Research article Special Issues

Two parameter log-Lindley distribution with LTPL web-tool

  • Published: 11 April 2025
  • MSC : 62E15

  • This paper introduces the two-parameter log-Lindley distribution. It can be presented as a new flexible distribution supported on the interval $ (0, 1) $, which includes the famous log-Lindley distribution as a sub-distribution. Its important probabilistic properties are discussed. On the applied side, a statistical focus was placed on the corresponding model. Three methods were used for the parameter estimation and the effectiveness of these methods was evaluated by a simulation study. The superiority of the proposed distribution over other distributions was demonstrated with three applications on real data sets. A significant aspect of the study is the development of an associated web tool. The LTPL web tool was designed to enable users to utilize the newly developed probability distribution without requiring any programming expertise.

    Citation: Emrah Altun, Christophe Chesneau, Hana N. Alqifari. Two parameter log-Lindley distribution with LTPL web-tool[J]. AIMS Mathematics, 2025, 10(4): 8306-8321. doi: 10.3934/math.2025382

    Related Papers:

  • This paper introduces the two-parameter log-Lindley distribution. It can be presented as a new flexible distribution supported on the interval $ (0, 1) $, which includes the famous log-Lindley distribution as a sub-distribution. Its important probabilistic properties are discussed. On the applied side, a statistical focus was placed on the corresponding model. Three methods were used for the parameter estimation and the effectiveness of these methods was evaluated by a simulation study. The superiority of the proposed distribution over other distributions was demonstrated with three applications on real data sets. A significant aspect of the study is the development of an associated web tool. The LTPL web tool was designed to enable users to utilize the newly developed probability distribution without requiring any programming expertise.



    加载中


    [1] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
    [2] E. Altun, The log-weighted exponential regression model: alternative to the beta regression model, Commun. Stat.-Theory Methods, 50 (2021), 2306–2321. https://doi.org/10.1080/03610926.2019.1664586 doi: 10.1080/03610926.2019.1664586
    [3] E. Altun, G. M. Cordeiro, The unit-improved second-degree Lindley distribution: inference and regression modeling, Comput. Stat., 35 (2020), 259–279. https://doi.org/10.1007/s00180-019-00921-y doi: 10.1007/s00180-019-00921-y
    [4] E. Altun, G. G. Hamedani, The log-xgamma distribution with inference and application, J. Soc. Fr. Stat., 159 (2018), 40–55.
    [5] E. Altun, M. El-Morshedy, M. S. Eliwa, A new regression model for bounded response variable: an alternative to the beta and unit-Lindley regression models, Plos One, 16 (2021), e0245627. https://doi.org/10.1371/journal.pone.0245627 doi: 10.1371/journal.pone.0245627
    [6] S. O. Bashiru, M. Kayid, R. Mahmoud, O. S. Balogun, M. M. Abd El-Raouf, A. M. Gemeay, Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data, J. Radiat. Res. Appl. Sci., 18 (2025), 101204. https://doi.org/10.1016/j.jrras.2024.101204 doi: 10.1016/j.jrras.2024.101204
    [7] H. S. Bakouch, T. Hussain, M. Tosic, V. S. Stojanovic, N. Qarmalah, Unit exponential probability distribution: characterization and applications in environmental and engineering data modeling, Mathematics, 11 (2023), 4207. https://doi.org/10.3390/math11194207 doi: 10.3390/math11194207
    [8] R. A. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Theory and applications of the unit gamma/Gompertz distribution, Mathematics, 9 (2021), 1850. https://doi.org/10.3390/math9161850 doi: 10.3390/math9161850
    [9] W. Chang, B. Borges Ribeiro, Shinydashboard: create dashboards with ’Shiny’, R package, Version 0.7.2, 2021. https://doi.org/10.32614/CRAN.package.shinydashboard
    [10] W. Chang, Shinythemes: themes for Shiny, R package, Version 1.2.0, 2021. https://doi.org/10.32614/CRAN.package.shinythemes
    [11] E. Gomez-Deniz, M. A. Sordo, E. Calderin-Ojeda, The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance, Insur.: Math. Econ., 54 (2014), 49–57. https://doi.org/10.1016/j.insmatheco.2013.10.017 doi: 10.1016/j.insmatheco.2013.10.017
    [12] H. S. Jabarah, A. H. Tolba, A. T. Ramadan, A. I. El-Gohary, The truncated unit Chris-Jerry distribution and its applications, Appl. Math. Inf. Sci., 18 (2024), 1317–1330. https://doi.org/10.18576/amis/180613 doi: 10.18576/amis/180613
    [13] P. Jodra, A bounded distribution derived from the shifted Gompertz law, J. King Saud Univ.-Sci., 32 (2020), 523–536. https://doi.org/10.1016/j.jksus.2018.08.001 doi: 10.1016/j.jksus.2018.08.001
    [14] B. Jorgensen, The theory of dispersion models, CRC Press, 1997.
    [15] M. C. Korkmaz, Z. S. Korkmaz, The unit log-log distribution: a new unit distribution with alternative quantile regression modeling and educational measurements applications, J. Appl. Stat., 50 (2023), 889–908. https://doi.org/10.1080/02664763.2021.2001442 doi: 10.1080/02664763.2021.2001442
    [16] M. C. Korkmaz, C. Chesneau, Z. S. Korkmaz, Transmuted unit Rayleigh quantile regression model: alternative to beta and Kumaraswamy quantile regression models, U.P.B. Sci. Bull. Ser. A, 83 (2021), 149–158.
    [17] M. C. Korkmaz, C. Chesneau, On the unit Burr-XII distribution with the quantile regression modeling and applications, Comput. Appl. Math., 40 (2021), 29. https://doi.org/10.1007/s40314-021-01418-5 doi: 10.1007/s40314-021-01418-5
    [18] M. C. Korkmaz, E. Altun, C. Chesneau, H. M. Yousof, On the unit-Chen distribution with associated quantile regression and applications, Math. Slovaca, 72 (2022), 765–786. https://doi.org/10.1515/ms-2022-0052 doi: 10.1515/ms-2022-0052
    [19] M. C. Korkmaz, E. Altun, M. Alizadeh, M. E-Morshedy, The log exponential-power distribution: properties, estimations and quantile regression model, Mathematics, 9 (2021), 2634. https://doi.org/10.3390/math9212634 doi: 10.3390/math9212634
    [20] A. Krishna, R. Maya, C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012
    [21] K. Liu, N. Balakrishnan, Recurrence relations for moments of order statistics from half logistic-geometric distribution and their applications, Commun. Stat.-Simul. Comput., 51 (2022), 6537–6555. https://doi.org/10.1080/03610918.2020.1805464 doi: 10.1080/03610918.2020.1805464
    [22] P. R. D. Marinho, R. B. Silva, M. Bourguignon, G. M. Cordeiro, S. Nadarajah, AdequacyModel: an R package for probability distributions and general purpose optimization, Plos One, 14 (2019), e0221487. https://doi.org/10.1371/journal.pone.0221487 doi: 10.1371/journal.pone.0221487
    [23] J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit-Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
    [24] S. Nasiru, C. Chesneau, S. K. Ocloo, The log-cosine-power unit distribution: a new unit distribution for proportion data analysis, Decis. Anal. J., 10 (2024), 100397. https://doi.org/10.1016/j.dajour.2024.100397 doi: 10.1016/j.dajour.2024.100397
    [25] F. Prataviera, G. M. Cordeiro, The unit omega distribution, properties and its application, Am. J. Math. Manag. Sci., 43 (2024), 109–122. https://doi.org/10.1080/01966324.2024.2310648 doi: 10.1080/01966324.2024.2310648
    [26] A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676
    [27] J. Reyes, M. A. Rojas, P. L. Cortes, J. Arrue, A new more flexible class of distributions on (0, 1): properties and applications to univariate data and quantile regression, Symmetry, 15 (2023), 267. https://doi.org/10.3390/sym15020267 doi: 10.3390/sym15020267
    [28] T. F. Ribeiro, F. A. Pena-Ramirez, R. R. Guerra, G. M. Cordeiro, Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses, Plos One, 17 (2022), e0276695. https://doi.org/10.1371/journal.pone.0276695 doi: 10.1371/journal.pone.0276695
    [29] R. Shanker, S. Sharma, R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math., 4 (2013), 363–368. https://doi.org/10.4236/am.2013.42056 doi: 10.4236/am.2013.42056
    [30] P. Sudsila, A. Thongteeraparp, S. Aryuyuen, W. Bodhisuwan, The generalized distributions on the unit interval based on the t-Topp-Leone family of distributions, Trends. Sci., 19 (2022), 6186–6186.
    [31] T. M. Therneau, P. M. Grambsch, Modeling survival data: extending the Cox model, New York: Springer, 2000. https://doi.org/10.1007/978-1-4757-3294-8
    [32] C. W. Topp, F. C. Leone, A family of J-shaped frequency functions, J. Am. Stat. Assoc., 50 (1955), 209–219. https://doi.org/10.1080/01621459.1955.10501259 doi: 10.1080/01621459.1955.10501259
    [33] J. R. Van Dorp, S. Kotz, The standard two-sided power distribution and its properties: with applications in financial engineering, Am. Stat., 56 (2002), 90–99. https://doi.org/10.1198/000313002317572745 doi: 10.1198/000313002317572745
    [34] R. A. M. Villanueva, Z. J. Chen, Ggplot2: elegant graphics for data analysis, 2 Eds., Meas.: Interdiscip. Res. Perspect., 17 (2019), 160–167. https://doi.org/10.1080/15366367.2019.1565254 doi: 10.1080/15366367.2019.1565254
    [35] J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. De Oliveira, M. E. Ghitany, The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Stat., 47 (2020), 954–974. https://doi.org/10.1080/02664763.2019.1657813 doi: 10.1080/02664763.2019.1657813
    [36] H. Wickham, J. Bryan, Readxl: read excel files, R package, Version 1.4.3, 2023. https://doi.org/10.32614/CRAN.package.readxl
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1098) PDF downloads(77) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog