In this study, we examined a (2+1)-dimensional generalized breaking soliton system (GBSS) using both analytical and numerical methods. By applying a generalized direct algebraic method, we derived exact solutions that displayed a variety of solitary and periodic wave patterns. These solutions illuminated the interplay between nonlinearity and dispersion in several physical contexts, including fluid dynamics, plasma physics, and nonlinear optics. In addition, we developed a robust numerical scheme employing an adaptive moving mesh technique based on the MMPDE5 framework. Stability and error analyses confirmed that this method concentrated grid points around steep gradients, achieved second-order spatial convergence, and enhanced computational efficiency. By comparing numerical and exact solutions, we provided more profound insights into GBSS dynamics and facilitated future investigations of complex, multidimensional, and nonlinear wave phenomena.
Citation: Amer Ahmed, A. R. Alharbi, Haza S. Alayachi, Ishak Hashim. Exact and numerical approaches for solitary and periodic waves in a (2+1)-dimensional breaking soliton system with adaptive moving mesh[J]. AIMS Mathematics, 2025, 10(4): 8252-8276. doi: 10.3934/math.2025380
In this study, we examined a (2+1)-dimensional generalized breaking soliton system (GBSS) using both analytical and numerical methods. By applying a generalized direct algebraic method, we derived exact solutions that displayed a variety of solitary and periodic wave patterns. These solutions illuminated the interplay between nonlinearity and dispersion in several physical contexts, including fluid dynamics, plasma physics, and nonlinear optics. In addition, we developed a robust numerical scheme employing an adaptive moving mesh technique based on the MMPDE5 framework. Stability and error analyses confirmed that this method concentrated grid points around steep gradients, achieved second-order spatial convergence, and enhanced computational efficiency. By comparing numerical and exact solutions, we provided more profound insights into GBSS dynamics and facilitated future investigations of complex, multidimensional, and nonlinear wave phenomena.
| [1] |
B. Ren, J. Lin, Z. Lou, Consistent Riccati expansion and rational solutions of the Drinfel'd–Sokolov–Wilson equation, Appl. Math. Lett., 105 (2020), 106326. https://doi.org/10.1016/j.aml.2020.106326 doi: 10.1016/j.aml.2020.106326
|
| [2] |
B. Ren, P. Chu, Dynamics of D'Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation, Chinese J. Phys., 74 (2021), 296–301. https://doi.org/10.1016/j.cjph.2021.07.025 doi: 10.1016/j.cjph.2021.07.025
|
| [3] |
B. Li, Y. Ma, T. Yang, Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber, Superlattice. Microst., 113 (2018), 366–372. https://doi.org/10.1016/j.spmi.2017.11.016 doi: 10.1016/j.spmi.2017.11.016
|
| [4] |
J. Yang, Y. Gao, C. Su, D. Zuo, Y. Feng, Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber, Commun. Nonlinear Sci., 42 (2017), 477–490. https://doi.org/10.1016/j.cnsns.2016.05.013 doi: 10.1016/j.cnsns.2016.05.013
|
| [5] |
A. Seadawy, I. Mujahid, Optical soliton solutions for non-linear complex Ginzburg–Landau dynamical equation with laws of nonlinearity Kerr law media, Int. J. Mod. Phys. B, 34 (2020), 2050179. https://doi.org/10.1142/S0217979220501799 doi: 10.1142/S0217979220501799
|
| [6] |
H. Ismael, T. Sulaiman, H. Nabi, W. Mahmoud, M. Osman, Geometrical patterns of time variable Kadomtsev–Petviashvili (Ⅰ) equation that models dynamics of waves in thin films with high surface tension, Nonlinear Dynam., 111 (2023), 9457–9466. https://doi.org/10.1007/s11071-023-08319-8 doi: 10.1007/s11071-023-08319-8
|
| [7] |
M. Zhang, Y. Ma, B. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://dx.doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
|
| [8] |
A. Wazwaz, Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularised Boussinesq equation, Ocean Eng., 94 (2015), 111–115. https://doi.org/10.1016/j.oceaneng.2014.11.024 doi: 10.1016/j.oceaneng.2014.11.024
|
| [9] | M. Remoissenet, Basic concepts and the discovery of solitons, In: Waves Called Solitons: Concepts and Experiments, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-03790-4_1 |
| [10] |
C. Becker, S. Stellmer, P. S. Panahi, S. Dörscher, M. Baumert, E. Richter, et al., Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates, Nat. Phys., 4 (2008), 496–501. https://doi.org/10.1038/nphys962 doi: 10.1038/nphys962
|
| [11] |
R. Hirota, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 33 (1972), 1456–1458. https://doi.org/10.1143/JPSJ.33.1456 doi: 10.1143/JPSJ.33.1456
|
| [12] |
X. H. Zhao, S. Li, Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers, Appl. Math. Lett., 132 (2022), 108159. https://doi.org/10.1016/j.aml.2022.108159 doi: 10.1016/j.aml.2022.108159
|
| [13] |
W. Hereman, M. Takaoka, Solitary wave solutions of non-linear evolution and wave equations using a direct method and MACSYMA, J. Phys. A-Math. Gen., 23 (1990), 4805. https://dx.doi.org/10.1088/0305-4470/23/21/021 doi: 10.1088/0305-4470/23/21/021
|
| [14] |
M. Jawad, A. Ja'afar, Soliton solutions for nonlinear systems (2+1)-dimensional equations, IOSR J. Math., 1 (2012), 27–34. http://dx.doi.org/10.9790/5728-0162734 doi: 10.9790/5728-0162734
|
| [15] |
G. Xu, Integrability of a (2+1)-dimensional generalized breaking soliton equation, Appl. Math. Lett., 50 (2015), 16–22. https://doi.org/10.1016/j.aml.2015.05.015 doi: 10.1016/j.aml.2015.05.015
|
| [16] |
L. Fan, T. Bao, The integrability and infinite conservation laws of a variable coefficient higher-order Schrödinger equation, Chinese J. Phys., 90 (2024), 753–763. https://doi.org/10.1016/j.cjph.2024.06.010 doi: 10.1016/j.cjph.2024.06.010
|
| [17] |
L. Ling, L. Zhao, B. Guo, Darboux transformation and classification of solution for mixed coupled non-linear Schrödinger equations, Commun. Nonlinear Sci., 32 (2016), 285–304. https://doi.org/10.1016/j.cnsns.2015.08.023 doi: 10.1016/j.cnsns.2015.08.023
|
| [18] |
S. Jia, Y. Gao, C. Zhao, Z. L. Feng, Solitons, breathers and rogue waves for a sixth-order variable-coefficient non-linear Schrödinger equation in an ocean or optical fiber, Eur. Phys. J. Plus, 132 (2017), 34. https://doi.org/10.1140/epjp/i2017-11318-y doi: 10.1140/epjp/i2017-11318-y
|
| [19] |
R. Attia, H. Qazi, A. Kamran, A. Jamshad, Z. Aniqa, Soliton solutions of non-linear evolution equations by basic (G'/G)-expansion method, Math. Model. Eng. Probl., 7 (2020), 242–250. http://dx.doi.org/10.18280/mmep.070210 doi: 10.18280/mmep.070210
|
| [20] |
B. Ghanbari, K. Nisar, Determining new soliton solutions for a generalised non-linear evolution equation using an effective analytical method, Alex. Eng. J., 59 (2020), 3171–3179. https://doi.org/10.1016/j.aej.2020.07.032 doi: 10.1016/j.aej.2020.07.032
|
| [21] |
M. Iqbal, A. Seadawy, S. Althobaiti, Mixed soliton solutions for the (2+1)-dimensional generalised breaking soliton system via new analytical mathematical method, Results Phys., 32 (2022), 105030. https://doi.org/10.1016/j.rinp.2021.105030 doi: 10.1016/j.rinp.2021.105030
|
| [22] |
M. Ahmed, A. Zaghrout, H. Ahmed, Construction of solitons and other solutions for NLSE with Kudryashov's generalised non-linear refractive index, Alex. Eng. J., 64 (2023), 391–397. https://doi.org/10.1016/j.aej.2022.09.015 doi: 10.1016/j.aej.2022.09.015
|
| [23] |
K. A. Muhamad, T. Tanriverdi, A. A. Mahmud, H. M. Baskonus, Interaction characteristics of the Riemann wave propagation in the (2+1)-dimensional generalized breaking soliton system, Int. J. Comput. Math., 100 (2023), 1340–1355. https://doi.org/10.1080/00207160.2023.2186775 doi: 10.1080/00207160.2023.2186775
|
| [24] |
A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
|
| [25] |
Y. Ma, B. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalised breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 78 (2019), 827–839. https://doi.org/10.1016/j.camwa.2019.03.002 doi: 10.1016/j.camwa.2019.03.002
|
| [26] |
T. Taklo, W. Choi, Group resonant interactions between surface and internal gravity waves in a two-layer system, J. Fluid Mech., 892 (2020), A14. https://doi.org/10.1017/jfm.2020.180 doi: 10.1017/jfm.2020.180
|
| [27] |
V. Kruglov, J. Harvey, Solitary waves in optical fibers governed by higher-order dispersion, Phys. Rev. A, 98 (2018), 063811. https://link.aps.org/doi/10.1103/PhysRevA.98.063811 doi: 10.1103/PhysRevA.98.063811
|
| [28] |
T. G. Alharbi, A. Alharbi, Traveling-wave and numerical investigations to nonlinear equations via modern computational techniques, AIMS Math., 9 (2024), 12188–12210. https://doi.org/10.3934/math.2024595 doi: 10.3934/math.2024595
|
| [29] |
Q. Zhoug, H. Rezazadeh, A. Korkmaz, M. Eslami, M. Rezazadeh, M. Mirzazadeh, New optical solitary waves for unstable Schrödinger equation in nonlinear medium, Optica Appl., 49 (2019). https://doi.org/10.5277/oa190112 doi: 10.5277/oa190112
|
| [30] |
M. W. Coffey, Phase space analysis for the direct algebraic method for nonlinear evolution and wave equations, SIAM J. Appl. Math., 52 (1992), 929–945. https://doi.org/10.1137/0152053 doi: 10.1137/0152053
|
| [31] |
S. M. Alizamini, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A. Korkmaz, New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics, Comput. Methods Diffe., 8 (2020), 28–53. https://doi.org/10.22034/cmde.2019.9472 doi: 10.22034/cmde.2019.9472
|
| [32] | F. Beringer, F. Jung, Solving "generalized algebraic equations", In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (ISSAC '98), Association for Computing Machinery, New York, USA, 1998,222–227. https://doi.org/10.1145/281508.281617 |
| [33] |
Z. Zlatev, General scheme for solving linear algebraic problems by direct methods, Appl. Numer. Math., 1 (1985), 177–186. https://doi.org/10.1016/0168-9274(85)90023-6 doi: 10.1016/0168-9274(85)90023-6
|
| [34] |
A. Ahmed, A. R. Alharbi, I. Hashim, Exact and numerical solutions of the generalized breaking soliton system: Insights into non-linear wave dynamics, AIMS Math., 10 (2025), 5124–5142. https://doi.org/10.3934/math.2025235 doi: 10.3934/math.2025235
|
| [35] |
M. V. Flamarion, R. R. Jr, Gravity–capillary flows over obstacles for the fifth-order forced Korteweg–de Vries equation, J. Eng. Math., 129 (2021), 17. https://doi.org/10.1007/s10665-021-10153-z doi: 10.1007/s10665-021-10153-z
|
| [36] |
M. V. Flamarion, E. Pelinovsky, Solitary wave interactions with an external periodic force: The extended Korteweg-de Vries framework, Mathematics, 10 (2022), 4538. https://doi.org/10.3390/math10234538 doi: 10.3390/math10234538
|
| [37] | W. Huang, R. Russell, Adaptive moving mesh methods, Springer Series in Computational Mathematics, Springer, 174 (2011). https://doi.org/10.1007/978-1-4419-7916-2 |
| [38] | M. A. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998 |
| [39] |
C. Bai, C. Bai, H. Zhao, A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients, Zeitschrift für Naturforschung A, 60 (2005), 211–220. https://doi.org/10.1515/zna-2005-0401 doi: 10.1515/zna-2005-0401
|
| [40] | A. R. Alharbi, Numerical solution of thin-film flow equations using adaptive moving mesh methods, PhD thesis, Keele University, Keele, England, 2016. Available from: https://keele-repository.worktribe.com/output/407075. |
| [41] | J. Benamou, Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375–393. Available from: https://api.semanticscholar.org/CorpusID: 1100384. |