In the present paper, the authors discuss two new concepts that will be known as a weak $ (p, q) $-Jordan centralizer and a weak $ (p, q) $-Jordan derivation on an arbitrary ring $ R $ and they prove that every weak $ (p, q) $-Jordan derivation is a derivation on any prime ring $ R $. Furthermore, every weak $ (p, q) $-Jordan centralizer is a centralizer on a semiprime ring $ R $. Later, they discuss the continuity of weak $ (p, q) $-Jordan centralizer on a semisimple Banach algebra and prove that every weak $ (p, q) $ -Jordan centralizer on a semisimple Banach algebra is a linear continuous operator. Moreover, these results are validated with actual examples.
Citation: Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari. Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras[J]. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383
In the present paper, the authors discuss two new concepts that will be known as a weak $ (p, q) $-Jordan centralizer and a weak $ (p, q) $-Jordan derivation on an arbitrary ring $ R $ and they prove that every weak $ (p, q) $-Jordan derivation is a derivation on any prime ring $ R $. Furthermore, every weak $ (p, q) $-Jordan centralizer is a centralizer on a semiprime ring $ R $. Later, they discuss the continuity of weak $ (p, q) $-Jordan centralizer on a semisimple Banach algebra and prove that every weak $ (p, q) $ -Jordan centralizer on a semisimple Banach algebra is a linear continuous operator. Moreover, these results are validated with actual examples.
| [1] | S. Ali, A. Fosner, On generalized $(m, n)$-derivations and generalized $(m, n)$-Jordan derivations in rings, Algebra Colloq., 21 (2014), 411–420. http://doi.org/10.1142/S1005386714000352 |
| [2] |
A. Z. Ansari, S. Alrehaili, F. Shujat, An extension of Herstein's theorem on Banach algebra, AIMS Mathematics, 9 (2024), 4109–4117. http://doi.org/10.3934/math.2024201 doi: 10.3934/math.2024201
|
| [3] | A. Z. Ansari, F. Shujat, Jordan $\varkappa$-dderivations on standard operator algebras, Filomat, 37 (2023), 37–41. http://doi.org/10.2298/FIL2301037A |
| [4] | J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324. |
| [5] | N. Dar, S. Ali, On centralizers of prime rings with involution, B. Iran. Math. Soc., 14 (2015), 1465–1475. |
| [6] |
S. Helgosen, Multipliers of Banach algebras, Ann. Math., 64 (1956), 240–254. https://doi.org/10.2307/1969971 doi: 10.2307/1969971
|
| [7] |
I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
|
| [8] |
B. E. Johnson, An introduction to the theory of centralizers, P. Lond. Math. Soc., s3-14 (1964), 299–320. https://doi.org/10.1112/PLMS/S3-14.2.299 doi: 10.1112/PLMS/S3-14.2.299
|
| [9] |
B. E. Johnson, Centralizers on certain topological algebras, J. Lond. Math. Soc., s1-39 (1964), 603–614. https://doi.org/10.1112/JLMS/S1-39.1.603 doi: 10.1112/JLMS/S1-39.1.603
|
| [10] | B. E. Johnson, Continuity of centralizers on Banach algebras, J. Lond. Math. Soc., s1-41 (1966), 639–640. https://doi.org/10.1112/jlms/s1-41.1.639 |
| [11] | I. Kosi-ulbl, J. Vukman, On $(m, n)$-Jordan centralizers of semiprime rings, Publ. Math. Debrecen, 89/1-2 (2016), 223–231. https://doi.org/10.5486/PMD.2016.7490 |
| [12] |
M. R. Mozumder, A. Abbasi, N. A. Dar, A. H. Shah, A note on pair of left centralizers in prime ring with involution, Kragujev. J. Math., 45 (2021), 225–236. https://doi.org/10.46793/KgJMat2102.225M doi: 10.46793/KgJMat2102.225M
|
| [13] | J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Ca., 40 (1999), 447–456. |
| [14] |
J. Vukman, On $(m, n)$-Jordan derivations and commutativity of prime rings, Demonstratio Math., 41 (2008), 773–778. https://doi.org/10.1515/dema-2008-0405 doi: 10.1515/dema-2008-0405
|
| [15] | J. Vukman, On $(m, n)$–Jordan centralizers in rings and algebras, Glas. Mat., 45 (2010), 43–53. |
| [16] | J. K. Wang, Multipliers of commutative Banach algebras, Pac. J. Math., 11 (1961), 1131–1149. |
| [17] | J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251–266. |
| [18] | B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Ca., 32 (1991), 609–614. |