PQD was introduced by Lehmann [30]. This kind of dependence
describes the joint behavior of two RVs when they are both large (or small). More specifically, two
RVs are PQD if there is at least as much chance that they are both tiny at the same time as there would
be if they were independent. The following theorem reveals these properties for the EP-EX-FGM(¢y;

®2).
Theorem 4.1. The EP-EX-FGM(p; @) is POD (NQD) for positive (negative) values of 6.

Proof. Consider

P(W; > wi, Wy >wy) = P(W; >w)P(W, > w,) = R(wi, wy) — R(wi)R(w>)

i (36_2<P1Wl _ 6_3(’01W') (Se—Zsasz _ €—3<P2W2)

1
1+ 5(5(53%% —3e2my 4 1)

_ 1 (38—2901W1 _ e—3¢1W1) (3e—2<ﬁ2W2 _ e—3tﬁzwz)
4

X

(%(6—3902% _ 3€—2<P2W2) + 1)

_ g (36—2<p1w1 _ e—3w1w1) (36—2¢2W2 — 3_3‘/’2“’2) (%(6—3%% - 36_2¢1W]) + 1)

1
X (E(e—ypzwz _ 36—2<pzw2) + 1) — 5¢(W1,W2),

where

d(wi,wy) = (3e—29"‘wl - e_390‘w‘) (36—2“’”2 - e_S‘DZWZ) (%(6_39”””‘ — 3¢ 2 4 1)

ENT

X (%(e-Wz —3e777") + 1) = F(w)F(w2)R(W1)R(W»).

For all values of w; and w,, ¢(wy, w;) is always non-negative because the DF and reliability function
take values ranging from zero to one. On the other hand, we have for positive values of 6, d¢p(wy, w,) >
0 Vwy, ws, that the EP-EX-FGM is PQD. Likewise, for negative values of 9, 6¢(wy, w,) < 0 Vwy, wo,
the EP-EX-FGM is NQD. Thus, EP-EX-FGM has both PQD and NQD. O
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32311

4.4. Bivariate extropy, bivariate weighted extropy, and bivariate CREX

Lad et al. [29] introduced the concept of extropy as dual to entropy, facilitating the comparison of
uncertainties of two RVs. If the extropy of Wi is less than that of another variable W,, then W, is
said to have more uncertainty than W,. Due to the difficulty of deriving the entropy for model (1.6),
our focus in this subsection will be on the extropy. Extropy has several applications, such as scoring
the forecasting distributions using the total scoring rule, comparing the uncertainties of two RVs, etc.
Recently, the literature has numerous research works on this measure, e.g. Abd Elgawad et al. [1],
Husseiny and Syam [20], and Husseiny et al. [21].

It is possible to introduce a bivariate version of extropy based on the FGM family in the following
theorem.

Theorem 4.2. Consider two non-negative continuous RVs Wy and W, with JPDF fy, w,(wi,w,). Then,
the bivariate version of extropy based on FGM is given by

JWi, W) = (1462 J(W)J(Wa) + 46° Wy, (2)Pw, (2) + 26(26 + D)Wy, (1P, (1)
— 46 (‘IJWI 2)Pw, (1) + ‘PW,(I)‘I’WZ(Z)) +20(0+1) (‘PWI(I)J(WZ)+
+ Wi, (DI(W))) = 26° (Pw, ()T (W) + Py, (2)J(W))), (4.5)
where
1
J(W)) = _EE(fW,-(Wi)) and Py,(p) = E(fw,(W)F}, (W), i=1,2, p=1,2. (4.6)

Proof. By using (1.4), we get

J(Wi, W) = ZE(fwl,Wz(Wla W) = é_lf f By, w, (Wi, wa)dwidwy
o Jo

1 00 00
=2 fo fo i 01, (w2) [ 1+ 6*(2Fw, (1) = D*(2Fw, (w2) = 1) + 26(2Fw, (1) = 1)

14+8)> [
X (ZFWZ(WZ)—l)]dwldwz:( 4) f f iy, WD, (w2)dwidw,
0 J0
+ 46° f f fiy, WD, (W2) PG, (WG, (w2)dwidws
0J0
+26(26 + 1) fo fo f%vl(wl)févz(wz)FWI(wl)sz(wz)dwldwz—w[ j; fo iy, (W), (w2)

[ [ it (7 om0
0 Jo

ff f%v.(Wl)févz(Wz)(le(Wl)+sz(Wz))dwldwz].
0 Jo

X (Fy, WD) Fw,(w2)+Fr, (W) F3,, (w2)) dwidwy |+

+ i, (w2)) dwidw, |-6(5 + 1)

Since each bivariate integral in the above formula is separable into the product of its univariate
integrals, and by incorporating (4.6) in the above integrations, the required result directly follows. This
completes the proof. O
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Corolary 4.1. Let W, ~ EP(¢,) and W, ~ EP(y,). Using (4.6), and after simple algebra, we get

JW) = —%, Y,.(1) = %, and ¥, (2) = %, i = 1,2. Thus, by using Theorem 4.2, the bivariate

extropy based on EP-EX-FGM is

5(533991264955428 1)1 9317¢1)
9902( 27720 =

98560

In a spirit similar to that of the bivariate version of extropy, we can also introduce bivariate weighted
extropy based on FGM family in the following theorem.

J(W, Wr) =

Theorem 4.3. Let W, and W, be non-negative continuous RVs with JPDF fy, w,(W1,w»). Then, the
bivariate weighted extropy based on FGM is given by

Wi, Wa) = (1+ 82T (W) (Wa) + 46828 ()W, (2) + 2626 + 1), (D¥h, (1)
— 457 (W, () Wiy, (1) + Wiy, (D}, (2)) + 26(5 + 1) (W, (DI (W)

+ W, (DI(W) = 26% (P, (2) J"(Wa) + Wiy, ()" (W), 4.7)
where
1
S W) = —EE(WifW,(Wi)), and lI”v?/,.(l?) = E(WifWi(Wi)Fsvi(Wi))ai =12, p=12 (4.8)
Proof. We obtain the results by applying Theorem 4.2°s proving techniques. O

Corolary 4.2. Let W, ~ EP(p;) and Wy ~ EP(¢,). Using (4.8), and after simple algebra, we get

T'Wi) = =25, Wy (1) = 2585 and Wy, (2) = 35, i = 1,2. Thus, by using Theorem 4.3, the

bivariate weighted extropy based on EP-EX-FGM is

1011142265802495> + 9490091372415 + 1332364388
T (W, W. _ 384199200 6350400 25
( 1y 2) -
303564800

Proposition 4.1. Let W, and W, follow an FGM family.

o If W, = aW, + b, then J(W>) = 1J(W)).
° If5 =0, then J(W, W») = J(W)J(W,).

It is worth noting that, as was shown by Balakrishnan et al. [7], there exist distributions with the
same extropy, but different weighted extropy. Moreover, there exist distributions with the same
weighted extropy, but different extropy.

Replacing the PDF in the extropy function with the survival function, Jahanshahi et al. [23] proposed
a new measure of uncertainty of a non-negative continuous RV called cumulative residual extropy
(CREX). Jahanshahi et al. [23] showed that if two RVs W, and W, are lifetimes of two systems A and
B, and if the CREX of W; is less than the CREX of W,, then system A has less uncertainty than system
B. We can define the bivariate CREX based on FGM family in the following theorem.

Theorem 4.4. Let W, and W, be non-negative continuous RVs with JDF Fy, w,(wi,w,). Then, the
bivariate CREX based on FGM is given by

: : : 5 )
T Wi, Wa) = J(W)J (W2) + Wy, )y, (2) + 5 Ty, (D, (1), (4.9)
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where
1 (= 2 ® = 2
FW)=-3 f (Fu,w0))” dw; and W, (p) = f (Fuw)” By wdw, i=1,2, p=1,2. (4.10)
0 0
Proof. By using (1.3), we get
1 e, = 2
JC(Wl,Wz)Z Zf f (FWI,WZ(Wl,Wz)) dwidw,
0o Jo
1 00 00_ _
=7 f f Fo W) Fura(w2))? [1 + 82F%, w1)F3, (w2) + 26F (w1 Py (w2) | dwi dw
0 Jo
1 00 Mo0 _ 62 00 OO _
=fo (FW1(WI))Z(FWZ(WZ))ZdWIdWZ"'Zff o, w)Fh, w2) (Fy, (w1))?
0 Jo 0 Jo
_ S o> _ _
X (Fu O dwidw+ S f f o (09 Foa (92) By w0))2 Fops w2) o s,
0 Jo

Since each bivariate integral in the formula above can be divided into the product of its univariate
integrals, the required result can be obtained immediately by incorporating (4.10) in the integrations
above. The proof is now complete. O

Corolary 4.3. Let Wy ~ EP(p,) and W, ~ EP(p,). Using (4.10), and after simple algebra, we get
JW) = —%&pi, lI’%,l_(l) = 20119_6507«:# and ‘P;Vi(Z) = 433059%%_, i = 1,2. Thus, by using Theorem 4.4, the
bivariate CREX based on EP-EX-FGM is

0(4404541696 + 3707293832) + 18199089216

786839961600¢, >

JW,Wa) =

TTT 77
LT T 77~
"'.
i
Z 27 /;

0.6/ s o S 1.5
TUATYY SN i aen JOH)

0.2}

(@) JW,Wy)at6 =09

J¥ (W1, W2)

0.0186 -
0.0184
0.0182
0.0180-

0.0178

0.0176

(c) J¥ (W7, Wy) (d) JS(W,, W) at § = 0.9
Figure 3. Bivariate extropy, weighted extropy, and CREX based on EP-EX-FGM.
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Figure 3 displays the values of bivariate extropy, weighted extropy, and CREX in EP-EX-FGM.
In 3D representation (a,b), we find that the value of J(W;, W,) increases as the values of ¢; and ¢,
increase. Also, there is symmetry for the J" (W, W,) values in the 2D plot (c) according to ¢ values.

5. Methods of estimation

In this section, we discuss two estimation methods for estimating the unknown parameters of the EP-
EX-FGM distribution: ML and Bayesian estimations. Moreover, we construct asymptotic confidence
intervals by using the Fisher information matrix (FIM) for the model’s parameters.

5.1. The ML estimation

The ML technique is a widely used and significant statistical technique. By using the ML technique,
one can obtain estimates of parameters that have favorable statistical properties, such as consistency,
asymptotic unbiasedness, efficiency, and normality asymptotically. It is necessary to calculate the
parameter estimates that maximize the probability of the sample data to obtain the parameter estimates
with the ML method. The log-likelihood function In L is obtained by using the PDF given in (2.2).

3 3
lnL:nln% +nln%

+anJ In
i=1

We obtain the following normal equations by partially differentiating In L with respect to the vector of
parameters T = (¢, ¢2, 0) and equating them to zero. The following are those derivatives:

n n
+ Z ln(ze—z‘#’lwil _ 6—3501%'1) + § 11’1(26_2"02%2 _ e—3¢2wi2)
i=1 i=1

1 1
1+6 (1 -2 (E(e-&f’lw” —3e M) + 1))(1 -2 (5(6_3“’2‘”2 — 3e7H) + 1))

OlnL(r) Z": 36wy e i (e~ 20 — e3¢ — 1)(1 — 2eMil)
0y, Bl pur [] + ge3emirtewip) (1 — 3e¥ivii + e3¢ii)(1 — 3epvit + €3¢>1w,-,)]
L r S (3 = de™iywy
o (2ewmi — 1)’
and
OlnL(t) < (3e™2Mii — 3¢l — 1)(Be 2l — ¢3¢l — 1)
00 T4 - [1 + de3evitewi)(1 — 3eeivii + e3¢i)(1 — 3epvi + e3sﬂzwﬂ)] ’

where [, j=1,2,and [ # j.

Because the likelihood equations for ¢;,¢,, and ¢ are nonlinear and challenging to solve
analytically, numerical methods like the Newton-Raphson method can be employed to find the ML
estimates of the distribution parameters ¢, ¢, and 6.

5.2. Asymptotic confidence intervals

Based on the asymptotic normality of the ML estimates, the FIM is frequently used to create
asymptotic confidence intervals for the unknown parameters in 7 (for more details about other uses of
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FIM, see Barakat et al., [8]). Under specific assumptions of regularity, the ML estimates denoted as 7
are distributed according to the normal distribution. As the sample size n tends to infinity, the
distribution of the estimator T = (},®»,0) approaches a normal distribution with mean 7 and
covariance matrix equal to the inverse of the FIM, denoted as I"'(r). The FIM consists of the negative
expected values of the second-order derivatives of In L, as expressed by

Isﬁltﬁl

I(T)_ 902901 Itﬁzsfz . (5'1)
Iaw Ly,  Iss

The entries of the matrix in (5.1) are given by
62L(T) _n n 2W e‘ﬂIWzl
— PLIWil
YT Ta TG & aemy Z owie

[6 + S (4eP™it — 3) —36e¥i(1— 362¢1W,1 +4e3in) 4 3¢ (§ 4 2P (4e?™i —3)(145))]
[0+ 8esri (ez‘plwi[ — 3) — 36@‘1"jwij(1 —3ePivil + e3wzwz'1) + e¥ivij (5_ 3HePvil + (1 +5)e3<ﬂzWu)]2

b

_i [géwilwij63¢lwile3¢jwij(26‘/’1Wil — D)(e?"i — 1)]
$ie; - [0 + Sevvi(e2emvii — 3)—=35e?iVii(1 — eevit + e3¢vit) + e9vii(§ — 30e3¢vit + (1 + )edemi)]?’

, [3e3Wiert3wijej(QeWier) (] — 3eWii®i + @3Wiiti)]
m_; [6 + Sesrvi(eZevi — 3)—35evMi(1 — 3ewvit + e3¢vi) + e9iii(§ — 35e?™it + (1 + §)e3¢i)|2’

; (1 = 3eP™i + 3¢y (] — 3e#ivii 4 @30ii)2
‘”__; [0 + Sesrvin(e2emin — 3)—35evMi(1 — ewvi + 3emir) + e£i(§ — 353 + (1 + 8)edemin) |2’

where [,j = 1,2, [ # j. According to Jia et al. [26], in cases where it is challenging to obtain the
anticipated values directly, an alternative approach is to estimate them by calculating the negative
second-order derivatives of the natural logarithm of the likelihood function, evaluated at the ML
estimates. Hence, we approximate the expected values by the negatives of the second-order
derivatives evaluated at the ML estimates 7. Thus, the estimated value of the FIM is I(7). Moreover,
100(1 — 6) asymptotic confidence intervals for the parameter 7 can be constructed as follows:

(,/0\1 iZg V‘]@?ﬁ/ 5 gi Zg \/Jg‘, [ = 1,2,

where J 4, q; = ZE;,E, is the element in I-!(7), corresponding to the element Ig,q; in the estimated
matrix I(7), and Zg is the percentile of the standard normal distribution with right tail probability g.

5.3. Bayesian estimation

The Bayesian estimation technique is a powerful tool for estimating unknown parameters based on
observable data. Using Bayes, theorem, a concept in probability theory, new information can be
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gathered to update the probability of a hypothesis. Because this approach takes prior knowledge into
account when estimating, it provides some advantages over the traditional ML approach. Moreover, it
is capable of assessing the degree of uncertainty surrounding each parameter. We must select an
acceptable prior PDF and hyper-parameter values that reflect our belief regarding the data. While
employing a Bayesian technique, the data analyst needs to be more explicit about all modeling
assumptions. Choosing a suitable prior distribution usually involves taking into consideration the
distribution’s basic form (shape and domain) as well as its key characteristics (variance and mean).
For the parameters ¢;, [ = 1,2, we select gamma-independent priors, specifically

H(QD[) o QD?I_le_vl‘pl, @ > 0,a,v,>0, [=1,2,

while the copula parameter ¢ has uniform prior distribution defined on (-1, 1). The prior JPDF is
given by
(1) « go?l_le_v""’.

The likelihood method’s estimate and variance-covariance matrix can be used to determine how to
elicit the independent joint prior’s hyper-parameters. The gamma prior’s mean and variance can be
used to represent the derived hyper-parameters. For more information, see Gupta and Kundu [18], Dey
et al. [13], and Hamdy and Almetwally [19]. The parameters ¢;, [ = 1,2, of EP-EX-FGM should be
well-known and positive. The likelihood function is given by

3 B 3 = ,
L(T) — (%)" 1—[(26—2901%‘1 _ e—3¢1wi1)(%)n n(ze—zwwiz _ e—3¢zwi2)
i=1 i=1

n
Sl
i=1

The corresponding posterior density is given as follows:

1 1
1+ 5(1 -2 (5(6_39"'“1 — 3e 2y 4 1)X1 -2 (5(6_3""”"2 — 3e 2wy 4 1)) )

H(lel WZ) OC( )n n+a;—1 e V191 n(ze 201wit __ —3¢1W;1)( )n n+ax—1 e 22 1_[(26 20owin —3<p2w,-2)
b

k 1 1
X 1_[ 1+ 5(1 -2 (E(e—MWf1 — 3e 2y 4 1)X1 -2 (E(e—wfz — 3e vy 4 1)) )
i=1

The marginal posterior distributions I1(¢;|d, wy, wy), and [1(d|¢;, wi, w;) of the parameter ¢;, [ = 1,2,
may be found by integrating out the nuisance parameters from the posterior distribution II(r|w, w,) as
follows:

n n 1
I(ilwy, wo) o (pn+az L —vig l—[(ze—Zsazw,-z _ e—3s0zwl-z) l_l 1+ (5(1 _ 2(5(6_3"0”“” _ 36—2¢1wx—1) + 1))
i=1 i=1

1
X (1 —2(§(e—3¢zwf'2 —3e7R) 4 1)) ,
1 =3p1w; =2¢01w; 1 =3pow; —2@ow;
1+6[1-2 E(e el Zem iy Q)| 1 -2 E(e e Zemevizy ),
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where / = 1,2. We use the well-known squared error loss function, which yields the posterior means
as the Bayes estimates of 7, say ((,51,3), which are given by ¢, = fooo o ll(g)lw, wa)de, and

6= f_ 11 ol1(d|wy, w,)dé. Notice that the preceding integrals cannot be obtained explicitly. Because of
this, we use the Monte Carlo method to find an approximate value of these integrals, see Tables 1-4.

6. Simulation

The performance of ML and Bayesian estimates are contrasted numerically in this section. For the
parameters of the EP-EX-FGM model, the performance of the various techniques and the analytically
deduced results may be evaluated exactly. The Mathcad package was used, and 1000 samples from an
EP-EX-FGM model had been gathered. The values of the parameters can be defined as follows:

In Table 1: ¢; = 0.6, ¢, = 3.
In Table 2: ¢; =2, ¢, = 0.3.
In Table 3: ¢; = 0.5, ¢, = 0.7.
In Table 4: ¢, =2, ¢, = 4.

The sample-sizes n are 20, 50,100, and 150. The simulation results of bias and mean squared error
(MSE) on 5000 iterations of Monte Carlo simulation are shown in Tables 1-4. The following
conclusions can be drawn from Tables 1-4:

e The ML and Bayesian estimates of unknown parameters are fairly good in terms of bias and MSE.

e With an increase in sample size, the MSEs decrease and the estimated values of the parameters
approach the nominal values of the parameters.

e For 6 = —0.4, both ML and Bayesian estimate values are smaller than the case of 6 = 0.5.

Moreover, Figure 4 shows the comparison between ML and Bayesian estimations for both ¢, and ¢,
at specific values of the parameters. This figure shows that the two techniques give close values.

Table 1. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.

01 =0.6, 0 =3
[ -0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MSE Bias MSE Bias MSE Bias MSE

20 o 0.045 0.257 0.032 0.245 0.087 0.357 0.054 0.321
@ 0.098 0.784 0.085 0.699 0.110 0.821 0.099 0.711

0 0.074 0.457 0.071 0.416 0.085 0.524 0.078 0.511

50 1 0.038 0.241 0.029 0.233 0.078 0.328 0.042 0.299
3 0.082 0.698 0.072 0.587 0.096 0.745 0.082 0.621

0 0.071 0.421 0.065 0.387 0.068 0.389 0.052 0.354

100 o 0.029 0.239 0.022 0.198 0.062 0.289 0.034 0.247
@ 0.075 0.631 0.064 0.514 0.082 0.687 0.071 0.587

0 0.067 0.401 0.059 0.345 0.056 0.341 0.048 0.312

150 o 0.015 0.214 0.014 0.167 0.058 0.245 0.028 0.187
© 0.064 0.543 0.052 0.489 0.075 0.578 0.068 0.517

0 0.058 0.389 0.041 0.312 0.051 0.287 0.038 0.287
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Table 2. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.

$1=2,0=03
) —0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MSE Bias MSE Bias MSE Bias MSE

20 o1 0.075 0.547 0.065 0.511 0.095 0.655 0.078 0.625
33 0.109 0.324 0.099 0.301 0.125 0.387 0.134 0.336

[ 0.041 0.245 0.032 0.211 0.058 0.389 0.049 0.380

50 o 0.069 0.537 0.056 0.489 0.089 0.587 0.065 0.587
© 0.098 0.287 0.087 0.287 0.117 0.354 0.128 0.312

0 0.032 0.231 0.028 0.201 0.047 0.345 0.041 0.311

100 @1 0.058 0.510 0.048 0.452 0.074 0.543 0.052 0.521
[ 0.082 0.241 0.075 0.265 0.099 0.299 0.114 0.278

6 0.025 0.201 0.018 0.241 0.041 0.311 0.038 0.289

150 o 0.042 0.465 0.035 0.421 0.062 0.487 0.041 0.487
© 0.075 0.211 0.069 0.214 0.078 0.254 0.102 0.263

[ 0.021 0.187 0.012 0.411 0.032 0.266 0.024 0.211

Table 3. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.

Y = 0.5 @2 = 0.7
[ -0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MSE Bias MSE Bias MSE Bias MSE

20 @1 0.057 0.258 0.049 0.245 0.078 0.289 0.069 0.257
@ 0.069 0.298 0.054 0.285 0.089 0.314 0.075 0.301

1) 0.111 0.435 0.095 0.411 0.121 0.542 0.102 0.521

50 o) 0.048 0.246 0.035 0.234 0.069 0.258 0.053 0.241
@ 0.055 0.278 0.042 0.262 0.065 0.295 0.069 0.278

o 0.096 0.421 0.091 0.387 0.112 0.487 0.087 0.410

100 o) 0.035 0.232 0.029 0.221 0.052 0.241 0.045 0.225
@ 0.042 0.265 0.034 0.251 0.052 0.274 0.061 0.197

0 0.085 0.411 0.081 0.398 0.089 0.478 0.085 0.456

150 1 0.028 0.211 0.021 0.202 0.043 0.234 0.037 0.215
33 0.031 0.245 0.021 0.243 0.035 0.251 0.052 0.165

0 0.079 0.398 0.079 0.378 0.081 0.415 0.074 0.741

Table 4. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.

pr=2¢p=4
[ -0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MSE Bias MSE Bias MSE Bias MSE
20 o 0.086 0.457 0.075 0.421 0.092 0.511 0.084 0.498
@ 0.098 0.578 0.085 0.543 0.099 0.654 0.095 0.625

0 0.078 0.254 0.069 0.247 0.089 0.347 0.081 0.321

50 1 0.078 0.423 0.068 0.387 0.085 0.482 0.071 0.453
3 0.085 0.562 0.078 0.523 0.087 0.589 0.081 0.601

0 0.069 0.242 0.061 0.241 0.081 0.341 0.074 0.298

100 o 0.065 0.387 0.053 0.354 0.075 0.421 0.053 0.421
@ 0.074 0.523 0.062 0.478 0.072 0.512 0.063 0.587

0 0.062 0.214 0.059 0.201 0.078 0.287 0.071 0.274

150 o 0.058 0.345 0.042 0.299 0.068 0.388 0.046 0.401
@ 0.062 0.487 0.058 0.463 0.066 0.483 0.058 0.536

0 0.054 0.203 0.041 0.189 0.069 0.251 0.061 0.232
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Figure 4. The comparison between ML and Bayesian estimates.

7. Real data applications

In this section, we use the EP-EX-FGM model to examine two bivariate real data sets. The benefits
of EP-EX-FGM over alternative bivariate models will be thoroughly discussed in the first one, which
focuses on computer science. Additionally, several arguments supporting the fit of the estimated
theoretical model to the empirical data will be presented. We talk briefly about the second application,
which relates to medical applications.

7.1. Computer science data set

Based on Oliveira et al. [34], data was gathered and analyzed. The data set contains n = 50
simulated rudimentary computer systems with processors (W;) and memory (W,). An operating
computer will be able to operate when both parts are working properly (the processors and memory).
Assume the system is nearing the end of its lifecycle. The degeneration advances rapidly in a short
period. In the case of the first component, a deadly shock can destroy either it or the second
component at random, due to the system’s greater vulnerability to shocks (see, Ahmad et al. [3]). The
independence presumption is not accurate because both components can be killed by a deadly shock
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at the same time, so we discuss this issue using the FGM copula. We fit the EP-EX distribution to the
processor lifetime and memory lifetime separately. The ML estimates of the scale and shape
parameters are ¢, = 0.345952, 4, = 0.362599, and 6 = 0.452819. To analyze the maximum values of
the estimators by profile likelihood, Figures 5 and 6 were constructed based on W; and W,. Also,
Figures 7-12 illustrate statistical visualizations, including a scatter plot, empirical CDF, Q-Q plot, a
density plot, paired smooth histogram, and a paired violin plot. Table 5 clearly shows that, in terms of
data fit, the EP-EX-FGM model performs better than the bivariate generalized EX-FGM distribution
(GEX-FGM), the bivariate exponential FGM distribution (EX-FGM), and the bivariate Weibull FGM
distribution (W-FGM). Furthermore, by using the Python programming language, our data set, and
the Kolmogorov-Smirnov (KS) test, the EP-EX-FGM model demonstrates an outstanding match with
a p-value of 0.832 and a test statistic of 0.085.

Table 5. —In L, AIC, AICc, BIC, HQIC, CAIC.

—InL AIC AlCc BIC HQIC CAIC

EP-EX-FGM 150.679 307.358 307.88 313.095 309.543 307.88
GEX-FGM  148.861 307.722 309.086 317.282 311.363 309.086
EX-FGM 151.412 308.823 309.345 314.559 311.007 309.345
W-FGM 149915 309.829 311.193 319.389 31347 311.193
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Figure 5. ML estimates of processor lifetime.
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Figure 6. ML estimates of memory lifetime.
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Figure 7. The scatter plot of processors and memory data.

Empirical COF of the Bivariate Data

1.0 Frrpirical CIF

0.8

=
o

Ernpirical CDF

=
Iy
T

0.2

0 1 £ 3 4 E] b
Values

Figure 8. The empirical CDF of processors and memory data.
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7.2. Medical science data set

We now use the EP-EX-FGM family to fit a second real data set that Grover et al. [16] covered.
We conducted our investigation using two data sets. Retrospective data on 132 individuals diagnosed
with type 2 diabetes according to ADA guidelines is included in the first dataset, which originates from
Dr. Lal’s Path Lab, a respected NABL-certified path lab. To collect up-to-date pathology reports for
these patients, researchers conducted a house-to-house survey that began when they were diagnosed
with diabetes and ended in November 2007. The duration of diabetes, fasting blood glucose, diastolic
blood pressure, systolic blood pressure, low-density lipoprotein, and serum creatinine levels were all
documented for each patient, starting from childhood and continuing into adulthood. The mean serum
creatinine level (SrCr) and the mean duration of diabetes are represented by the RVs W; and W,
respectively.

This study only looks at kidney problems caused by type 2 diabetes, therefore it automatically
ignores the effects on the eyes, heart, and other organs. Additionally, we have removed cases where
renal problems occurred before diabetes. Participants in our research with individuals with the same
duration of diabetes experience variable degrees of kidney function. A patient’s renal health is
evaluated using SrCr because its fast rise in value is a critical sign for DN risk prediction. So, the data
were split into two groups based on SrCr values: DN (SrCr 1.4 mg/dL) and NDN (Non-Diabetic
Nephropathy; SrCr 1.4 mg/dL). At the end of the trial, 60 (or 45.45%) of the 132 individuals had DN,
and 72 (or 54.55% of the total) had NDN. The ML estimates of the scale and shape parameters are
&, = 0.423, @ = 0.0433, and 6 = 0.98. Moreover, we estimate AIC=202.373 and BIC=205.206.

8. Conclusions

This study introduces a new bivariate EP-EX-FGM model: an improved version of the bivariate
distribution based on the FGM copula. In the area of bivariate modeling, the proposed distribution
represents a substantial and original contribution. This study introduces a new statistical model called
EP-EX-FGM, which is a bivariate EP-EX distribution based on the FGM copula. Within the analysis
of bivariate data, this work is both important and innovative in the field of bivariate modeling. The
correlation coeflicient between W, and W, for the suggested distribution EP-EX-FGM ranges from a
maximum value of 0.261 to a minimum value of —0.261. In addition, we have explored dependability
measures such as the hazard function, the MRL function, and the vitality function. Moreover, it has
been demonstrated that the proposed model satisfies the PQD(NQD) characteristic, depending on the
sign of the shape. The parameter estimators were generated using ML and Bayesian approaches, and
the overall outcome indicates that Bayesian estimation outperforms its counterpart. Furthermore, a
Monte Carlo simulation study was conducted to assess the performance of the estimators. Asymptotic
confidence intervals for the likelihood estimation were produced for the parameters in this model.
Finally, the significance and adaptability of the EP-EX-FGM were investigated through the analysis of
real data sets.
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