Research article Special Issues

Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schrödinger equations in fiber bragg gratings

  • Received: 24 January 2025 Revised: 16 March 2025 Accepted: 21 March 2025 Published: 26 March 2025
  • MSC : 35C07, 35C08, 35C09

  • This work investigated analytical solutions for a coupled system of nonlinear perturbed Schrödinger equations in fiber Bragg gratings (FBGs), characterized by sixth-order dispersion and a combination of Kerr and parabolic nonlocal nonlinear refractive indices. Chromatic dispersion, which restricts wave propagation in standard optical fibers, was effectively compensated using FBGs, making them indispensable in modern optical networks. In this study, the modified Sardar sub-equation technique (MSSE) was applied to the system for the first time. This method was chosen for its advantages, including low computational cost, high consistency, and simplicity in calculations. The novelty of this work lied in the derivation of new analytical solutions, such as exponential, singular periodic, hyperbolic, and rational solutions, which have not been previously reported in the literature. Additionally, bright gap solitons and singular gap solitons, previously studied, were also obtained. All solutions were rigorously verified by direct substitution into the system. Another significant contribution of this work was the derivation of modulation instability (MI) analysis using linear stability analysis. For the first time in the literature, an analytical expression for the MI gain spectrum was derived. This gain spectrum depended on key parameters such as normalized power, perturbation wave number, dispersion coefficients, phase modulation coefficients, and nonlinearity coefficients. The study also included 2D and 3D graphical representations of selected exact solutions, with parameters chosen to satisfy specific limiting conditions, as well as visual illustrations of the MI gain spectrum. The solutions derived in this work have profound implications for optical communication systems. Exponential and hyperbolic solutions can model pulse propagation in FBGs with high accuracy, enabling better design of dispersion-compensating devices and improving signal integrity over long distances. Singular periodic and rational solutions provided insights into the behavior of nonlinear waves in FBGs, which can be exploited for advanced signal processing applications, such as pulse shaping and wavelength conversion. Bright and singular-gap solitons were crucial for maintaining stable signal transmission in FBG-based systems, particularly in high-power scenarios where nonlinear effects were significant. The MI analysis further enhanced the practical relevance of this work. By understanding the conditions under which MI occured, engineers can design FBG systems that minimize signal degradation and optimize performance. The MI gain spectrum provided a tool to predict and control instability, ensuring robust and efficient optical communication networks. This work not only advanced the theoretical understanding of nonlinear wave dynamics in FBGs but also offered practical tools and solutions for improving optical communication systems. The derived solutions and MI analysis have direct applications in enhancing signal stability, dispersion management, and overall system performance, making this research highly relevant to the field of photonics and optical engineering.

    Citation: Noha M. Kamel, Hamdy M. Ahmed, Wafaa B. Rabie. Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schrödinger equations in fiber bragg gratings[J]. AIMS Mathematics, 2025, 10(3): 6952-6980. doi: 10.3934/math.2025318

    Related Papers:

  • This work investigated analytical solutions for a coupled system of nonlinear perturbed Schrödinger equations in fiber Bragg gratings (FBGs), characterized by sixth-order dispersion and a combination of Kerr and parabolic nonlocal nonlinear refractive indices. Chromatic dispersion, which restricts wave propagation in standard optical fibers, was effectively compensated using FBGs, making them indispensable in modern optical networks. In this study, the modified Sardar sub-equation technique (MSSE) was applied to the system for the first time. This method was chosen for its advantages, including low computational cost, high consistency, and simplicity in calculations. The novelty of this work lied in the derivation of new analytical solutions, such as exponential, singular periodic, hyperbolic, and rational solutions, which have not been previously reported in the literature. Additionally, bright gap solitons and singular gap solitons, previously studied, were also obtained. All solutions were rigorously verified by direct substitution into the system. Another significant contribution of this work was the derivation of modulation instability (MI) analysis using linear stability analysis. For the first time in the literature, an analytical expression for the MI gain spectrum was derived. This gain spectrum depended on key parameters such as normalized power, perturbation wave number, dispersion coefficients, phase modulation coefficients, and nonlinearity coefficients. The study also included 2D and 3D graphical representations of selected exact solutions, with parameters chosen to satisfy specific limiting conditions, as well as visual illustrations of the MI gain spectrum. The solutions derived in this work have profound implications for optical communication systems. Exponential and hyperbolic solutions can model pulse propagation in FBGs with high accuracy, enabling better design of dispersion-compensating devices and improving signal integrity over long distances. Singular periodic and rational solutions provided insights into the behavior of nonlinear waves in FBGs, which can be exploited for advanced signal processing applications, such as pulse shaping and wavelength conversion. Bright and singular-gap solitons were crucial for maintaining stable signal transmission in FBG-based systems, particularly in high-power scenarios where nonlinear effects were significant. The MI analysis further enhanced the practical relevance of this work. By understanding the conditions under which MI occured, engineers can design FBG systems that minimize signal degradation and optimize performance. The MI gain spectrum provided a tool to predict and control instability, ensuring robust and efficient optical communication networks. This work not only advanced the theoretical understanding of nonlinear wave dynamics in FBGs but also offered practical tools and solutions for improving optical communication systems. The derived solutions and MI analysis have direct applications in enhancing signal stability, dispersion management, and overall system performance, making this research highly relevant to the field of photonics and optical engineering.



    加载中


    [1] Z. Li, J. Lyu, E. Hussain, Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity, Sci. Rep., 14 (2024), 22616. https://doi.org/10.1038/s41598-024-74044-w doi: 10.1038/s41598-024-74044-w
    [2] Z. Li, S. Zhao, Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation, AIMS Mathematics, 9 (2024), 22590–22601. https://doi.org/10.3934/math.20241100 doi: 10.3934/math.20241100
    [3] M. Gu, J. Li, F. Liu, Z. Li, C. Peng, Propagation of traveling wave solution of the strain wave equation in microcrystalline materials, Open Phys., 22 (2024), 20240093. https://doi.org/10.1515/phys-2024-0093 doi: 10.1515/phys-2024-0093
    [4] M. Gu, F. Liu, J. Li, C. Peng, Z. Li, Explicit solutions of the generalized Kudryashov's equation with truncated M-fractional derivative, Sci. Rep., 14 (2024), 21714. https://doi.org/10.1038/s41598-024-72610-w doi: 10.1038/s41598-024-72610-w
    [5] K. Zhang, J. Cao, J. Lyu, Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, Phys. Scr., 100 (2025), 015262. https://doi.org/10.1088/1402-4896/ad9cfa doi: 10.1088/1402-4896/ad9cfa
    [6] J. Atai, B. A. Malomed, Gap solitons in Bragg gratings with dispersive reflectivity, Phys. Lett. A, 342 (2005), 404–412. https://doi.org/10.1016/j.physleta.2005.05.081 doi: 10.1016/j.physleta.2005.05.081
    [7] Y. Han, B. Gao, H. Wen, C. Ma, J. Huo, Y. Li, et al., Pure-high-even-order dispersion bound solitons complexes in ultra-fast fiber lasers, Light Sci. Appl., 13 (2024), 101. https://doi.org/10.1038/s41377-024-01451-z doi: 10.1038/s41377-024-01451-z
    [8] A. Jose, S. Das Chowdhury, S. Balasubramanian, K. Krupa, Z. Wang, B. N. Upadhyay, et al., Noise‐like pulse seeded supercontinuum generation: An in‐depth review for high‐energy flat broadband sources, Laser Photonics Rev., 19 (2025), 2400511. 2400511. https://doi.org/10.1002/lpor.202400511 doi: 10.1002/lpor.202400511
    [9] T. Nagy, P. Simon, L. Veisz, High-energy few-cycle pulses: Post-compression techniques, Adv. Phys. X, 6 (2021), 1845795. https://doi.org/10.1080/23746149.2020.1845795 doi: 10.1080/23746149.2020.1845795
    [10] M. R. Fernández-Ruiz, A. Carballar, Fiber Bragg grating-based optical signal processing: Review and survey, Appl. Sci., 11 (2021), 8189. https://doi.org/10.3390/app11178189 doi: 10.3390/app11178189
    [11] J. Li, Y. Zhang, J. Zeng, Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion, Chaos Soliton. Fract., 157 (2022), 111950. https://doi.org/10.1016/j.chaos.2022.111950 doi: 10.1016/j.chaos.2022.111950
    [12] N. Pernet, P. St-Jean, D. D. Solnyshkov, G. Malpuech, N. C. Zambon, Q. Fontaine, et al., Gap solitons in a one-dimensional driven-dissipative topological lattice, Nat. Phys., 18 (2022), 678–684. https://doi.org/10.1038/s41567-022-01599-8 doi: 10.1038/s41567-022-01599-8
    [13] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Ekici, S. Khan, A. K. Alzahrani, et al., Optical solitons in fiber Bragg gratings with quadratic-cubic law of nonlinear refractive index and cubic-quartic dispersive reflectivity, P. Est. Acad. Sci., 71 (2022), 165–177. https://doi.org/10.3176/proc.2022.2.05 doi: 10.3176/proc.2022.2.05
    [14] X. Xue, X. Zheng, B. Zhou, Super-efficient temporal solitons in mutually coupled optical cavities, Nat. Photonics, 13 (2019), 616–622. https://doi.org/10.1038/s41566-019-0436-0 doi: 10.1038/s41566-019-0436-0
    [15] G. Arora, R. Rani, H. Emadifar, Soliton: A dispersion-less solution with existence and its types, Heliyon, 8 (2022), e12122. https://doi.org/10.1016/j.heliyon.2022.e12122 doi: 10.1016/j.heliyon.2022.e12122
    [16] A. Bougaud, A. Fernandez, A. Ly, S. Balac, O. Llopis, Complex pulse profile optimization by chromatic dispersion management in coupled opto-electronic oscillator based on semiconductor optical amplifier, IEEE J. Quantum Elect., 60 (2024), 1300209. https://doi.org/10.1109/JQE.2024.3372575 doi: 10.1109/JQE.2024.3372575
    [17] T. Kori, A. Kori, A. Kori, S. Nandi, A Study on fiber Bragg gratings and its recent applications, In: Innovative mobile and internet services in ubiquitous computing, 2020,880–889. https://doi.org/10.1007/978-3-030-22263-5_84
    [18] K. S. Al-Ghafri, M. Sankar, E. V. Krishnan, A. Biswas, A. Asiri, Chirped gap solitons with Kudryashov's law of self-phase modulation having dispersive reflectivity, J. Eur. Opt. Society-Rapid Publ., 19 (2023), 40. https://doi.org/10.1051/jeos/2023038 doi: 10.1051/jeos/2023038
    [19] F. Yang, K. Zhu, X. Yu, T. Liu, K. Lu, Z. Wang, et al., Air gap fiber Bragg grating for simultaneous strain and temperature measurement, Micromachines, 15 (2024), 140. https://doi.org/10.3390/mi15010140 doi: 10.3390/mi15010140
    [20] M. Bonopera, Fiber-Bragg-grating-based displacement sensors: Review of recent advances, Materials, 15 (2022), 5561. https://doi.org/10.3390/ma15165561 doi: 10.3390/ma15165561
    [21] C. V. N. Bhaskar, S. Pal, P. K. Pattnaik, Performance enhancement of optical communication system with cascaded FBGs of varying lengths, J. Opt., 25 (2023), 125701. https://doi.org/10.1088/2040-8986/ad0def doi: 10.1088/2040-8986/ad0def
    [22] A. Theodosiou, Recent advances in fiber Bragg grating sensing, Sensors, 24 (2024), 532. https://doi.org/10.3390/s24020532 doi: 10.3390/s24020532
    [23] I. Samir, H. M. Ahmed, Extracting stochastic solutions for complex Ginzburg–Landau model with chromatic dispersion and Kerr law nonlinearity using improved modified extended tanh technique, Opt. Quant. Electron., 56 (2024), 824. https://doi.org/10.1007/s11082-024-06677-0 doi: 10.1007/s11082-024-06677-0
    [24] Y. Alhojilan, H. M. Ahmed, Investigating the noise effect on the CGL model having parabolic law of nonlinearity, Results Phys., 53 (2023), 106952. https://doi.org/10.1016/j.rinp.2023.106952 doi: 10.1016/j.rinp.2023.106952
    [25] W. B. Rabie, H. M. Ahmed, Optical solitons for multiple-core couplers with polynomial law of nonlinearity using the modified extended direct algebraic method, Optik, 258 (2022), 168848. https://doi.org/10.1016/j.ijleo.2022.168848 doi: 10.1016/j.ijleo.2022.168848
    [26] E. Zayed, R. Shohib, B. Anjan, Y. Yakup, A. Maggie, P. Seithuti, et al., Gap solitons with cubic-quartic dispersive reflectivity and parabolic law of nonlinear refractive index, Ukr. J. Phys. Opt., 24 (2023), 4030–4045.
    [27] M. S. Ahmed, A. A. S. Zaghrout, H. M. Ahmed, Exploration new solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity using improved modified extended tanh-function method, Eur. Phys. J. Plus, 138 (2023), 32. https://doi.org/10.1140/epjp/s13360-023-03666-2 doi: 10.1140/epjp/s13360-023-03666-2
    [28] A. Biswas, J. Vega-Guzman, M. F. Mahmood, S. Khan, Q. Zhou, S. P. Moshokoa, et al., Solitons in optical fiber Bragg gratings with dispersive reflectivity, Optik, 182 (2019), 119–123. https://doi.org/10.1016/j.ijleo.2018.12.180 doi: 10.1016/j.ijleo.2018.12.180
    [29] L. Zeng, J. Shi, M. R. Belić, D. Mihalache, J. Chen, J. Li, et al., Surface gap solitons in the Schrödinger equation with quintic nonlinearity and a lattice potential, Opt. Express, 31 (2023), 35471–35483. https://doi.org/10.1364/OE.497973 doi: 10.1364/OE.497973
    [30] C. M. de Sterke, J. E. Sipe, Gap solitons, Prog. Optics, 33 (1994), 203–260. https://doi.org/10.1016/S0079-6638(08)70515-8 doi: 10.1016/S0079-6638(08)70515-8
    [31] K. S. Al-Ghafri, M. Sankar, E. V. Krishnan, S. Khan, A. Biswas, Chirped gap solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index, J. Eur. Opt. Society-Rapid Publ., 19 (2023), 30. https://doi.org/10.1051/jeos/2023025 doi: 10.1051/jeos/2023025
    [32] A. S. Khalifa, N. M. Badra, H. M. Ahmed, W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 287 (2023), 171116. https://doi.org/10.1016/j.ijleo.2023.171116 doi: 10.1016/j.ijleo.2023.171116
    [33] E. M. E. Zayed, R. M. A. Shohib, A. Biswas, M. Ekici, H. Triki, A. K. Alzahrani, et al., Optical solitons with fiber Bragg gratings and dispersive reflectivity having parabolic–nonlocal combo nonlinearity via three prolific integration architectures, Optik, 208 (2020), 164065. https://doi.org/10.1016/j.ijleo.2019.164065 doi: 10.1016/j.ijleo.2019.164065
    [34] E. M. E. Zayed, R. M. A. Shohib, A. Biswas, O. González-Gaxiola, Y. Yıldırım, A. K. Alzahrani, et al., Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation, Chinese J. Phys., 65 (2020), 613–628. https://doi.org/10.1016/j.cjph.2020.03.017 doi: 10.1016/j.cjph.2020.03.017
    [35] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Ekici, A. K. Alzahrani, M. R. Belic, Chirped and chirp-free optical solitons in fiber Bragg gratings with Kudryashov's model in presence of dispersive reflectivity, J. Commun. Technol. Electron., 65 (2020), 1267–1287. https://doi.org/10.1134/S1064226920110200 doi: 10.1134/S1064226920110200
    [36] N. A. Kudryashov, Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity, Chinese J. Phys., 66 (2020), 401–405. https://doi.org/10.1016/j.cjph.2020.06.006 doi: 10.1016/j.cjph.2020.06.006
    [37] H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332 doi: 10.3389/fphy.2020.00332
    [38] L. Akinyemi, U. Akpan, P. Veeresha, H. Rezazadeh, M. Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, J. Ocean Eng. Sci., 2022. In press. https://doi.org/10.1016/j.joes.2022.02.011
    [39] S. Ibrahim, T. A. Sulaiman, A. Yusuf, A. S. Alshomrani, D. Baleanu, Families of optical soliton solutions for the nonlinear Hirota-Schrodinger equation, Opt. Quant. Electron., 54 (2022), 722. https://doi.org/10.1007/s11082-022-04149-x doi: 10.1007/s11082-022-04149-x
    [40] N. M. Kamel, H. M. Ahmed, W. B. Rabie, Retrieval of soliton solutions for $4th$-order $(2+1)$-dimensional Schrödinger equation with higher-order odd and even terms by modified Sardar sub-equation method, Ain Shams Eng. J., 15 (2024), 102808. https://doi.org/10.1016/j.asej.2024.102808 doi: 10.1016/j.asej.2024.102808
    [41] E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, A. Biswas, Y. Yildirim, C. M. B. Dragomir, et al., Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic nonlocal nonlinearity, Ukr. J. Phys. Opt., 25 (2024), 01033–01044. https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01033 doi: 10.3116/16091833/Ukr.J.Phys.Opt.2024.01033
    [42] M. Soliman, H. M. Ahmed, N. Badra, T. A. Nofal, I. Samir, Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method, AIMS Mathematics, 9 (2024), 25205–25222. https://doi.org/10.3934/math.20241229 doi: 10.3934/math.20241229
    [43] A. J. M. Jawad, Y. Yildirim, L. Hussein, A. Biswas, Sequel to "Highly dispersive optical solitons with differential group delay for kerr law of self—phase modulation by sardar sub—equation approach": non—local law of self—phase modulation, J. Opt., 2024. https://doi.org/10.1007/s12596-024-02185-2
    [44] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, M. El-Shater, A. Biswas, Y. Yildirim, et al., Alshomrani, Highly dispersive optical gap solitons with Kundu-Eckhaus equation having multiplicative white noise, Contemp. Math., 5 (2024), 1949–1965. https://doi.org/10.37256/cm.5220244141 doi: 10.37256/cm.5220244141
    [45] A. Patel, V. Kumar, Modulation instability analysis of a nonautonomous (3+1)-dimensional coupled nonlinear Schrödinger equation, Nonlinear Dyn., 104 (2021), 4355–4365. https://doi.org/10.1007/s11071-021-06558-1 doi: 10.1007/s11071-021-06558-1
    [46] K. Zhang, Z. Li, J. Cao, Qualitative analysis and modulation instability for the extended (3+1)-dimensional nonlinear Schrödinger equation with conformable derivative, Results Phys., 61 (2024), 107713. https://doi.org/10.1016/j.rinp.2024.107713 doi: 10.1016/j.rinp.2024.107713
    [47] Y. Chahlaoui, A. Ali, S. Javed, Study the behavior of soliton solution, modulation instability and sensitive analysis to fractional nonlinear Schrödinger model with Kerr Law nonlinearity, Ain Shams Eng. J., 15 (2024), 102567. https://doi.org/10.1016/j.asej.2023.102567 doi: 10.1016/j.asej.2023.102567
    [48] H. Ahmad, K. U. Tariq, S. M. R. Kazmi, Stability, modulation instability and traveling wave solutions of (3+1)dimensional Schrödinger model in physics, Opt. Quant. Electron., 56 (2024), 1237. https://doi.org/10.1007/s11082-024-07031-0 doi: 10.1007/s11082-024-07031-0
    [49] A. K. Chakrabarty, S. Akter, M. Uddin, M. M. Roshid, A. Abdeljabbar, H. Or-Roshid, Modulation instability analysis, and characterize time-dependent variable coefficient solutions in electromagnetic transmission and biological field, Part. Differ. Equ. Appl. Math., 11 (2024), 100765. https://doi.org/10.1016/j.padiff.2024.100765 doi: 10.1016/j.padiff.2024.100765
    [50] K. K. Ali, S. Tarla, M. R. Ali, A. Yusuf, Modulation instability analysis and optical solutions of an extended (2+1)-dimensional perturbed nonlinear Schrödinger equation, Results Phys., 45 (2023), 106255. https://doi.org/10.1016/j.rinp.2023.106255 doi: 10.1016/j.rinp.2023.106255
    [51] H. Alsaud, M. Youssoufa, M. Inc, I. E. Inan, H. Bicer, Some optical solitons and modulation instability analysis of (3+1)-dimensional nonlinear Schrödinger and coupled nonlinear Helmholtz equations, Opt. Quant. Electron., 56 (2024), 1138. https://doi.org/10.1007/s11082-024-06851-4 doi: 10.1007/s11082-024-06851-4
    [52] H. Ur. Rehman, A. U. Awan, A. M. Hassan, S. Razzaq, Analytical soliton solutions and wave profiles of the (3+1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation, Results Phys., 52 (2023), 106769. https://doi.org/10.1016/j.rinp.2023.106769 doi: 10.1016/j.rinp.2023.106769
    [53] S. Li, X. Zhao, Y. He, L. Wang, W. Fan, X. Gao, et al., Er-doped fiber lasers with all-fiber dispersion management based on Cr$_2$Sn$_2$Te$_6$ saturable absorbers, Opt. Laser Technol., 175 (2024), 110729. https://doi.org/10.1016/j.optlastec.2024.110729 doi: 10.1016/j.optlastec.2024.110729
    [54] S. Peng, Z. Wang, F. Hu, Z. Li, Q. Zhang, P. Lu, 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management, Front. Optoelectron., 17 (2024), 3. https://doi.org/10.1007/s12200-024-00107-5 doi: 10.1007/s12200-024-00107-5
    [55] X. Cao, X. Li, S. Li, Z. Cheng, Y. Xiong, Y. Feng, et al., All-fiber low-noise $1.06 \mu m $ optical frequency comb generated by a figure-9 laser with chirped fiber Bragg grating, Opt. Fiber Technol., 86 (2024), 103853. https://doi.org/10.57760/sciencedb.15246 doi: 10.57760/sciencedb.15246
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(973) PDF downloads(58) Cited by(5)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog