Research article Special Issues

Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras

  • Received: 12 February 2025 Revised: 19 March 2025 Accepted: 26 March 2025 Published: 11 April 2025
  • MSC : 16B99, 16N60, 16W25

  • In the present paper, the authors discuss two new concepts that will be known as a weak $ (p, q) $-Jordan centralizer and a weak $ (p, q) $-Jordan derivation on an arbitrary ring $ R $ and they prove that every weak $ (p, q) $-Jordan derivation is a derivation on any prime ring $ R $. Furthermore, every weak $ (p, q) $-Jordan centralizer is a centralizer on a semiprime ring $ R $. Later, they discuss the continuity of weak $ (p, q) $-Jordan centralizer on a semisimple Banach algebra and prove that every weak $ (p, q) $ -Jordan centralizer on a semisimple Banach algebra is a linear continuous operator. Moreover, these results are validated with actual examples.

    Citation: Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari. Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras[J]. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383

    Related Papers:

  • In the present paper, the authors discuss two new concepts that will be known as a weak $ (p, q) $-Jordan centralizer and a weak $ (p, q) $-Jordan derivation on an arbitrary ring $ R $ and they prove that every weak $ (p, q) $-Jordan derivation is a derivation on any prime ring $ R $. Furthermore, every weak $ (p, q) $-Jordan centralizer is a centralizer on a semiprime ring $ R $. Later, they discuss the continuity of weak $ (p, q) $-Jordan centralizer on a semisimple Banach algebra and prove that every weak $ (p, q) $ -Jordan centralizer on a semisimple Banach algebra is a linear continuous operator. Moreover, these results are validated with actual examples.



    加载中


    [1] S. Ali, A. Fosner, On generalized $(m, n)$-derivations and generalized $(m, n)$-Jordan derivations in rings, Algebra Colloq., 21 (2014), 411–420. http://doi.org/10.1142/S1005386714000352
    [2] A. Z. Ansari, S. Alrehaili, F. Shujat, An extension of Herstein's theorem on Banach algebra, AIMS Mathematics, 9 (2024), 4109–4117. http://doi.org/10.3934/math.2024201 doi: 10.3934/math.2024201
    [3] A. Z. Ansari, F. Shujat, Jordan $\varkappa$-dderivations on standard operator algebras, Filomat, 37 (2023), 37–41. http://doi.org/10.2298/FIL2301037A
    [4] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324.
    [5] N. Dar, S. Ali, On centralizers of prime rings with involution, B. Iran. Math. Soc., 14 (2015), 1465–1475.
    [6] S. Helgosen, Multipliers of Banach algebras, Ann. Math., 64 (1956), 240–254. https://doi.org/10.2307/1969971 doi: 10.2307/1969971
    [7] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
    [8] B. E. Johnson, An introduction to the theory of centralizers, P. Lond. Math. Soc., s3-14 (1964), 299–320. https://doi.org/10.1112/PLMS/S3-14.2.299 doi: 10.1112/PLMS/S3-14.2.299
    [9] B. E. Johnson, Centralizers on certain topological algebras, J. Lond. Math. Soc., s1-39 (1964), 603–614. https://doi.org/10.1112/JLMS/S1-39.1.603 doi: 10.1112/JLMS/S1-39.1.603
    [10] B. E. Johnson, Continuity of centralizers on Banach algebras, J. Lond. Math. Soc., s1-41 (1966), 639–640. https://doi.org/10.1112/jlms/s1-41.1.639
    [11] I. Kosi-ulbl, J. Vukman, On $(m, n)$-Jordan centralizers of semiprime rings, Publ. Math. Debrecen, 89/1-2 (2016), 223–231. https://doi.org/10.5486/PMD.2016.7490
    [12] M. R. Mozumder, A. Abbasi, N. A. Dar, A. H. Shah, A note on pair of left centralizers in prime ring with involution, Kragujev. J. Math., 45 (2021), 225–236. https://doi.org/10.46793/KgJMat2102.225M doi: 10.46793/KgJMat2102.225M
    [13] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Ca., 40 (1999), 447–456.
    [14] J. Vukman, On $(m, n)$-Jordan derivations and commutativity of prime rings, Demonstratio Math., 41 (2008), 773–778. https://doi.org/10.1515/dema-2008-0405 doi: 10.1515/dema-2008-0405
    [15] J. Vukman, On $(m, n)$–Jordan centralizers in rings and algebras, Glas. Mat., 45 (2010), 43–53.
    [16] J. K. Wang, Multipliers of commutative Banach algebras, Pac. J. Math., 11 (1961), 1131–1149.
    [17] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251–266.
    [18] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Ca., 32 (1991), 609–614.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(991) PDF downloads(97) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog