Research article Special Issues

Arbitrary finite spectrum assignment and stabilization of bilinear systems with multiple lumped and distributed delays in state

  • Received: 08 December 2024 Revised: 23 February 2025 Accepted: 18 March 2025 Published: 26 March 2025
  • MSC : 93B55, 93D23, 93C43, 34H15

  • We consider a bilinear control system defined by a linear time-invariant system of differential equations with multiple lumped and distributed delays in the state variable. A problem of finite spectrum assignment is studied. One needs to construct control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Corollaries on stabilization of a bilinear system with delays are obtained. An illustrative example is presented.

    Citation: Vasilii Zaitsev, Inna Kim. Arbitrary finite spectrum assignment and stabilization of bilinear systems with multiple lumped and distributed delays in state[J]. AIMS Mathematics, 2025, 10(3): 6934-6951. doi: 10.3934/math.2025317

    Related Papers:

  • We consider a bilinear control system defined by a linear time-invariant system of differential equations with multiple lumped and distributed delays in the state variable. A problem of finite spectrum assignment is studied. One needs to construct control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Corollaries on stabilization of a bilinear system with delays are obtained. An illustrative example is presented.



    加载中


    [1] R. R. Mohler, Bilinear control processes: with applications to engineering, ecology, and medicine, Elsevier, 1973. https://doi.org/10.1016/s0076-5392(08)x6126-0
    [2] V. Jurdjevic, J. P. Quinn, Controllability and stability, J. Differ. Equations, 28 (1978), 381–389. https://doi.org/10.1016/0022-0396(78)90135-3 doi: 10.1016/0022-0396(78)90135-3
    [3] M. Slemrod, Stabilization of bilinear control systems with applications to nonconservative problems in elasticity, SIAM J. Control Optim., 16 (1978), 131–141. https://doi.org/10.1137/0316010 doi: 10.1137/0316010
    [4] P. O. Gutman, Stabilizing controllers for bilinear systems, IEEE Trans. Automat. Control, 26 (1981), 917–922. https://doi.org/10.1109/tac.1981.1102742 doi: 10.1109/tac.1981.1102742
    [5] J. Tsinias, N. Kalouptsidis, A. Bacciotti, Lyapunov functions and stability of dynamical polysystems, Math. Syst. Theory, 19 (1986), 333–354. https://doi.org/10.1007/bf01704919 doi: 10.1007/bf01704919
    [6] F. Amato, C. Cosentino, A. S. Fiorillo, A. Merola, Stabilization of bilinear systems via linear state-feedback control, IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, 56 (2009), 76–80. https://doi.org/10.1109/tcsii.2008.2008528 doi: 10.1109/tcsii.2008.2008528
    [7] V. Andrieu, S. Tarbouriech, Global asymptotic stabilization for a class of bilinear systems by hybrid output feedback, IEEE Trans. Automat. Control, 58 (2013), 1602–1608. https://doi.org/10.1109/tac.2012.2229842 doi: 10.1109/tac.2012.2229842
    [8] S. Lin, B. De Schutter, D. Li, Stabilizing controller design for state-based switching bilinear systems, 2018 IEEE Conference on Decision and Control (CDC), 2018, 6452–6457. https://doi.org/10.1109/cdc.2018.8618956
    [9] M. N. Monfared, Y. Kawano, J. E. Machado, D. Astolfi, M. Cucuzzella, Stabilization for a class of bilinear systems: a unified approach, IEEE Control Syst. Lett., 7 (2023), 2791–2796. https://doi.org/10.1109/lcsys.2023.3289703 doi: 10.1109/lcsys.2023.3289703
    [10] Y. Kawano, M. Cucuzzella, Stabilization for a class of positive bilinear systems, IEEE Control Syst. Lett., 7 (2023), 3519–3524. https://doi.org/10.1109/lcsys.2023.3334725 doi: 10.1109/lcsys.2023.3334725
    [11] V. A. Zaitsev, Uniform global asymptotic stabilisation of bilinear non-homogeneous periodic systems with stable free dynamics, Int. J. Syst. Sci., 48 (2017), 3403–3410. https://doi.org/10.1080/00207721.2017.1385875 doi: 10.1080/00207721.2017.1385875
    [12] V. A. Zaitsev, Sufficient conditions for uniform global asymptotic stabilization of discrete-time periodic bilinear systems, IFAC-PapersOnLine, 50 (2017), 11529–11534. https://doi.org/10.1016/j.ifacol.2017.08.1623 doi: 10.1016/j.ifacol.2017.08.1623
    [13] V. A. Zaitsev, Uniform global asymptotic stabilization of bilinear non-homogeneous periodic discrete-time systems, 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB), IEEE, 2018. https://doi.org/10.1109/stab.2018.8408412
    [14] M. Ouzahra, Stabilisation of infinite-dimensional bilinear systems using a quadratic feedback control, Int. J. Control, 82 (2009), 1657–1664. https://doi.org/10.1080/00207170802657348 doi: 10.1080/00207170802657348
    [15] M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim., 48 (2010), 3962–3974. https://doi.org/10.1137/080739161 doi: 10.1137/080739161
    [16] A. Benzaza, M. Ouzahra, Weak and strong stabilisation of bilinear systems in a Banach space, Int. J. Control, 92 (2019), 2784–2790. https://doi.org/10.1080/00207179.2018.1459858 doi: 10.1080/00207179.2018.1459858
    [17] D. W. C. Ho, G. Lu, Y. Zheng, Global stabilisation for bilinear systems with time delay, IEE Proceedings-Control Theory Appl., 149 (2002), 89–94. https://doi.org/10.1049/ip-cta:20020114 doi: 10.1049/ip-cta:20020114
    [18] Z. Hamidi, R. El Ayadi, M. Ouzahra, Feedback stabilization of non-homogeneous bilinear systems with a finite time delay, Math. Methods Appl. Sci., 46 (2023), 1317–1334. https://doi.org/10.1002/mma.8582 doi: 10.1002/mma.8582
    [19] Z. Hamidi, A. Elazzouzi, M. Ouzahra, Feedback stabilization of delayed bilinear systems, Differ. Equ. Dyn. Syst., 32 (2024), 87–100. https://doi.org/10.1007/s12591-021-00560-0 doi: 10.1007/s12591-021-00560-0
    [20] V. Zaitsev, Global asymptotic stabilization of autonomous bilinear complex systems, Eur. J. Control, 65 (2022), 100644. https://doi.org/10.1016/j.ejcon.2022.100644 doi: 10.1016/j.ejcon.2022.100644
    [21] V. Zaitsev, E. Zaitsev, Global asymptotic stabilization of single-input bilinear discrete time-invariant complex systems, 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, 5769–5774. https://doi.org/10.1109/cdc51059.2022.9993411
    [22] V. Zaitsev, Global asymptotic stabilization of time-invariant bilinear non-homogeneous complex systems, 2023 62nd IEEE Conference on Decision and Control (CDC), 2023, 6659–6664. https://doi.org/10.1109/cdc49753.2023.10383400
    [23] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos, Soliton. Fract., 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
    [24] D. Kasinathan, R. Kasinathan, R. Kasinathan, D. Chalishajar, Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay differential equations with mixed brownian motions and non-local conditions, Int. J. Optim. Control: Theories Appl. (IJOCTA), 15 (2025), 101. https://doi.org/10.36922/ijocta.1524 doi: 10.36922/ijocta.1524
    [25] C. I. Byrnes, X. Wang, The additive inverse eigenvalue problem for Lie perturbations, SIAM J. Matrix Anal. Appl., 14 (1993), 113–117. https://doi.org/10.1137/0614009 doi: 10.1137/0614009
    [26] W. Helton, J. Rosenthal, X. Wang, Matrix extensions and eigenvalue completions, the generic case, T. Am. Math. Soc., 349 (1997), 3401–3408. https://doi.org/10.1090/s0002-9947-97-01975-2 doi: 10.1090/s0002-9947-97-01975-2
    [27] M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), 1–39. https://doi.org/10.1137/S0036144596303984 doi: 10.1137/S0036144596303984
    [28] M. Kim, J. Rosenthal, X. Wang, Pole placement and matrix extension problems: a common point of view, SIAM J. Control Optim., 42 (2004), 2078–2093. https://doi.org/10.1137/s0363012999354429 doi: 10.1137/s0363012999354429
    [29] V. A. Zaitsev, Necessary and sufficient conditions in a spectrum control problem, Diff. Equat., 46 (2010), 1789–1793. https://doi.org/10.1134/S0012266110120128 doi: 10.1134/S0012266110120128
    [30] W. Michiels, S. I. Niculescu, Stability and stabilization of time-delay systems: an eigenvalue-based approach, Philadelphia: SIAM, 2007. https://doi.org/10.1137/1.9780898718645
    [31] V. Zaitsev, I. Kim, Arbitrary coefficient assignment by static output feedback for linear differential equations with non-commensurate lumped and distributed delays, Mathematics, 9 (2021), 2158. https://doi.org/10.3390/math9172158 doi: 10.3390/math9172158
    [32] V. Zaitsev, I. Kim, Arbitrary coefficient assignment to the characteristic function of the scalar type for linear systems with state delays by linear static delayed output feedback, Eur. J. Control, 76 (2024), 100968. https://doi.org/10.1016/j.ejcon.2024.100968 doi: 10.1016/j.ejcon.2024.100968
    [33] V. Zaitsev, I. Kim, Finite spectrum assignment problem and stabilization of bilinear systems with both lumped and distributed delay, IFAC-PapersOnLine, 58 (2024), 25–30. https://doi.org/10.1016/j.ifacol.2024.10.137 doi: 10.1016/j.ifacol.2024.10.137
    [34] V. A. Zaitsev, I. G. Kim, V. E. Khartovskii, Finite spectrum assignment problem for bilinear systems with several delays, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29 (2019), 319–331. https://doi.org/10.20537/vm190303 doi: 10.20537/vm190303
    [35] I. G. Kim, V. A. Zaitsev, Spectrum assignment by static output feedback for linear systems with time delays in states, 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) STAB, IEEE, 2018. https://doi.org/10.1109/stab.2018.8408365
    [36] I. Asmykovich, V. M. Marchenko, Spectrum control in systems with delay, Automat. Remote Control, 37 (1976), 975–984.
    [37] D. A. Vikker, Dynamics of automatic rheostat voltage regulators, Elektrichestvo, 9 (1934), 26–30.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(724) PDF downloads(29) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog