
In this paper, we constructed a novel fixed point iterative scheme called the Modified-JK iterative scheme. This iteration process is a modification of the JK iterative scheme. Our scheme converged weakly to the fixed point of a nonexpansive mapping and strongly to the fixed point of a mapping satisfying condition (E). We provided some examples to show that the new scheme converges faster than some existing iterations. Stability and data dependence results were proved for this iteration process. To substantiate our results, we applied our results to solving delay differential equations. Furthermore, the newly introduced scheme was applied in approximating the solution of a class of third order boundary value problems (BVPs) by embedding Green's functions. Moreover, some numerical examples were presented to support the application of our results to BVPs via Green's function. Our results extended and generalized other existing results in literature.
Citation: Godwin Amechi Okeke, Akanimo Victor Udo, Rubayyi T. Alqahtani, Melike Kaplan, W. Eltayeb Ahmed. A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green's functions[J]. AIMS Mathematics, 2024, 9(3): 6468-6498. doi: 10.3934/math.2024315
[1] | Naher Mohammed A. Alsafri . Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics. AIMS Mathematics, 2025, 10(3): 4747-4774. doi: 10.3934/math.2025218 |
[2] | Mohammad Alqudah, Safyan Mukhtar, Albandari W. Alrowaily, Sherif. M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system. AIMS Mathematics, 2024, 9(6): 13712-13749. doi: 10.3934/math.2024669 |
[3] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229 |
[4] | Musarat Bibi, Salah Mahmoud Boulaaras, Patricia J.Y. Wong, Muhammad Shoaib Saleem . Exploring families of soliton solutions for the fractional Akbota equation in optical fiber telecommunication systems. AIMS Mathematics, 2025, 10(5): 12254-12285. doi: 10.3934/math.2025555 |
[5] | Maheen Waqar, Khaled M. Saad, Muhammad Abbas, Miguel Vivas-Cortez, Waleed M. Hamanah . Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach. AIMS Mathematics, 2025, 10(6): 12868-12887. doi: 10.3934/math.2025578 |
[6] | Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278 |
[7] | Noha M. Kamel, Hamdy M. Ahmed, Wafaa B. Rabie . Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schrödinger equations in fiber bragg gratings. AIMS Mathematics, 2025, 10(3): 6952-6980. doi: 10.3934/math.2025318 |
[8] | Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Nabil Mlaiki, Thabet Abdeljawad . The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method. AIMS Mathematics, 2022, 7(6): 10807-10827. doi: 10.3934/math.2022604 |
[9] | Amer Ahmed, A. R. Alharbi, Haza S. Alayachi, Ishak Hashim . Exact and numerical approaches for solitary and periodic waves in a (2+1)-dimensional breaking soliton system with adaptive moving mesh. AIMS Mathematics, 2025, 10(4): 8252-8276. doi: 10.3934/math.2025380 |
[10] | Islam Samir, Hamdy M. Ahmed, Wafaa Rabie, W. Abbas, Ola Mostafa . Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods. AIMS Mathematics, 2025, 10(2): 3392-3407. doi: 10.3934/math.2025157 |
In this paper, we constructed a novel fixed point iterative scheme called the Modified-JK iterative scheme. This iteration process is a modification of the JK iterative scheme. Our scheme converged weakly to the fixed point of a nonexpansive mapping and strongly to the fixed point of a mapping satisfying condition (E). We provided some examples to show that the new scheme converges faster than some existing iterations. Stability and data dependence results were proved for this iteration process. To substantiate our results, we applied our results to solving delay differential equations. Furthermore, the newly introduced scheme was applied in approximating the solution of a class of third order boundary value problems (BVPs) by embedding Green's functions. Moreover, some numerical examples were presented to support the application of our results to BVPs via Green's function. Our results extended and generalized other existing results in literature.
The study of the exact solutions and dynamical behavior of nonlinear equations not only helps to explain the essential properties and algebraic structure of soliton theory [1,2,3], but also plays an important role in the rational explanation and practical application of corresponding natural 4093 phenomena [4,5,6]. For instance, the Biswas-Milovic equation (BME) has attracted a lot of attention because it may explain the generation of modes and nonlinear wave dynamics in a range of physical systems [7,8,9]. With its enlarged version that accounts for the effects of noise or random perturbations, the stochastic BME provides a more realistic description of dynamic behaviors in complex environments in real-world applications [10]. The discovery of soliton solutions in nonlinear differential equations is a compelling area of research [11,12]. Multiple methodologies can be used to examine the soliton solutions. The translation of the Making NLDE into non-linear ordinary differential equations (ODE) is an innovative methodology [13,14,15]. Solitons have the remarkable ability to traverse extensive distances in optical fibers without undergoing distortion [16,17]. The fiber's precise dispersion and nonlinearity equilibrium, which ensure the soliton maintains its form throughout transit, contribute to its distinctive quality [18,19,20]. Utilizing this phenomenon, optical solitons significantly enhance data transmission over long distances, thereby promoting global communication. Localized electromagnetic waves, termed optical solitons, sustain a uniform intensity despite the effects of nonlinearity and dispersion. This property renders them highly advantageous for this application [21,22], Kudryashov's enhanced approach [23,24], Kudryashov's auxiliary equation method [25], the new Kudryashov method [26,27,28]-Hirota bilinear method [29]. Recent developments in a number of approaches have improved soliton solutions for NLDEs. The methods used are the following: Lie symmetry analysis method and the exploration of bifurcation analysis [30,31], Perturbation Binary Salp Swarm Algorithm [32], modified extended tanh method [33], extended transformed rational function algorithm [34] and the F-expansion scheme [35], the auxilary equation method, nonstandard finite difference discretization method [36,37,38], and the general projective Riccati equations approach [39,40,41]. The multiple exp-function method [42,43]- the Riccati modified extended simple equation method [44], contain a description of the integrable (2+1)-dimensional nonlinear Schrödinger (NLS) equation by Radha and Lakshmanan [45]-
{∂p∂t−∂2p∂x∂y−pq=0,∂q∂x−2∂∂x(|p|2)=0. | (1) |
According to the researchers in [46], the extended modified auxiliary equation mapping method is used to create a number of optical soliton solutions for the system. For the integrable (2+1)-dimensional NLS, Hossieni et al. investigated the exact solutions [47]. Akinyemi et al. [48] employed three novel techniques to search for analytical solutions to the integrable generalized (2+1)-dimensional NLS equations. Exploring the temporal evolution of bifurcation behavior and chaos analysis in the generalized integrable (2+1)-dimensional NLS is our primary objective of this work. Furthermore, several optical soliton solutions with a conformable derivative for the generalized integrable (2+1)-dimensional NLS were created using the novel Kudryashov approach.
{i∂αp∂tα+a1∂2p∂x∂y+a2pq=0,a3∂q∂x+a4∂∂y(|p|2)=0, | (2) |
where a1, a2, a3, and a4 are real constants, and α denotes the variable fractional exponent. The most recent study of this model entailed the improved modified Tanh expansion method, which led to the creation of several optical soliton solutions [49]. Fractional calculus serves as a potent instrument for elucidating many physical phenomena. Modern fractional-order models provide greater flexibility and adaptability compared to traditional integer-order models. Our main aim of this research is to examine the fundamental principles of conformable derivatives, which are essential for comprehending the dynamics of many physical processes. Various applications in physics, engineering, economics, and biology demonstrate the potential of conformable derivatives as an effective analytical instrument for complex systems [50,51].
Definition 1. Let d:(0,∞)→R,α order conformable derivatives will be
Aα(d)(x)=liml→0d(x+lx1−α)−d(x)l, | (3) |
for all x>0 and l∈(0,1] [52].
In this section, the EDAM approach is described. We examine the FPDE with the following form [53,54,55]:
P(w,∂αtw,∂βy1w,∂γy2w,w2,…)=0, 0<α,β,γ≤1, | (4) |
where w is determined by y1,y2,y3,…,yr, and t. (4) is solved using the following steps:
Step 1.
Start by transforming the variables w(y1,y2,y3,…,yr) into W(Π), where Π is specified in a variety of ways. (4) is changed by this transformation into a nonlinear ODE of the following form:
Q(W,W′W,W′,…)=0, | (5) |
where W in (5)) has derivatives with respect to Π. The constant(s) of integration can be obtained by integrating (5) once or more times.
Step 2.
Next, we presume that the solution to (5) is as follows:
W(Π)=M∑l=−Mdl(ζ(Π))l, | (6) |
where dl (l=−M,…,0,1,2,…,M) are constants to be determined, and ζ(Π) is the general solution of the following ODE:
ζ′(Π)=ln(℧)(a+eζ(Π)+f(ζ(Π))2), | (7) |
The constants a,e,andf are represented as ℧≠0,1.
Step 3.
By establishing the homogeneous balance between the highest order derivative and the largest nonlinear term in (5), the positive integer M in (6) is obtained. More specifically, the two equations provided in [33] can be used to estimate the balance number:
D(dkWdξk)=M+k and D(Wj(dkWdξk)l)=Mj+l(k+M), |
In this case, D represents the degree of W(ξ) since D[W(ξ)]=m and j,k, and l are whole numbers.
Step 4.
Next, we integrate (5) to obtain (6), or the equation that results, and all the terms of ζ(Π) are arranged in the same order.
The system of algebraic equations for dl(l=−M,...,0,1,2,...,M) and other parameters is then obtained by setting all the coefficients of the following polynomial to zero thereafter.
Step 5.
MAPLE is used to solve this collection of algebraic equations.
Step 6.
With the ζ(Π) (solution of Eq (7)), the unknown values are then found and inserted into (6) to obtain the analytical answers to (4). It is possible to get the following families of solutions using the generic solution of (7).
Family. 1: Assuming that f≠0 and Λ<0, then, we have
ζ1(Π)=−e2f+√−Λtan℧(12√−ΛΠ)2f, |
ζ2(Π)=−e2f−√−Λcot℧(12√−ΛΠ)2f, |
ζ3(Π)=−e2f+√−Λ(tan℧(√−ΛΠ)+sec℧(√−ΛΠ))2f, |
ζ4(Π)=−e2f−√−Λ(cot℧(√−ΛΠ)+csc℧(√−ΛΠ))2f, |
and
ζ5(Π)=−e2f+√−Λ(tan℧(14√−ΛΠ)−cot℧(14√−ΛΠ))4f. |
Family. 2: f≠0 and Λ<0 are present.
ζ6(Π)=−e2f−√Λtanh℧(12√ΛΠ)2f, |
ζ7(Π)=−e2f−√Λcoth℧(12√ΛΠ)2f, |
ζ8(Π)=−e2f−√Λ(tanh℧(√ΛΠ)+isech℧(√ΛΠ))2f, |
ζ9(Π)=−e2f−√Λ(coth℧(√ΛΠ)+csch℧(√ΛΠ))2f, |
and
ζ10(Π)=−e2f−√Λ(tanh℧(14√ΛΠ)−coth℧(14√ΛΠ))4f. |
Family. 3: For af>0 and e=0, then, we have
ζ11(Π)=√aftan℧(√afΠ), |
μ12(Π)=−√afcot℧(√afΠ), |
ζ13(Π)=√af(tan℧(2√dfη)+sec℧(2√afΠ)), |
ζ14(Π)=−√af(cot℧(2√afΠ)+csc℧(2√afΠ)), |
and
ζ15(Π)=12√af(tan℧(12√afΠ)−cot℧(12√afΠ)). |
Family. 4: For af<0 and e=0, then, we have
ζ16(Π)=−√−aftanh℧(√−afΠ), |
ζ17(Π)=−√−afcoth℧(√−afΠ), |
ζ18(Π)=−√−df(tanh℧(2√−afΠ)+isech℧(2√−afΠ)), |
ζ19(Π)=−√−af(coth℧(2√−afΠ)+csch℧(2√−dfΠ)), |
and
ζ20(Π)=−12√−af(tanh℧(12√−afΠ)+coth℧(12√−afΠ)). |
Family. 5: For f=a and e=0, then, we have
ζ21(Π)=tan℧(aΠ), |
ζ22(Π)=−cot℧(aΠ), |
μ23(Ω)=tan℧(2aΠ)+sec℧(2dΩ), |
ζ24(Π)=−cot℧(2aΠ)+csc℧(2aΠ), |
and
ζ25(Π)=12tan℧(12aΠ)−12cot℧(12aΠ). |
Family. 6: f=−a and e=0, then, we have
ζ26(Π)=−tanh℧(aΠ), |
ζ27(Π)=−coth℧(aΠ), |
ζ28(Π)=−tanh℧(2a)+isech℧(2aΠ), |
ζ29(Π)=−coth℧(2aΠ)+csch℧(2aΠ), |
and
ζ30(Π)=−12tanh℧(12aΠ)−12coth℧(12aΠ). |
Family. 7: Λ=0, then, we have
ζ31(Π)=−2a(eΩln℧+2)e2ln(℧)Ω. |
Family. 8: f=0, e=ς and a=nς (with n≠0).
ζ32(Π)=℧ςΠ−n. |
Family. 9: For e=f=0, then, we have
ζ33(Π)=aΩln(℧). |
Family. 10: e=a=0, then, we have
ζ34(Π)=−1fΠln(℧). |
Family. 11: e≠0, f≠0 and a=0:
ζ35(Π)=−ef(cosh℧(eΠ)−sinh℧(eΠ)+1), |
and
ζ36(Π)=−e(cosh℧(eΠ)+sinh℧(eΠ))f(cosh℧(eΠ)+sinh℧(eΠ)+1). |
Family. 12: e=ς, f=nς (with n≠0), and a=0:
ζ37(Π)=℧ςΠ1−n℧ςΠ. |
In the above solutions, Λ=e2−4df.
sin℧(Π)=℧iΠ−℧−iΠ2i,cos℧(Π)=℧iΠ+℧−iΠ2,sec℧(Π)=1cos℧(Π),csc℧(Π)=1sin℧(Π),tan℧(Π)=sin℧(Π)cos℧(Π),cot℧(Π)=cos℧(Π)sin℧(Π). |
Similarly,
sinh℧(Π)=℧Π−℧−Π2,cosh℧(Π)=℧Ω+℧−Π2,sech℧(Π)=1cosh℧(Π),csch℧(Π)=1sinh℧(Π),tanh℧(Π)=sinh℧(Π)cosh℧(Π),coth℧(Π)=cosh℧(Π)sinh℧(Π). |
Using the method, we investigate several optical solutions for the generalized integrable (2+1)-dimensional nonlinear conformable Schrodinger system (NLCS). Here, we begin by transforming the following:
{p(x,y,t)=K(η)eιζ(x,t),q(x,y,t)=W(η), | (8) |
where η=f1x+s1y+c1tαα and ζ(x,t)=f2x+s2y+c2tαα are included. Here, the wave's speed is represented by f1 and f2, while the soliton's wave number and frequency are represented by s1 and s2, respectively. The following real and imaginary components, respectively, are obtained by replacing the aforementioned transformations into (2):
(c1+a1(f1s2+f2s1))K′=0, | (9) |
−c2K−a1f2s2K+a1f1s1K″+a2KW=0, | (10) |
and
a3f1W′+a4s1+(K2)′=0. | (11) |
After setting the integration constant to zero and integrating (11), we obtain the following:
W=a4s1a3f1K2. | (12) |
From (9), we have
c1=−a1(f1s2+f2s1). | (13) |
By substituting (12) into (10), we find
−(c2+a1f2s2)K+a1f1s1K″−s1a2a4f1a3K3=0. | (14) |
When K and K3 are balanced in (14), M=1. Enter M = 1 in (6) to solve the NODE in (14) produced by the fractional coupled Higgs system using mEDAM:
K(η)=1∑i=−1di(K(η))i=d−1(K(η))−1+d0+d1(K(η))1, | (15) |
The coefficients that will be determined are d−1, d0, and d1.
Using (7) to put (15) into (14), we can collect terms that have the same power of ζ(η) and generate a polynomial in ζ(η). The polynomial's coefficients can be set to zero to produce a system of nonlinear algebraic equations: After solving the system with Maple, we were able to identify the following two different solution cases.
Case 1.
d−1=√2√a1a3a2a4ρln(β)f1,d0=12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4,d1=0,s1=−2c2+a1f2s2a1f1(ln(A))2Ω. | (16) |
Case 2.
d−1=0,d0=12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4,d1=√2√a1a3a2a4κln(β)f1,s1=2c2+a1f2s2a1f1(ln(A))2(−μ2+4ην). | (17) |
Assuming scenario 1, we obtain the following families of soliton solutions for (14).
Family. 1: With Ω<0 and κ≠0, the following solitary wave solutions are obtained for (2) using (8) and (12):
K1(x,y,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ωtan(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (18) |
W1(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ωtan(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (19) |
K2(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ−12√−Ωcot(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (20) |
W2(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ−12√−Ωcot(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (21) |
K3(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ω(tan(√−Ωη)±(sec(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (22) |
W3(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ω(tan(√−Ωη)±(sec(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (23) |
K4(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ω(cot(√−Ωη)±(csc(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (24) |
W4(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+12√−Ω(cot(√−Ωη)±(csc(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (25) |
and
K5(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+14√−Ω(tan(14√−Ωη)−cot(14√−Ωη))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4). | (26) |
W5(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+14√−Ω(tan(14√−Ωη)−cot(14√−Ωη))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2. | (27) |
Family. 2: Using (8) and (12) the following solitary wave solutions are obtained for (2), when Ω>0, and κ≠0:
K6(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ−12√Ωtanh(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (28) |
W6(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ−12√Ωtanh(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (29) |
K7(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ−12√Ωcoth(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (30) |
W7(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ−12√Ωcoth(12√−Ωη)κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (31) |
K8(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+12√Ω(tanh(√−Ωη)±(sech(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (32) |
W8(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+12√Ω(tanh(√−Ωη)±(sech(√−Ωη)))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (33) |
K9(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ+12√Ω(coth(√−Ωη)±(sech(√−Ωη)))γ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4), | (34) |
W9(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ+12√Ω(coth(√−Ωη)±(sech(√−Ωη)))γ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (35) |
and
K10(x,y,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12σκ−14√Ω(tanh(14√Ωη)−coth(14√Ωη))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4). | (36) |
W10(x,y,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12σκ−14√Ω(tanh(14√Ωη)−coth(14√Ωη))κ)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2, | (37) |
Family. 3: Using (8) and (12), the following solitary wave solutions are derived for (2) for κρ>0 and σ=0:
K11(x,y,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f11√ρκ(tan(√ρκη))−1), | (38) |
W11(x,y,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f11√ρκ(tan(√ρκη))−1)2, | (39) |
K12(x,y,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√ρκ(cot(√ρκη))−1), | (40) |
W12(x,y,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√ρκ(cot(√ρκη))−1)2, | (41) |
K13(x,y,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f11√ρκ(tan(2√ρκη)±(sec(2√ρκη)))−1), | (42) |
W13(x,y,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f11√ρκ(tan(2√ρκη)±(sec(2√ρκη)))−1)2, | (43) |
K1,14(x,y,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√ρκ(cot(2√ρκη)±(csc(2√ρκη)))−1), | (44) |
W14(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√ρκ(cot(2√ρκη)±(csc(2√ρκη)))−1)2, | (45) |
and
K15(x,y,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f11√ρκ(tan(12√fκη)−cot(12√ρκη))−1). | (46) |
W15(x,y,t)=a4s1a3f1(2√2√a1a3a2a4ρln(β)f11√ρκ(tan(12√fκη)−cot(12√ρκη))−1)2. | (47) |
Family. 4: Using (8) and (12), the following solitary wave solutions are obtained for (2) as κρ<0 and σ=0.
K16(x,y,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(√−ρκη))−1), | (48) |
W16(x,y,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(√−ρκη))−1)2, | (49) |
K17(x,y,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√−ρκ(coth(√−ρκη))−1), | (50) |
W17(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√−ρκ(coth(√−ρκη))−1)2, | (51) |
K18(x,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(2√−ρκη)±(isech(2√−ρκη)))−1), | (52) |
W18(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(2√−ρκη)±(isech(2√−ρκη)))−1)2, | (53) |
K19(x,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f11√−ρκ(coth(2√−ρκη)±(csch(2√−ρκη)))−1), | (54) |
W19(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f11√−ρκ(coth(2√−ρκη)±(csch(2√−ρκη)))−1)2, | (55) |
and
K20(x,t)=eιζ(x,t)(−2√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(12√−ρκη)+coth(1/2√−ρκη))−1). | (56) |
W20(x,t)=a4s1a3f1(−2√2√a1a3a2a4ρln(β)f11√−ρκ(tanh(12√−ρκη)+coth(12√−ρκη))−1)2. | (57) |
Family. 5: Assuming κ=ρ and σ=0, the following solitary wave solutions for (2) are found by applying (8) and (12):
K21(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(tan(ρη))−1), | (58) |
W21(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(tan(ρη))−1)2, | (59) |
K22(x,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f1(cot(ρη))−1), | (60) |
W22(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f1(cot(ρη))−1)2, | (61) |
K23(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(tan(2ρη)±(sec(2ρη)))−1), | (62) |
W23(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(tan(2ρη)±(sec(2ρη)))−1)2, | (63) |
K24(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−cot(2ρη)±(csc(2ρη)))−1), | (64) |
W24(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−cot(2ρη)±(csc(2ρη)))−1)2, | (65) |
and
K25(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(12tan(12ρη)−12cot(12ρη))−1). | (66) |
W25(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(12tan(12ρη)−12,cot(12ρη))−1)2. | (67) |
Family. 6: Once κ=−ρ and σ=0 are used, the following solitary wave solutions for (2) are found by applying (8) and (12):
K26(x,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f1(tanh(ρη))−1), | (68) |
W26(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f1(tanh(ρη))−1)2, | (69) |
K27(x,t)=eιζ(x,t)(−√2√a1a3a2a4ρln(β)f1(coth(ρη))−1), | (70) |
W27(x,t)=a4s1a3f1(−√2√a1a3a2a4ρln(β)f1(coth(ρη))−1)2, | (71) |
K28(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−tanh(2ρη)±(isech(2ρη)))−1), | (72) |
W28(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−tanh(2ρη)±(isech(2ρη)))−1)2, | (73) |
K29(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−coth(2ρη)±(cech(2ρη)))−1), | (74) |
W29(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−coth(2ρη)±(cech(2ρη)))−1)2, | (75) |
and
K30(x,t)=eιζ(x,t)(√2√a1a3a2a4ρln(β)f1(−12tanh(12ρη)−12coth(12ρη))−1). | (76) |
W30(x,t)=a4s1a3f1(√2√a1a3a2a4ρln(β)f1(−12tanh(1/2ρη)−12coth(12ρη))−1)2. | (77) |
Family. 7: If Ω=0, then using (8) and (12) yields the following solitary wave solutions for (2):
K31(x,t)=eιζ(x,t)(−12√2√a1a3a2a4ρ(ln(β))2f1σ2η(ρ(σψln(β))+2)−1+1/2a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4). | (78) |
W31(x,t)=a4s1a3f1(−12√2√a1a3a2a4ρ(ln(β))2f1σ2η(ρ(σψln(β))+2)−1+12a1f1ln(β)σa3√2a2−1a4−11√a1a3a2a4)2. | (79) |
Family. 8: When σ=ϱ,f=ϑ,ϱ,κ=0, as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split} K_{32}(x, t)& = \sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) \vartheta \, \varrho _{{1}} \left( {\beta}^{ \varrho \, \eta}-\vartheta \right) ^{-1}+\frac{1}{2}a_{{1}}\vartheta \, \varrho _{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{ {2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{ 2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (80) |
\begin{equation} \begin{split} W_{32}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) \vartheta \, \varrho _{{1}} \left( {\beta}^{ \varrho \, \eta}-\vartheta \right) ^{-1}+\\&\frac{1}{2}a_{{1}}\vartheta \, \varrho _{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{ {2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{ 2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (81) |
Family. 9: Using (8) and (12), the following solitary wave solutions are obtained for (2) for \sigma = 0, \kappa = 0 :
\begin{equation} \begin{split} K_{33}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}f_{{1}}{\eta} ^{-1}\bigg) . \end{split} \end{equation} | (82) |
\begin{equation} \begin{split} W_{1, 33}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}f_{{1}}{\eta} ^{-1}\bigg)^2 . \end{split} \end{equation} | (83) |
Family. 10: After applying (8) and (12), the following solitary wave solutions are obtained for (2) for \rho = 0, \sigma \neq 0, \kappa \neq 0 :
\begin{equation} \begin{split} K_{34}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\frac{1}{2} a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{ a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a _{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (84) |
\begin{equation} \begin{split} W_{34}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{ a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a _{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (85) |
\begin{equation} \begin{split} K_{35}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\frac{1}{2} a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{ a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a _{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (86) |
\begin{equation} \begin{split} W_{35}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\frac{1}{2} a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{ a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a _{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (87) |
Family. 11: When \sigma = \varrho, \kappa = \vartheta, \varrho, \rho = 0 , as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split} K_{36}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2 }{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}} {a_{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (88) |
\begin{equation} \begin{split} W_{36}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2 }{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}} {a_{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (89) |
Considering scenario number two, we obtain the subsequent sets of soliton solutions for Eq (14).
Family. 12: When \Omega < 0 \quad \kappa\neq0 , as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split}K_{90}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega}\tan \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (90) |
\begin{equation} \begin{split}W_{37}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega}\tan \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (91) |
\begin{equation} \begin{split} K_{38}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {-\Omega}\cot \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (92) |
\begin{equation} \begin{split} W_{38}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {-\Omega}\cot \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&1/2\, a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (93) |
\begin{equation} \begin{split} K_{39}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega} \left( \tan \left( \sqrt {-\Omega}\eta \right) \pm\left( \sec \left( \sqrt {-\Omega}\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (94) |
\begin{equation} \begin{split} W_{39}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega} \left( \tan \left( \sqrt {-\Omega}\eta \right) \pm\left( \sec \left( \sqrt {-\Omega}\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (95) |
\begin{equation} \begin{split} K_{40}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega} \left( \cot \left( \sqrt {-\Omega}\eta \right) \pm \left( \csc \left( \sqrt {-\Omega}\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (96) |
\begin{equation} \begin{split} W_{40}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {-\Omega} \left( \cot \left( \sqrt {-\Omega}\eta \right) \pm \left( \csc \left( \sqrt {-\Omega}\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (97) |
and
\begin{equation} \begin{split} K_{41}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{4}{\frac {\sqrt {-\Omega} \left( \tan \left( \frac{1}{4}\sqrt {-\Omega}\eta \right) -\cot \left( \frac{1}{4}\sqrt {-\Omega}\eta \right) \right) }{ \kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{ \frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (98) |
\begin{equation} \begin{split} W_{41}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{4}{\frac {\sqrt {-\Omega} \left( \tan \left( \frac{1}{4}\sqrt {-\Omega}\eta \right) -\cot \left( \frac{1}{4}\sqrt {-\Omega}\eta \right) \right) }{ \kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{ \frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (99) |
Family.13: When \Omega > 0, \; \kappa\neq0 ,
\begin{equation} \begin{split}K_{42}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {\Omega}\tanh \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&1/2\, a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (100) |
\begin{equation} \begin{split} W_{42}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {\Omega}\tanh \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (101) |
\begin{equation} \begin{split} K_{43}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {\Omega}\coth \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (102) |
\begin{equation} \begin{split}W_{43}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{2}{\frac {\sqrt {\Omega}\coth \left( \frac{1}{2}\sqrt {-\Omega}\eta \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1 }{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (103) |
\begin{equation} \begin{split}K_{44}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {\Omega} \left( \tanh \left( \sqrt {-\Omega}\eta \right) \pm\left( {\it sech} \left( \sqrt {-\Omega }\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1} }\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{ 4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) , \end{split} \end{equation} | (104) |
\begin{equation} \begin{split} W_{44}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {\Omega} \left( \tanh \left( \sqrt {-\Omega}\eta \right) \pm\left( {\it sech} \left( \sqrt {-\Omega }\eta \right) \right) \right) }{\kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1} }\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{ 4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 , \end{split} \end{equation} | (105) |
\begin{equation} \begin{split} K_{45}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {\Omega} \left( \coth \left( \sqrt {-\Omega}\eta \right)\pm \left( {\it sech} \left( \sqrt {-\Omega }\eta \right) \right) \right) }{\gamma}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1} }\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{ 4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg), \end{split} \end{equation} | (106) |
\begin{equation} \begin{split} W_{45}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}+\frac{1}{2}{\frac {\sqrt {\Omega} \left( \coth \left( \sqrt {-\Omega}\eta \right) \pm \left( {\it sech} \left( \sqrt {-\Omega }\eta \right) \right) \right) }{\gamma}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1} }\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{ 4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2, \end{split} \end{equation} | (107) |
and
\begin{equation} \begin{split} K_{46}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{4}{\frac {\sqrt {\Omega} \left( \tanh \left( \frac{1}{4}\sqrt {\Omega}\eta \right) -\coth \left(\frac{1}{4} \sqrt {\Omega}\eta \right) \right) }{ \kappa}} \right) +\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{ \frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (108) |
\begin{equation} \begin{split} W_{46}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}{\frac {\sigma}{\kappa}}-\frac{1}{4}{\frac {\sqrt {\Omega} \left( \tanh \left( \frac{1}{4}\sqrt {\Omega}\eta \right) -\coth \left( \frac{1}{4}\sqrt {\Omega}\eta \right) \right) }{ \kappa}} \right) +\\&\frac{1}{2} a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{ \frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (109) |
Family. 14: When \kappa \rho > 0 and \sigma = 0 , as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split} K_{47}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}}\tan \left( \sqrt {\rho\, \kappa}\eta \right)\bigg) , \end{split} \end{equation} | (110) |
\begin{equation} \begin{split} W_{47}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}}\tan \left( \sqrt {\rho\, \kappa}\eta \right) \bigg)^2 , \end{split} \end{equation} | (111) |
\begin{equation} \begin{split} K_{48}(x, t) = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}}\cot \left( \sqrt {\rho\, \kappa}\eta \right)\bigg) , \end{split} \end{equation} | (112) |
\begin{equation} \begin{split} W_{48}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}}\cot \left( \sqrt {\rho\, \kappa}\eta \right)\bigg)^2 , \end{split} \end{equation} | (113) |
\begin{equation} \begin{split} K_{49}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \tan \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \pm \left( \sec \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (114) |
\begin{equation} \begin{split} W_{49}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \tan \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \pm \left( \sec \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \right) \right)\bigg)^2 , \end{split} \end{equation} | (115) |
\begin{equation} \begin{split} K_{50}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \cot \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \pm \left( \csc \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (116) |
\begin{equation} \begin{split} W_{50}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \cot \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \pm \left( \csc \left( 2\, \sqrt {\rho\, \kappa}\eta \right) \right) \right)\bigg)^2 , \end{split} \end{equation} | (117) |
and
\begin{equation} \begin{split} K_{51}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\frac{1}{2}\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \tan \left( \frac{1}{2}\sqrt {f\kappa}\eta \right) -\cot \left( \frac{1}{2}\sqrt {\rho\, \kappa}\eta \right) \right)\bigg) . \end{split} \end{equation} | (118) |
\begin{equation} \begin{split} W_{51}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\frac{1}{2}\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {{\frac {\rho}{\kappa}}} \left( \tan \left( \frac{1}{2}\sqrt {f\kappa}\eta \right) -\cot \left( \frac{1}{2}\sqrt {\rho\, \kappa}\eta \right) \right)\bigg)^2 . \end{split} \end{equation} | (119) |
Family. 15: When \kappa \rho < 0 and \sigma = 0 , as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split} K_{52}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}}\tanh \left( \sqrt {-\rho\, \kappa}\eta \right)\bigg) , \end{split} \end{equation} | (120) |
\begin{equation} \begin{split} W_{52}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}}\tanh \left( \sqrt {-\rho\, \kappa}\eta \right)\bigg)^2 , \end{split} \end{equation} | (121) |
\begin{equation} \begin{split} K_{53}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}}\coth \left( \sqrt {-\rho\, \kappa}\eta \right)\bigg) , \end{split} \end{equation} | (122) |
\begin{equation} \begin{split} W_{53}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}}\coth \left( \sqrt {-\rho\, \kappa}\eta \right)\bigg)^2 , \end{split} \end{equation} | (123) |
\begin{equation} \begin{split} K_{54}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \tanh \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) v \left( i{\it sech} \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (124) |
\begin{equation} \begin{split} W_{54}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \tanh \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \pm \left( i{\it sech} \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \right) \right)\bigg)^2 , \end{split} \end{equation} | (125) |
\begin{equation} \begin{split} K_{55}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \coth \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \pm \left( {\it csch} \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (126) |
\begin{equation} \begin{split} W_{55}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \coth \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \pm \left( {\it csch} \left( 2\, \sqrt {-\rho\, \kappa}\eta \right) \right) \right)\bigg)^2 , \end{split} \end{equation} | (127) |
and
\begin{equation} \begin{split} K_{56}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\frac{1}{2}\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa \, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \tanh \left( \frac{1}{2}\sqrt {-\rho\, \kappa}\eta \right) +\coth \left( \frac{1}{2}\sqrt {-\rho\, \kappa}\eta \right) \right)\bigg) . \end{split} \end{equation} | (128) |
\begin{equation} \begin{split} W_{56}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\frac{1}{2}\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa \, \ln \left( \beta \right) f_{{1}}\sqrt {-{\frac {\rho}{\kappa}}} \left( \tanh \left( \frac{1}{2}\sqrt {-\rho\, \kappa}\eta \right) +\coth \left( \frac{1}{2}\sqrt {-\rho\, \kappa}\eta \right) \right)\bigg)^2 . \end{split} \end{equation} | (129) |
Family. 16: When \rho = \kappa and \sigma = 0 ,
\begin{equation} \begin{split} K_{57}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\tan \left( \rho\, \eta \right)\bigg) , \end{split} \end{equation} | (130) |
\begin{equation} \begin{split} W_{57}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\tan \left( \rho\, \eta \right)\bigg)^2 , \end{split} \end{equation} | (131) |
\begin{equation} \begin{split} K_{58}(x, t) = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\cot \left( \rho\, \eta \right)\bigg) , \end{split} \end{equation} | (132) |
\begin{equation} \begin{split} W_{58}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\cot \left( \rho\, \eta \right)\bigg)^2 , \end{split} \end{equation} | (133) |
\begin{equation} \begin{split} K_{59}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( \tan \left( 2\, \rho\, \eta \right) \pm \left( \sec \left( 2\, \rho\, \eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (134) |
\begin{equation} \begin{split} W_{59}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( \tan \left( 2\, \rho\, \eta \right) \pm\left( \sec \left( 2\, \rho\, \eta \right) \right) \right)\bigg)^2 , \end{split} \end{equation} | (135) |
\begin{equation} \begin{split} K_{60}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\cot \left( 2\, \rho\, \eta \right) \pm\left( \csc \left( 2\, \rho\, \eta \right) \right) \right)\bigg), \end{split} \end{equation} | (136) |
\begin{equation} \begin{split} W_{60}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\cot \left( 2\, \rho\, \eta \right) \pm \left( \csc \left( 2\, \rho\, \eta \right) \right) \right)\bigg)^2, \end{split} \end{equation} | (137) |
and
\begin{equation} \begin{split} K_{61}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( \frac{1}{2}\tan \left( \frac{1}{2}\rho\, \eta \right) -\frac{1}{2}\cot \left( \frac{1}{2}\rho\, \eta \right) \right)\bigg) . \end{split} \end{equation} | (138) |
\begin{equation} \begin{split} W_{61}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( \frac{1}{2}\tan \left( \frac{1}{2}\rho\, \eta \right) -\frac{1}{2}\cot \left( \frac{1}{2}\rho\, \eta \right) \right)\bigg)^2 . \end{split} \end{equation} | (139) |
Family. 17: When \kappa = -\rho and \sigma = 0 ,
\begin{equation} \begin{split} K_{62}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\tanh \left( \rho\, \eta \right)\bigg) , \end{split} \end{equation} | (140) |
\begin{equation} \begin{split} W_{62}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\tanh \left( \rho\, \eta \right)\bigg)^2 , \end{split} \end{equation} | (141) |
\begin{equation} \begin{split} K_{63}(x, t) = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\coth \left( \rho\, \eta \right)\bigg) , \end{split} \end{equation} | (142) |
\begin{equation} \begin{split} W_{63}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}}\coth \left( \rho\, \eta \right)\bigg)^2 , \end{split} \end{equation} | (143) |
\begin{equation} \begin{split} K_{64}(x, t) = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\tanh \left( 2\, \rho\, \eta \right) \pm\left( i{\it sech} \left( 2\, \rho\, \eta \right) \right) \right)\bigg) , \end{split} \end{equation} | (144) |
\begin{equation} \begin{split} W_{64}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\tanh \left( 2\, \rho\, \eta \right) \pm \left( i{\it sech} \left( 2\, \rho\, \eta \right) \right) \right)\bigg)^2, \end{split} \end{equation} | (145) |
\begin{equation} \begin{split} K_{65}(x, t) = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\coth \left( 2\, \rho\, \eta \right) \pm \left( {\it cech} \left( 2\, \rho\, \eta \right) \right) \right)\bigg), \end{split} \end{equation} | (146) |
and
\begin{equation} \begin{split} W_{65}(x, t) = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\rho\, \ln \left( \beta \right) f_{{1}} \left( -\frac{1}{2}\tanh \left( \frac{1}{2}\rho\, \eta \right) -\frac{1}{2}\coth \left( \frac{1}{2}\rho\, \eta \right) \right)\bigg)^2 . \end{split} \end{equation} | (147) |
Family. 18: When \Omega = 0 , as a result of utilizing (8) and (12), the subsequent solitary wave solutions are obtained for (2):
\begin{equation} \begin{split} K_{66}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-2\, \sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, f _{{1}} \left( \rho \left( \sigma\, \psi\, \ln \left( \beta \right) \right) +2 \right) {\sigma}^{-2}{\eta}^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (148) |
\begin{equation} \begin{split} W_{66}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-2\, \sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\kappa\, f _{{1}} \left( \rho \left( \sigma\, \psi\, \ln \left( \beta \right) \right) +2 \right) {\sigma}^{-2}{\eta}^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^ {-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (149) |
Family. 19: When \sigma = \varrho, \; f = \vartheta, \; \varrho, \; \kappa = 0 ,
\begin{equation} \begin{split} K_{67}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\frac{1}{2}a_{{1}}\vartheta \, \varrho _{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{ \sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg) . \end{split} \end{equation} | (150) |
\begin{equation} \begin{split} W_{67}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\frac{1}{2} a_{{1}}\vartheta \, \varrho _{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{ \sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (151) |
Family. 20: When \sigma = 0, \; \rho = 0 ,
\begin{equation} \begin{split} K_{68}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}f_{{1}}{\eta }^{-1}\bigg) . \end{split} \end{equation} | (152) |
\begin{equation} \begin{split} W_{68}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}f_{{1}}{\eta }^{-1}\bigg)^2 , \end{split} \end{equation} | (153) |
Family. 21: When \rho = 0, \; \sigma \neq 0, \; \kappa \neq 0 ,
\begin{equation} \begin{split} K_{69}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\ln \left( \beta \right) f_{{1}}\sigma \left( \cosh \left( \sigma\, \eta \right) - \sinh \left( \sigma\, \eta \right) +1 \right) ^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}} \ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4 }}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}} -{\frac {\ln \left( \Pi \right) \Omega\, \left( {l}^{2}-{n}^{2} \right) }{q\sqrt {2\, {n}^{2}-2\, {l}^{2}}}}\bigg). \end{split} \end{equation} | (154) |
\begin{equation} \begin{split} W_{69}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\ln \left( \beta \right) f_{{1}}\sigma \left( \cosh \left( \sigma\, \eta \right) - \sinh \left( \sigma\, \eta \right) +1 \right) ^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}} \ln \left( \beta \right) \sigma\, a_{{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4 }}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}} -{\frac {\ln \left( \Pi \right) \Omega\, \left( {l}^{2}-{n}^{2} \right) }{q\sqrt {2\, {n}^{2}-2\, {l}^{2}}}}\bigg)^2. \end{split} \end{equation} | (155) |
\begin{equation} \begin{split} K_{70}(x, t)& = e^{\iota \zeta (x, t)}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\ln \left( \beta \right) f_{{1}}\sigma\, \left( \cosh \left( \sigma\, \eta \right) +\sinh \left( \sigma\, \eta \right) \right) \left( \cosh \left( \sigma\, \eta \right) +\sinh \left( \sigma\, \eta \right) +1 \right) ^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_ {{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_ {{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}} \bigg). \end{split} \end{equation} | (156) |
\begin{equation} \begin{split} W_{70}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(-\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\ln \left( \beta \right) f_{{1}}\sigma\, \left( \cosh \left( \sigma\, \eta \right) +\sinh \left( \sigma\, \eta \right) \right) \left( \cosh \left( \sigma\, \eta \right) +\sinh \left( \sigma\, \eta \right) +1 \right) ^{-1}+\\&\frac{1}{2}a_{{1}}f_{{1}}\ln \left( \beta \right) \sigma\, a_ {{3}}\sqrt {2}{a_{{2}}}^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_ {{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}}} \bigg)^2. \end{split} \end{equation} | (157) |
Family. 22: When \sigma = \varrho; \; \kappa = \vartheta, \; \varrho, \; \rho = 0 ,
\begin{equation} \begin{split} K_{71}(x, t)& = e^{\iota \zeta (x, t)}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\vartheta \, \varrho \, \ln \left( \beta \right) f_{{1}}{\beta}^{\varrho \, \eta} \left( 1-\vartheta \, {\beta}^{\varrho \, \eta} \right) ^{-1}+\\&\frac{1}{2}a_{{ 1}}f_{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{{2}} }^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a _{{4}}}}}}}\bigg) . \end{split} \end{equation} | (158) |
\begin{equation} \begin{split} W_{71}(x, t)& = \frac{a_4 s_1}{a_3 f_1}\bigg(\sqrt {2}\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a_{{4}}}}}\vartheta \, \varrho \, \ln \left( \beta \right) f_{{1}}{\beta}^{\varrho \, \eta} \left( 1-\vartheta \, {\beta}^{\varrho \, \eta} \right) ^{-1}+\\&\frac{1}{2}a_{{ 1}}f_{{1}}\ln \left( \beta \right) \varrho \, a_{{3}}\sqrt {2}{a_{{2}} }^{-1}{a_{{4}}}^{-1}{\frac {1}{\sqrt {{\frac {a_{{1}}a_{{3}}}{a_{{2}}a _{{4}}}}}}}\bigg)^2 . \end{split} \end{equation} | (159) |
Figure 1(a) is a 3D surface plot, where the wave function is represented in three dimensions, with the x-axis and y-axis showing space and the z-axis representing the amplitude (strength) of the wave at different points. The sharp peaks and valleys in the plot indicate wave-like behavior, with alternating high and low intensities. This type of plot is useful for visualizing the dynamics of waves in a spatial domain over time. The pattern indicates periodicity and may suggest the behavior of solitons or nonlinear waves that maintain their form over time.
Figure 1(b) is a contour plot, where the intensity of the wave is represented with colored regions and contour lines. The contours indicate areas with the same intensity, showing how the wave's energy distribution changes across space. The regions with closely packed contour lines show areas where the wave's energy is concentrated. This plot highlights the focus points of the wave, helping to identify where the wave has higher or lower intensity. The pattern suggests a localized wave that may be affected by nonlinear interactions.
Figure 1(c) is a line plot that shows the wave's intensity along the x-axis at a specific y-position. The wave intensity is plotted for different values of x, showing how the wave's amplitude changes over space at a particular moment in time. Physical meaning: The sharp spikes in the plot suggest discontinuities or singularities in the wave, which are typical of solitons or shock waves in nonlinear systems. The wave shows strong localized changes in intensity, which might indicate interactions between different parts of the wave or wave collisions.
Figure 2(a) is a 3D plot that displays the wave's amplitude (height) over x and y space. The sharp peaks and valleys suggest a wave with strong intensity variations at different points.
Figure 2(b) is a contour plot showing lines of equal wave strength. The closely spaced contours indicate areas with higher energy, while the wider spaced contours show regions of lower energy.
Figure 2(c) is a simple line plot that shows how the wave's strength (amplitude) changes along the x-axis at a fixed y-value. The spikes suggest sharp changes or discontinuities in the wave's behavior.
Figure 3(a) is a 3D surface plot with waves oscillating in both x and y directions. The waves have alternating peaks and valleys. This represents a complex wave pattern with high-frequency oscillations, which could be related to a nonlinear wave or a wave in a medium with periodic behavior.
Figure 3(b) is a contour plot that shows areas of equal intensity, with most of the plot being red, indicating high intensity, and a small part having contours representing lower intensities. The wave has a concentrated energy region in the red area, with the intensity rapidly changing. This suggests that the wave's energy is localized or has sharp transitions in space.
Figure 3(c) is a line plot that shows the wave's intensity along the x-axis, with two curves showing the positive and negative parts of the wave. The wave has sharp changes in intensity along the x-axis, indicating a nonlinear response, where the intensity quickly increases and decreases, similar to a shock wave or soliton behavior.
Figure 4(a) is a 3D surface plot with two wave components that intersect and create a pattern of alternating positive and negative values. The plot represents two oscillating waves that interfere with each other. The red and green regions indicate different wave intensities, which suggest constructive and destructive interferences where the waves combine.
Figure 4(b) is a contour plot that shows areas of equal intensity (contours) with a gradient of colors from yellow to red, indicating changes in wave intensity. This plot shows how the wave's energy is distributed across space, with stronger energy represented by red areas and weaker energy in the yellow areas. This helps visualize the wave's variation in space.
Figure 4(c) is a line plot showing the wave's intensity along the x-axis at a fixed y-value, with two curves (one positive and one negative). The two curves represent the oscillation of the wave at a specific location in space (y) over time or position along the x-axis. The green curve is the wave's positive intensity, and the red curve represents the negative part of the wave.
Figure 5 shows a nonlinear wave system where the wave has localized energy regions (such as solitons or shock waves). The 3D plot shows the wave's overall structure, the contour plot illustrates the concentration of energy, and the line plot reveals sharp intensity changes. This kind of behavior is typical in systems where the wave interacts nonlinearly, leading to energy localization and discontinuous wave behavior.
Figure 6 shows a nonlinear wave system that exhibits localized energy structures, sharp intensity variations, and high-energy regions. The 3D plot indicates the overall shape and behavior of the wave, the contour plot reveals the concentration of energy, and the line plot highlights the abrupt intensity changes. These characteristics are typical of systems involving solitons, shock waves, or other nonlinear wave phenomena where the wave retains its structure over time, despite the sharp intensity variations.
Figure 7 illustrates a nonlinear wave system where energy is localized in specific regions, as shown by the sharp peaks in the 3D plot and the contour plot. The line plot indicates discontinuities or sudden changes in the wave's behavior, which are characteristic of solitons or shock waves. These types of waves maintain their structure over time, even as they exhibit localized intensity variations.
Figure 8 represents a nonlinear wave system where the wave exhibits localized high-amplitude regions (likely solitons or other stable wave forms). The 3D plot shows the overall oscillating nature of the wave with sharp intensity spikes, the contour plot illustrates the concentration of energy in specific regions, and the line plot highlights the discontinuous intensity changes in the wave. This is indicative of a wave system that supports nonlinear phenomena, such as solitons or shock waves, where energy can become localized, and the wave exhibits sharp transitions in intensity.
Using a conformable derivative and the extended direct algebraic method, we successfully derived novel optical soliton solutions for the generalized integrable (2+1)-dimensional nonlinear Schrödinger system. Wave and single solitons make up the resulting solutions. Our thorough analysis of the impact of the conformable derivative and temporal parameters on optical solutions yields important new information. However, it is essential to acknowledge the limitations and potential shortcomings of the method and results. Furthermore, the results obtained in this study are based on a specific model, and the applicability of these results to other nonlinear optical systems remains to be explored. Additionally, we focus primarily on the theoretical aspects of optical soliton solutions, and experimental verification of these results is necessary to confirm their validity. Furthermore it is unknown whether the findings from this study can be applied to other nonlinear optical systems because they are based on a particular model. Furthermore, we concentrate on the theoretical features of optical soliton solutions, and to validate these findings, experimental verification is required.
Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan and Sunil Kumar Sharma: Conceptualization, methodology, resources, writing-original draft, formal analysis, investigation, validation, visualization, software. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article
The authors extend the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number (ICR-2025-1744).
The authors declare they have no conflict of interest.
[1] |
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. http://dx.doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
![]() |
[2] |
J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mapping, J. Math. Anal. Appl., 375 (2011), 185–195, http://dx.doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069
![]() |
[3] | E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210. |
[4] |
W. Mann, Mean value method in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
![]() |
[5] |
G. Okeke, A. Udo, R. Alqahtani, N. Alharthi, A faster iterative scheme for solving nonlinear fractional differential equation of the Caputo type, AIMS Mathematics, 8 (2023), 28488–28516. http://dx.doi.org/10.3934/math.20231458 doi: 10.3934/math.20231458
![]() |
[6] | F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv: 1403.2546. |
[7] | R. Agarwal, D. O'Regan, D. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61–79. |
[8] |
G. Okeke, Convergence of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. http://dx.doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z
![]() |
[9] |
G. Okeke, C. Ugwuogor, Iterative construction of the fixed point of Suzuki's generalized nonexpansive mappings in Banach spaces, Fixed Point Theor., 23 (2022), 633–652. http://dx.doi.org/10.24193/fpt-ro.2022.2.13 doi: 10.24193/fpt-ro.2022.2.13
![]() |
[10] |
G. Okeke, A. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Method. Appl. Sci., 45 (2022), 5111–5134. http://dx.doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095
![]() |
[11] |
G. Okeke, A. Ofem, H. Işik, A faster iterative method for solving nonlinear third-order BVPs based on Green's function, Bound. Value Probl., 2022 (2022), 103. http://dx.doi.org/10.1186/s13661-022-01686-y doi: 10.1186/s13661-022-01686-y
![]() |
[12] |
J. Ahmad, H. Işik, F. Ali, K. Ullah, E. Ameer, M. Arshad, On the JK iterative process in Banach spaces, J. Funct. Space., 2021 (2021), 2500421. http://dx.doi.org/10.1155/2021/2500421 doi: 10.1155/2021/2500421
![]() |
[13] |
M. Noor, New approximation scheme for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. http://dx.doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
![]() |
[14] |
R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2 (2012), 345–357. http://dx.doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
![]() |
[15] | K. Goebel, W. Kirk, Topics in metric fixed theory, Cambridge: Cambridge University Press, 1990. http://dx.doi.org/10.1017/CBO9780511526152 |
[16] |
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mapping, Bull. Amer. Math. Soc., 73 (1967), 591–597. http://dx.doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
![]() |
[17] |
Ş. Şultuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. http://dx.doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
![]() |
[18] |
J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. http://dx.doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
![]() |
[19] | V. Berinde, On the stability of some fixed point procedure, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18 (2002), 7–14. |
[20] |
Ş. Şoltuz, D. Otrocol, Classical results via Mann-Ishikawa iteration, Rev. Anal. Numér. Théor. Approx., 36 (2007), 193–197. http://dx.doi.org/10.33993/jnaat362-868 doi: 10.33993/jnaat362-868
![]() |
[21] |
J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. http://dx.doi.org/10.2307/1989630 doi: 10.2307/1989630
![]() |
[22] | D. Sahu, D. O'Regan, R. Agarwal, Fixed point theory for Lipschitzian-type mappings with applications, New York: Springer, 2009. http://dx.doi.org/10.1007/978-0-387-75818-3 |
[23] |
C. Garodia, I. Uddin, A new fixed point algorithm for finding the solution of a delay differential equation, AIMS Mathematics, 5 (2020), 3182–3200. http://dx.doi.org/10.3934/math.2020205 doi: 10.3934/math.2020205
![]() |
[24] |
F. Ali, J. Ali, J. Nieto, Some observations on generalized non-expansive mappings with an application, Comp. Appl. Math., 39 (2020), 74. http://dx.doi.org/10.1007/s40314-020-1101-4 doi: 10.1007/s40314-020-1101-4
![]() |
[25] |
S. Khuri, A. Sayfy, A. Zaveri, A new iteration method based on Green's functions for the solution of PDEs, Int. J. Appl. Comput. Math., 3 (2017), 3091–3103. http://dx.doi.org/10.1007/s40819-016-0289-x doi: 10.1007/s40819-016-0289-x
![]() |
[26] |
S. Khuri, A. Sayfy, A fixed point iteration method using Green's functions for the solution of nonlinear boundary value problems over semi-finite intervals, Int. J. Comput. Math., 97 (2020), 1303–1319. http://dx.doi.org/10.1080/00207160.2019.1615618 doi: 10.1080/00207160.2019.1615618
![]() |
[27] |
S. Khuri, A. Sayfy, Numerical solution of functional differential equations: a Green's function-based iterative approach, Int. J. Comput. Math., 95 (2018), 1937–1949. http://dx.doi.org/10.1080/00207160.2017.1344230 doi: 10.1080/00207160.2017.1344230
![]() |
[28] |
F. Ali, J. Ali, I. Uddin, A novel approach for the solution of BVPs via Green's function and fixed point iterative method, J. Appl. Math. Comput., 66 (2021), 167–181. https://doi.org/10.1007/s12190-020-01431-7 http://dx.doi.org/10.1007/s12190-020-01431-7 doi: 10.1007/s12190-020-01431-7
![]() |
[29] |
S. Khuri, I. Louhichi, A new fixed point iteration method for nonlinear third-order BVPs, Int. J. Comput. Math., 98 (2021), 2220–2232. http://dx.doi.org/10.1080/00207160.2021.1883594 doi: 10.1080/00207160.2021.1883594
![]() |