We present new results on the well-posedness and time regularity of solutions to stochastic fractional delay differential equations (SFDDEs) using the Caputo-Erdélyi-Kober fractional derivative. Additionally, we prove the averaging principle. We establish all results in the $ \mathfrak{p} $th moment, which generalizes the case $ \mathfrak{p} = 2 $. First, by applying fixed-point theory (FPT), we prove that the solution exists, is unique, and continuously depends on the initial values as well as the fractional derivative. Second, we establish a smoothness theorem for the solution and demonstrate that the solution of the original system converges to the averaged system in the $ \mathfrak{p} $th moment. Finally, to support our theoretical findings, we present illustrative examples.
Citation: Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations[J]. AIMS Mathematics, 2025, 10(4): 8277-8305. doi: 10.3934/math.2025381
We present new results on the well-posedness and time regularity of solutions to stochastic fractional delay differential equations (SFDDEs) using the Caputo-Erdélyi-Kober fractional derivative. Additionally, we prove the averaging principle. We establish all results in the $ \mathfrak{p} $th moment, which generalizes the case $ \mathfrak{p} = 2 $. First, by applying fixed-point theory (FPT), we prove that the solution exists, is unique, and continuously depends on the initial values as well as the fractional derivative. Second, we establish a smoothness theorem for the solution and demonstrate that the solution of the original system converges to the averaged system in the $ \mathfrak{p} $th moment. Finally, to support our theoretical findings, we present illustrative examples.
| [1] |
H. A. Hammad, H. Aydi, H. Işık, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Mathematics, 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
|
| [2] |
Y. Luchko, Operational calculus for the general fractional derivative and its applications, Fract. Calc. Appl. Anal., 24 (2021), 338–375. https://doi.org/10.1515/fca-2021-0016 doi: 10.1515/fca-2021-0016
|
| [3] |
Y. Arioua, M. Titraoui, New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative, Commun. Math., 27 (2019), 113–141. https://doi.org/10.2478/cm-2019-0011 doi: 10.2478/cm-2019-0011
|
| [4] |
N. Bouteraa, M. Inc, M. S. Hashemi, S. Benaicha, Study on the existence and nonexistence of solutions for a class of nonlinear Erdélyi-Kober type fractional differential equation on unbounded domain, J. Geom. Phys., 178 (2022), 104546. https://doi.org/10.1016/j.geomphys.2022.104546 doi: 10.1016/j.geomphys.2022.104546
|
| [5] |
Ł. Płociniczak, M. Świtała, Numerical scheme for Erdélyi-Kober fractional diffusion equation using Galerkin-Hermite method, Fract. Calc. Appl. Anal., 25 (2022), 1651–1687. https://doi.org/10.1007/s13540-022-00063-x doi: 10.1007/s13540-022-00063-x
|
| [6] |
K. Zhang, Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators, AIMS Mathematics, 9 (2024), 1358–1372. https://doi.org/10.3934/math.2024067 doi: 10.3934/math.2024067
|
| [7] |
W. Fan, K. Zhang, Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator, AIMS Mathematics, 9 (2024), 25494–25512. https://doi.org/10.3934/math.20241245 doi: 10.3934/math.20241245
|
| [8] | Y. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10 (2007), 249–267. |
| [9] | M. Boumaaza, M. Benchohra, Caputo type modification of Erdélyi-Kober fractional differential inclusions with retarded and advanced arguments, Adv. Dyn. Syst. Appl., 15 (2020), 63–78. |
| [10] |
Z. Odibat, D. Baleanu, On a new modification of the Erdélyi-Kober fractional derivative, Fractal Fract., 5 (2021), 121. https://doi.org/10.3390/fractalfract5030121 doi: 10.3390/fractalfract5030121
|
| [11] |
I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, K. Matarneh, A numerical approach of handling fractional stochastic differential equations, Axioms, 12 (2023), 388. https://doi.org/10.3390/axioms12040388 doi: 10.3390/axioms12040388
|
| [12] |
J. Chen, S. Ke, X. Li, W. Liu, Existence, uniqueness and stability of solutions to fractional backward stochastic differential equations, Appl. Math. Sci. Eng., 30 (2022), 811–829. https://doi.org/10.1080/27690911.2022.2142219 doi: 10.1080/27690911.2022.2142219
|
| [13] |
S. Moualkia, Y. Xu, On the existence and uniqueness of solutions for multidimensional fractional stochastic differential equations with variable order, Mathematics, 9 (2021), 2106. https://doi.org/10.3390/math9172106 doi: 10.3390/math9172106
|
| [14] |
A. Ali, K. Hayat, A. Zahir, K. Shah, T. Abdeljawad, Qualitative analysis of fractional stochastic differential equations with variable order fractional derivative, Qual. Theory Dyn. Syst., 23 (2024), 120. https://doi.org/10.1007/s12346-024-00982-5 doi: 10.1007/s12346-024-00982-5
|
| [15] |
S. Li, S. U. Khan, M. B. Riaz, S. A. AlQahtani, A. M. Alamri, Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: A comprehensive stability analysis, Sci. Rep., 14 (2024), 6930. https://doi.org/10.1038/s41598-024-56944-z doi: 10.1038/s41598-024-56944-z
|
| [16] |
W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, A. H. Abdel-Aty, Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives, AIMS Mathematics, 9 (2024), 12375–12398. https://doi.org/10.3934/math.2024605 doi: 10.3934/math.2024605
|
| [17] |
T. S. Doan, P. T. Huong, P. E. Kloeden, A. M. Vu, Euler-Maruyama scheme for Caputo stochastic fractional differential equations, J. Comput. Appl. Math., 380 (2020), 112989. https://doi.org/10.1016/j.cam.2020.112989 doi: 10.1016/j.cam.2020.112989
|
| [18] |
P. Umamaheswari, K. Balachandran, N. Annapoorani, Existence and stability results for Caputo fractional stochastic differential equations with Lévy noise, Filomat, 34 (2020), 1739–1751. https://doi.org/10.2298/FIL2005739U doi: 10.2298/FIL2005739U
|
| [19] |
M. Li, Y. Niu, J. Zou, A result regarding finite-time stability for Hilfer fractional stochastic differential equations with delay, Fractal Fract., 7 (2023), 622. https://doi.org/10.3390/fractalfract7080622 doi: 10.3390/fractalfract7080622
|
| [20] |
M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, M. Elgarhy, Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay, Fractal Fract., 5 (2021), 239. https://doi.org/10.3390/fractalfract5040239 doi: 10.3390/fractalfract5040239
|
| [21] |
W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, A. H. Abdel-Aty, The analysis of fractional neutral stochastic differential equations in $L^{p}$ space, AIMS Mathematics, 9 (2024), 17386–17413. https://doi.org/10.3934/math.2024845 doi: 10.3934/math.2024845
|
| [22] |
M. I. Liaqat, Z. A. Khan, J. A. Conejero, A. Akgül, Revised and generalized results of averaging principles for the fractional case. Axioms, 13 (2024), 732. https://doi.org/10.3390/axioms13110732 doi: 10.3390/axioms13110732
|
| [23] |
J. Zou, D. Luo, M. Li, The existence and averaging principle for stochastic fractional differential equations with impulses, Math. Method. Appl. Sci., 46 (2023), 6857–6874. https://doi.org/10.1002/mma.8945 doi: 10.1002/mma.8945
|
| [24] |
J. Zou, D. Luo, A new result on averaging principle for Caputo-type fractional delay stochastic differential equations with Brownian motion, Appl. Anal., 103 (2024), 1397–1417. https://doi.org/10.1080/00036811.2023.2245845 doi: 10.1080/00036811.2023.2245845
|
| [25] |
J. Zou, D. Luo, On the averaging principle of Caputo type neutral fractional stochastic differential equations, Qual. Theory Dyn. Syst., 23 (2024), 82. https://doi.org/10.1007/s12346-023-00916-7 doi: 10.1007/s12346-023-00916-7
|
| [26] |
Z. Guo, Y. Xu, W. Wang, J. Hu, Averaging principle for stochastic differential equations with monotone condition, Appl. Math. Lett., 125 (2022), 107705. https://doi.org/10.1016/j.aml.2021.107705 doi: 10.1016/j.aml.2021.107705
|
| [27] |
A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, A study of some generalized results of neutral stochastic differential equations in the framework of Caputo-Katugampola fractional derivatives, Mathematics, 12 (2024), 1654. https://doi.org/10.3390/math12111654 doi: 10.3390/math12111654
|
| [28] |
M. Mouy, H. Boulares, S. Alshammari, M. Alshammari, Y. Laskri, W. W. Mohammed, On averaging principle for Caputo-Hadamard fractional stochastic differential pantograph equation, Fractal Fract., 7 (2022), 31. https://doi.org/10.3390/fractalfract7010031 doi: 10.3390/fractalfract7010031
|
| [29] |
G. Xiao, J. Wang, D. O'Regan, Existence and stability of solutions to neutral conformable stochastic functional differential equations, Qual. Theory Dyn. Syst., 21 (2022), 7. https://doi.org/10.1007/s12346-021-00538-x doi: 10.1007/s12346-021-00538-x
|
| [30] |
Z. Yang, X. Zheng, H. Wang, Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations, Z. Angew. Math. Phys., 72 (2021), 141. https://doi.org/10.1007/s00033-021-01566-y doi: 10.1007/s00033-021-01566-y
|
| [31] |
A. M. Djaouti, M. I. Liaqat, Theoretical results on the pth Moment of $\phi$-Hilfer stochastic fractional differential equations with a pantograph term, Fractal Fract., 9 (2025), 134. https://doi.org/10.3390/fractalfract9030134 doi: 10.3390/fractalfract9030134
|
| [32] |
P. T. Huong, N. T. The, Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations, Stat. Probabil. Lett., 195 (2023), 109768. https://doi.org/10.1016/j.spl.2022.109768 doi: 10.1016/j.spl.2022.109768
|