This work utilizes generalized order statistics (GOSs) to study the q-Weibull distribution from several statistical perspectives. First, we explain how to obtain the maximum likelihood estimates (MLEs) and utilize Bayesian techniques to estimate the parameters of the model. The Fisher information matrix (FIM) required for asymptotic confidence intervals (CIs) is generated by obtaining explicit expressions. A Monte Carlo simulation study is conducted to compare the performances of these estimates based on type Ⅱ censored samples. Two well-established measures of information are presented, namely extropy and weighted extropy. In this context, the order statistics (OSs) and sequential OSs (SOSs) for these two measures are studied based on this distribution. A bivariate q-Weibull distribution based on the Farlie-Gumbel-Morgenstern (FGM) family and its relevant concomitants are studied. Finally, two concrete instances of medical real data are ultimately provided.
Citation: M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed. Inference and other aspects for q−Weibull distribution via generalized order statistics with applications to medical datasets[J]. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
This work utilizes generalized order statistics (GOSs) to study the q-Weibull distribution from several statistical perspectives. First, we explain how to obtain the maximum likelihood estimates (MLEs) and utilize Bayesian techniques to estimate the parameters of the model. The Fisher information matrix (FIM) required for asymptotic confidence intervals (CIs) is generated by obtaining explicit expressions. A Monte Carlo simulation study is conducted to compare the performances of these estimates based on type Ⅱ censored samples. Two well-established measures of information are presented, namely extropy and weighted extropy. In this context, the order statistics (OSs) and sequential OSs (SOSs) for these two measures are studied based on this distribution. A bivariate q-Weibull distribution based on the Farlie-Gumbel-Morgenstern (FGM) family and its relevant concomitants are studied. Finally, two concrete instances of medical real data are ultimately provided.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖ |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right): = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in B_{\alpha,\beta}} \atop \scriptstyle {n \nmid x_{1}+\cdots+x_{k}}}} 1,(0 < \delta_{1}, \delta_{2},\cdots, \delta_{k} \leq 1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k \geq 2 be a fixed positive integer, q\geq n^{3} and c be two integers with (n, q) = (c, q) = 1 , and \delta_{1}, \delta_{2}, \cdots, \delta_{k} be real numbers satisfying 0 < \delta_{1}, \delta_{2}, \cdots, \delta_{k} \leq 1 . Let \alpha > 1 be an irrational number of finite type. Then, we have the following asymptotic formula:
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = \left(1-n^{-1}\right) \alpha^{-(k-1)} \delta_{1} \delta_{2} \cdots \delta_{k}\phi^{k-1}(q)+O(q^{k-1-\frac{1}{\tau+1}+\varepsilon} ), |
where \phi(\cdot) is the Euler function, \varepsilon is a sufficiently small positive number, and the implied constant only depends on n .
Notation. In this paper, we denote by \lfloor t\rfloor and \{t\} the integral part and the fractional part of t , respectively. As is customary, we put
\mathbf{e}(t): = e^{2 \pi i t} \quad \text { and } \quad\{t\}: = t-\lfloor t\rfloor . |
The notation \|t\| is used to denote the distance from the real number t to the nearest integer; that is,
\|t\|: = \min \limits_{n \in \mathbb{Z}}|t-n| . |
Let \chi^{0} be the principal character modulo q . The letter p always denotes a prime. Throughout the paper, \varepsilon always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters \alpha, n, \varepsilon but are absolute otherwise. For given functions F and G , the notations F \ll G , G \gg F and F = O(G) are all equivalent to the statement that the inequality |F| \leqslant \mathcal{C}|G| holds with some constant \mathcal{C} > 0 .
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set \mathcal{S} , we use \mathbf{1}_{\mathcal{S}} to denote its indicator function:
\mathbf{1}_{\mathcal{S}}(n): = \begin{cases}1 & { if } \;n \in \mathcal{S}, \\ 0 & { if }\; n \notin \mathcal{S} .\end{cases} |
We use \mathbf{1}_{\alpha, \beta} to denote the characteristic function of numbers in a Beatty sequence:
\mathbf{1}_{\alpha, \beta}(n): = \begin{cases}1 & { if } \;n \in \mathcal{B}_{\alpha, \beta}, \\ 0 & { if }\; n \notin \mathcal{B}_{\alpha, \beta}.\end{cases} |
Lemma 2.2. Let a, q be integers, \delta \in(0, 1) be a real number, \theta be a rational number. Let \alpha be an irrational number of finite type \tau and H = q^{\varepsilon} > 0 . We have
\sum\limits_{\scriptstyle {a \le \delta q} \atop \scriptstyle{a \in {{\cal B}_{\alpha ,\beta }}}} ' 1 = \alpha^{-1} \delta \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right), |
and
\sum\limits_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-1} q^{-\varepsilon}+q^{\varepsilon}\right). |
Taking
H = \|\theta\|^{-\frac{1}{\tau+1}+\varepsilon}, |
we have
\sum\limits_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1}+\varepsilon\right)}\right) . |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) = \sum\limits_{x_{1} \leqslant q-1} \cdots \sum\limits_{x_{k-1} \leqslant q-1} \mathbf{e}\left(\frac {r_{1}x_{1}+\cdots+r_{k-1}x_{k-1}+ r_{k}\overline{x_{1} \cdots x_{k-1}}}{p}\right). |
Then
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) \ll q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}, q\right)^{\frac{1}{2}} |
where (a, b, c) is the greatest common divisor of a, b and c .
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a = \frac{s}{r}+\frac{\theta}{r^{2}}, \quad(r, s) = 1, r \geq 1,|\theta| \leq 1, |
then
\sum\limits_{k \leqslant K} \min (U, \frac{1}{\|a k+b\|}) \ll (\frac{K}{r}+1 )(U+r \log r). |
Proof. The proof is given in [10].
We begin by the definition
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = S_{1}-S_{2}, |
where
S_{1}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}} }} 1, |
and
S_{2}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle{x_{1} \cdots x_{k} \equiv c\bmod q }\atop {\scriptstyle{x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}\atop \scriptstyle{n \mid x_{1}+\cdots+x_{k}}}} 1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
\begin{aligned} S_{1}& = \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{x_{1} \cdots x_{k} \equiv c\bmod q }\mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = \frac{1}{\phi(q)} \sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{11}+S_{12}, \end{aligned} |
where
\begin{align*} S_{11}: = \frac{1}{\phi(q)}\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
S_{12}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left(\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} ( x_{1}) \cdots \mathbf{1}_{\alpha,\beta}( x_{k-1} )\right). |
For S_{2} , it follows that
\begin{aligned} S_{2}& = \frac{1}{\phi(q)} \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{1}+\cdots+x_{k}} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{21}+S_{22}, \end{aligned} |
where
\begin{align*} S_{21}: = \frac{1}{\phi(q)} \mathop{\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} }_{n \mid x_{1}+\cdots+x_{k}} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
\begin{align*} S_{22}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \mathop{{\sum\limits_{x_{1} \leqslant \delta_{1} q}} \cdots {\sum\limits_{x_{k} \leqslant \delta_{k} q}}}_{n \mid x_{1}+\cdots+x_{k}} \chi(x_{1}) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1}\right) . \end{align*} |
From the classical bound
\sum \limits_{a \le \delta q}' 1 = \delta \phi(q)+O\left(d(q)\right) |
and Lemma 2.2, we have
\begin{align} S_{11}& = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}1\right) \\ & = \left(\delta_{k}+O\left(\frac{d(q)}{\phi(q)}\right)\right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right) \\ & = \alpha^{-(k-1)}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O\left(q^{k-1-\frac{1}{\tau+1}+\varepsilon}\right). \end{align} | (3.1) |
From Lemma 2.2, we obtain
\begin{align} S_{21}& = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left(\mathop{\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{k}+(x_{1}+ \cdots +x_{k-1})}1\right) \\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{\sum\limits_{x_{k} \leqslant \delta_{k} q }}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1}) \bmod n} \sum\limits_{\substack{d \mid(x_{k}, q)}} \mu(d)\right)\\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \mathop{\mathop{\sum\limits_{x_{k} \leqslant \delta_{k}q}}_{d \mid x_{k}}}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1})\bmod n} 1 \right) \\ & = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \left( \frac{\delta_{k}q}{nd}+O(1)\right)\right) \\ & = \frac{1}{\phi(q)}\left(\frac{\delta_{k}\phi(q)}{n}+O\left(d(q)\right) \right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right)\\ & = \alpha^{-(k-1)}n^{-1}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O (q^{k-1-\frac{1}{\tau+1}+\varepsilon} ). \end{align} | (3.2) |
By the properties of exponential sums,
\begin{align} S_{22} = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left({\sum\limits_{x_{1} \leqslant \delta_{1} q}}\cdots {\sum\limits_{x_{k} \leqslant \delta_{k-1} q}}\chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\right) \\ &\times \left(\sum \limits_{l = 1}^{n}\mathbf{e}(\frac{x_{1}+\cdots+x_{k}}{n}l) \right)\\ = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n} \prod \limits_{i = 1}^{k-1}\left( \sum\limits_{x_{i} \leqslant \delta_{i} q}\mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n} l)\right)\left( \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l)\right). \end{align} | (3.3) |
Let
G(r, \chi): = \sum\limits_{h = 1}^{q} \chi(h) \mathbf{e} (\frac{r h}{q} ) |
be the Gauss sum, and we know that for \chi \neq \chi_{0} ,
\chi(x_{i}) = \frac{1}{q} \sum\limits_{r = 1}^{q} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ) = \frac{1}{q} \sum\limits_{r = 1}^{q-1} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ), |
and
\frac{l}{n}-\frac{r}{q} \neq 0 |
for 1 \leqslant l \leqslant n, 1 \leqslant r \leqslant q-1 and (n, q) = 1 .
Therefore,
\begin{equation} \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l ) = \frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{h})-1}, \end{equation} | (3.4) |
where
f(\delta, l, r ; n, p): = 1-\mathbf{e}\left( (\frac{l}{n}-\frac{r}{q} )\lfloor\delta q\rfloor\right) |
and
\left|f\left(\delta_{k}, l, r_{k} ; n, q\right)\right| \leqslant 2. |
For x_{i}(1\leqslant i \leqslant k-1) , using Lemma 2.2, we also have
\begin{align} & \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e} (\frac{x_{i}}{n} l ) \\ = & \frac{1}{q} \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\alpha^{-1}\sum\limits_{a \leqslant \delta_{i} q} \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right)+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) \\ = &\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\frac{f\left(\delta_{i} , l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n} )-1}+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) . \end{align} | (3.5) |
Let
\begin{align} S_{23}& = \frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1} \left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \frac{f\left(\delta_{i}, l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n})-1}\right)\left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) \\ & = \frac{1}{n \phi(q) q^{k} \alpha^{k-1}} \sum\limits_{l = 1}^{n}\sum\limits_{r_{1} = 1}^{q-1}\cdots \sum\limits_{r_{k} = 1}^{q-1} \frac{f\left(\delta_{1} , l, r_{1} ; n, q\right)\cdots f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\left(\mathbf{e} (\frac{r_{1}}{q}-\frac{l}{n} )-1\right)\cdots \left(\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{n} )-1\right)} \\ &\times \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right). \end{align} | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
\begin{align} &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\sum\limits_{\chi \mathrm{mod}q}\chi(\overline c)\chi(h_{1})\cdots \chi(h_{k})\mathbf{e} ( \frac{r_{1}h_{1}+\cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\mathop{\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}}_{h_{1} \cdots h_{k} \equiv c \bmod q}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots r_{k-1}h_{k-1}+r_{k}c\overline{h_{1} \cdots h_{k-1}}}{q} )\\ = &\phi(q) \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k}c;q) \\ \ll& \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}c, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}c, q\right)^{\frac{1}{2}} \\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.7) |
By Mobius inversion, we get
G(r, \chi_{0}) = \sum\limits_{h = 1}^{q}' \mathbf{e} (\frac{r h}{q} ) = \mu\left(\frac{q}{(r, q)}\right) \frac{\varphi(q)}{\varphi(q /(r, q))} \ll(r, q), |
and
\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right) \ll\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). |
Hence,
\begin{align} &\mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)-\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right)\\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.8) |
From (3.8) we may deduce the following result:
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\mathbf{e} (\frac{r}{q}-\frac{l}{n} )-1\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\sin \pi (\frac{r}{q}-\frac{l}{n} )\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k}\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }\mathop{\sum\limits_{r \leq q-1}}_{(r,q) = d }\frac{d}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\mathop{\sum\limits_{m \leq\frac{q-1}{d} }}_{(m,q) = 1}\frac{1}{\|\frac{md}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\sum\limits_{k \mid q}\mu(k)\sum\limits_{m \leq\frac{q-1}{kd} }\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|}\right)^{k }. \end{align} |
It is easy to see
\|\frac{mkd}{q}-\frac{l}{n}\| = \|\frac{mkn-l(q/d)}{(q/d)n}\| \geq \frac{1}{(q/d)n}, |
and we obtain
S_{23}\ll\frac{k^{\omega(q)}}{n \phi(q) q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q\\{d < q }}}d\sum\limits_{k \mid q}\sum\limits_{m \leq\frac{q-1}{kd} }\min (\frac{qn}{d},\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|} )\right)^{k }. |
Let k d / q = h_{0} / q_{0} , where q_{0} \geq 1, \left(h_{0}, q_{0}\right) = 1 , and we will easily obtain q /(k d) \leq q_{0} \leq q / d . By using Lemma 2.4, we have
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q_{0}}+1\right) (\frac{q n}{d}+q_{0} \log q_{0} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q/(kd)}+1\right) (\frac{q n}{d}+\frac{q}{d} \log \frac{q}{d} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{ \alpha^{k-1}}\left(\sum\limits_{\substack{d \mid q \\ d < q}} \sum\limits_{k \mid q}n+\log q\right)^{k}\\ &\ll q^{\frac{k-1}{2}}d^{2k}(q)(\log q+n)^{k}. \end{align} |
Let
S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) |
and
S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right). |
By the same argument of S_{23} , it follows that
S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k}, |
S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n). |
Since n\ll q^{\frac{1}{3}} , we have
\begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} | (3.9) |
Taking n = 1 , we get
\begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
U. Kamps, A concept of generalized order statistics, J. Statist. Plan. Inf., 48 (1995), 1–23. https://doi.org/10.1016/0378-3758(94)00147-N doi: 10.1016/0378-3758(94)00147-N
![]() |
[2] |
C. A. Charalambides, Discrete q-distributions on Bernoulli trials with a geometrically varying success probability, J. Statist. Plann. Inf., 140 (2010), 2355–2383. https://doi.org/10.1016/j.jspi.2010.03.024 doi: 10.1016/j.jspi.2010.03.024
![]() |
[3] |
R. Diaz, E. Pariguan, On the Gaussian q-distribution, J. Math. Anal. Appl., 358 (2009), 1–9. https://doi.org/10.1016/j.jmaa.2009.04.046 doi: 10.1016/j.jmaa.2009.04.046
![]() |
[4] |
R. Diaz, C. Ortiz, E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448–458. https://doi.org/10.2478/s11533-010-0029-0 doi: 10.2478/s11533-010-0029-0
![]() |
[5] |
X. Jia, S. Nadarajah, B. Guo, Inference on q-Weibull parameters, Statist. Papers, 61 (2020), 575–593. http://doi.org/10.1007/s00362-017-0951-3 doi: 10.1007/s00362-017-0951-3
![]() |
[6] |
B. Singh, R. U. Khan, M. A. Khan, Characterizations of q-Weibull distribution based on generalized order statistics, J. Statist. Manag. Sys., 22 (2019), 1573–1595. http://doi.org/10.1080/09720510.2019.1643554 doi: 10.1080/09720510.2019.1643554
![]() |
[7] |
X. Jia, Reliability analysis for q-Weibull distribution with multiply type-Ⅰ censored data, Qual. Reliab. Eng. Int., 37 (2021), 2790–2817. http://doi.org/10.1002/qre.2890 doi: 10.1002/qre.2890
![]() |
[8] |
F. Lad, G. Sanflippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. http://doi.org/10.1214/14-sts430 doi: 10.1214/14-sts430
![]() |
[9] |
I. A. Husseiny, A. H. Syam, The extropy of concomitants of generalized order statistics from Huang-Kotz-Morgenstern bivariate distribution, J. Math., 2022 (2022), 6385998. http://dx.doi.org/10.1155/2022/6385998 doi: 10.1155/2022/6385998
![]() |
[10] |
S. Bansal, N. Gupta, Weighted extropies and past extropy of order statistics and k-record values, Commun. Statist. Theory Meth., 51 (2022), 6091–6108. http://dx.doi.org/10.1080/03610926.2020.1853773 doi: 10.1080/03610926.2020.1853773
![]() |
[11] |
S. Picoli, R. S. Mendes, L. C. Malacarne, q-exponential, Weibull, and q-Weibull distributions: an empirical analysis, Phys. A, 324 (2003), 678–688. http://doi.org/10.1016/s0378-4371(03)00071-2 doi: 10.1016/s0378-4371(03)00071-2
![]() |
[12] |
Z. A. Aboeleneen, Inference for Weibull distribution under generalized order statistics, Math. Comput. Sim., 81 (2010), 26–36. http://dx.doi.org/10.1016/j.matcom.2010.06.013 doi: 10.1016/j.matcom.2010.06.013
![]() |
[13] | A. A. Jafari, H. Zakerzadeh, Inference on the parameters of the Weibull distribution using records, SORT, 39 (2015), 3–18. |
[14] |
P. H. Garthwaite, J. B. Kadane, A. OHagan, Statistical methods for eliciting probability distributions, J. Am. Stat. Assoc., 100 (2005), 680–701. http://dx.doi.org/10.1198/016214505000000105 doi: 10.1198/016214505000000105
![]() |
[15] |
K. M. Hamdia, X. Zhuang, P. He, T. Rabczuk, Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using Bayesian method, Composites Sci. Tech., 126 (2016), 122–129. http://dx.doi.org/10.1016/j.compscitech.2016.02.012 doi: 10.1016/j.compscitech.2016.02.012
![]() |
[16] |
X. Jia, D. Wang, P. Jiang, B. Guo, Inference on the reliability of Weibull distribution with multiply type-Ⅰ censored data, Reliab. Eng. Syst. Saf., 150 (2016), 171–181. http://doi.org/10.1016/j.ress.2016.01.025 doi: 10.1016/j.ress.2016.01.025
![]() |
[17] |
M. Xu, E. L. Droguett, I. D. Lins, M. das Chagas Moura, On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation, Reliab. Eng. Syst. Saf., 158 (2017), 93–105. http://doi.org/10.1016/j.ress.2016.10.012 doi: 10.1016/j.ress.2016.10.012
![]() |
[18] | R. B. Nelsen, An Introduction to Copulas, New York: Springer-Verlag, 2006. |
[19] | A. Sklar, Random variables, joint distribution functions, and copulas, Kybernetika, 9 (1973), 449–460. |
[20] | E. J. Gumbel, Bivariate exponential distributions, J. Am. Stat. Assoc., 55 (1960), 698–707. |
[21] |
M. A. Alawady, H. M. Barakat, M. A. Abd Elgawad, Concomitants of generalized order statistics from bivariate Cambanis family of distributions under a general setting, Bull. Malays. Math. Sci. Soc., 44 (2021), 3129–3159. http://dx.doi.org/10.1007/s40840-021-01102-1 doi: 10.1007/s40840-021-01102-1
![]() |
[22] |
M. A. Alawady, H. M. Barakat, S. Xiong, M. A. Abd Elgawad, Concomitants of generalized order statistics from iterated Farlie-Gumbel-Morgenstern type bivariate distribution, Commun. Statist. Theory Meth., 51 (2022), 5488–5504. http://dx.doi.org/10.1080/03610926.2020.1842452 doi: 10.1080/03610926.2020.1842452
![]() |
[23] |
S. P. Arun, C. Chesneau, R. Maya, M. R. Irshad, Farlie-Gumbel-Morgenstern bivariate moment exponential distribution and its inferences based on concomitants of order statistics, Stats, 6 (2023), 253–267. http://dx.doi.org/10.3390/stats6010015 doi: 10.3390/stats6010015
![]() |
[24] |
H. M. Barakat, M. A. Alawady, I. A. Husseiny, G. M. Mansour, Sarmanov family of bivariate distributions: statistical properties, concomitants of order statistics, and information measures, Bull. Malays. Math. Sci. Soc., 45 (2022), 49–83. http://dx.doi.org/10.1007/s40840-022-01241-z doi: 10.1007/s40840-022-01241-z
![]() |
[25] |
H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from the generalization of FGM bivariate-generalized exponential distribution, J. Statist. Theory Appl., 18 (2019), 309–322. http://dx.doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001
![]() |
[26] |
H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from the iterated FGM type bivariate-generalized exponential distribution, REVSTAT Statist. J., 19 (2021), 291–307. http://dx.doi.org/10.2298/fil1809313b doi: 10.2298/fil1809313b
![]() |
[27] |
S. Cambanis, Some properties and generalizations of multivariate Eyraud-Gumbel-Morgenstern distributions, J. Mul. Anal., 7 (1977), 551–559. http://dx.doi.org/10.1016/0047-259x(77)90066-5 doi: 10.1016/0047-259x(77)90066-5
![]() |
[28] |
I. A. Husseiny, H. M. Barakat, G. M. Mansour, M. A. Alawady, Information measures in record and their concomitants arising from Sarmanov family of bivariate distributions, J. Comput. Appl. Math., 408 (2022), 114120. http://doi.org/10.1016/j.cam.2022.114120 doi: 10.1016/j.cam.2022.114120
![]() |
[29] |
I. A. Husseiny, M. A. Alawady, H. M. Barakat, M. A. Abd Elgawad, Information measures for order statistics and their concomitants from Cambanis bivariate family, Commun. Statist. Theory Meth., 53 (2024), 865–881. http://doi.org/10.1080/03610926.2022.2093909 doi: 10.1080/03610926.2022.2093909
![]() |
[30] | J. Scaria, B. Thomas, Second order concomitants from the Morgenstern family of distributions, J. Appl. Statist. Sci., 21 (2014), 63–76. |
[31] |
W. Schucany, W. C. Parr, J. E. Boyer, Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrika, 65 (1978), 650–653. http://doi.org/10.1093/biomet/65.3.650 doi: 10.1093/biomet/65.3.650
![]() |
[32] |
R. A. Attwa, T. Radwan, E. O. Abo Zaid, Bivariate q-extended Weibull Morgenstern family and correlation coefficient formulas for some of its sub-models, AIMS Math., 8 (2023), 25325–25342. http://dx.doi.org/10.3934/math.20231292 doi: 10.3934/math.20231292
![]() |
[33] | M. Gurvich, A. Dibenedetto, S. Ranade, A new statistical distribution for characterizing the random strength of brittle materials, J. Mater. Sci., 32 (1997), 2559–2564. |
[34] | H. A. David, Concomitants of order statistics, Bull. Int. Statist. Inst., 45 (1973), 295–300. |
[35] |
I. Bairamov, S. Kotz, M. Becki, New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics, J. Appl. Statist., 28 (2001), 521–536. http://dx.doi.org/10.1080/02664760120047861 doi: 10.1080/02664760120047861
![]() |
[36] |
M. I. Beg, M. Ahsanullah, Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, Statist. Methodol., 5 (2008), 1–20. http://dx.doi.org/10.1016/j.stamet.2007.04.001 doi: 10.1016/j.stamet.2007.04.001
![]() |
[37] |
F. Domma, S. Giordano, Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family, J. Comput. Appl. Math., 294 (2016), 413–435. http://dx.doi.org/10.1016/j.cam.2015.08.022 doi: 10.1016/j.cam.2015.08.022
![]() |
[38] |
S. Eryilmaz, On an application of concomitants of order statistics, Commun. Statist. Theory Meth., 45 (2016), 5628–5636. http://dx.doi.org/10.1080/03610926.2014.948201 doi: 10.1080/03610926.2014.948201
![]() |
[39] |
J. Scaria, N. U. Nair, Distribution of extremes of rth concomitant from the Morgenstern family, Statist. Papers, 49 (2008), 109–119. http://doi.org/10.1007/s00362-006-0365-0 doi: 10.1007/s00362-006-0365-0
![]() |
[40] |
S. Tahmasebi, A. A. Jafari, Concomitants of order statistics and record values from Morgenstern type bivariate-generalized exponential distribution, Bull. Malays. Math. Sci. Soc., 38 (2015), 1411–1423. http://doi.org/10.1007/s40840-014-0087-8 doi: 10.1007/s40840-014-0087-8
![]() |
[41] |
H. S. Klakattawi, W. H. Aljuhani, L. A. Baharith, Alpha power exponentiated new Weibull-Pareto distribution: Its properties and applications, Pakistan J. Statist. Oper. Res., 18 (2022), 703–720. http://doi.org/10.18187/pjsor.v18i3.3937 doi: 10.18187/pjsor.v18i3.3937
![]() |
[42] | E. T. Lee, J. Wang, Statistical Methods for Survival Data Analysis, New york: John Wiley & Sons, 2003. |