Research article Special Issues

Enhancing curve smoothness with whale optimization algorithm in positivity and monotonicity-preserving interpolation

  • Received: 24 December 2024 Revised: 13 March 2025 Accepted: 17 March 2025 Published: 26 March 2025
  • MSC : 65D05, 65D07, 65D17, 68U07

  • This study integrated a metaheuristic optimization method, specifically the whale optimization algorithm (WOA), to enhance the positivity and monotonicity-preserving interpolation methods by optimizing the free shape parameter. While this free parameter offers flexibility in modifying the shape of the curve, improper selection can lead to visually unpleasing results. By applying an optimization method, this study introduced a more efficient approach to determine the optimal parameter value. To achieve an optimally smooth curve, three different smoothness metrics, including arc length, strain energy, and curvature variation energy, were minimized as objective functions. The resulting curves were then compared to identify the most effective smoothness metric. Results demonstrated that WOA effectively optimized the free shape parameters, and the curvature variation energy was proven to be the best smoothness metric as it produced the smoothest interpolation. Applications of this technique were demonstrated in preserving positivity for COVID-19 death cases and ensuring monotonicity of cumulative rainfall measurements.

    Citation: Salwa Syazwani Mahzir, Md Yushalify Misro. Enhancing curve smoothness with whale optimization algorithm in positivity and monotonicity-preserving interpolation[J]. AIMS Mathematics, 2025, 10(3): 6910-6933. doi: 10.3934/math.2025316

    Related Papers:

  • This study integrated a metaheuristic optimization method, specifically the whale optimization algorithm (WOA), to enhance the positivity and monotonicity-preserving interpolation methods by optimizing the free shape parameter. While this free parameter offers flexibility in modifying the shape of the curve, improper selection can lead to visually unpleasing results. By applying an optimization method, this study introduced a more efficient approach to determine the optimal parameter value. To achieve an optimally smooth curve, three different smoothness metrics, including arc length, strain energy, and curvature variation energy, were minimized as objective functions. The resulting curves were then compared to identify the most effective smoothness metric. Results demonstrated that WOA effectively optimized the free shape parameters, and the curvature variation energy was proven to be the best smoothness metric as it produced the smoothest interpolation. Applications of this technique were demonstrated in preserving positivity for COVID-19 death cases and ensuring monotonicity of cumulative rainfall measurements.



    加载中


    [1] J. U. Md, K. Md, M. M. Mir, A new method of central difference interpolation, Appl. Math. Sci. Int. J., 6 (2019), 01–14. http://dx.doi.org/10.5121/mathsj.2019.6301 doi: 10.5121/mathsj.2019.6301
    [2] M. Z. Hussain, M. Hussain, A. Waseem, Shape-preserving trigonometric functions, Comput. Appl. Math., 33 (2014), 411–431. https://dx.doi.org/10.1007/s40314-013-0071-1 doi: 10.1007/s40314-013-0071-1
    [3] A. N. H. Tahat, A. R. M. Piah, Z. R. Yahya, Rational cubic ball curves for monotone data, in AIP Conference Proceedings, vol. 1750, AIP Publishing, 2016, 030021. https://dx.doi.org/10.1063/1.4954557
    [4] A. Ahmad, A. Ashaari, N. B. M. Isa, Using bézier-ball function to interpolate positive real data and it's application, in 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, 2020, 1–6. https://dx.doi.org/10.1109/ICRAIE51050.2020.9358380
    [5] S. A. A. Karim, S. S. K. Raju, Wind velocity data interpolation using rational cubic spline, in MATEC Web of Conferences, vol. 225, EDP Sciences, 2018, 04006. https://dx.doi.org/10.1051/matecconf/201822504006
    [6] M. Abbas, A. A. Majid, J. M. Ali, Monotonicity-preserving ${C}^{2}$ rational cubic spline for monotone data, Appl. Math. Comput., 219 (2012), 2885–2895. https://dx.doi.org/10.1016/j.amc.2012.09.007 doi: 10.1016/j.amc.2012.09.007
    [7] M. Z. Hussain, M. Hussain, Z. Yameen, A ${C}^{2}$-continuous rational quintic interpolation scheme for curve data with shape control, J. Natl. Sci. Found. Sri, 46 (2018), 341–354. https://dx.doi.org/10.4038/jnsfsr.v46i3.8486 doi: 10.4038/jnsfsr.v46i3.8486
    [8] S. S. Mahzir, M. Y. Misro, Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves, Alex. Eng. J., 80 (2023), 122–133. https://dx.doi.org/10.1016/j.aej.2023.08.009 doi: 10.1016/j.aej.2023.08.009
    [9] S. S. Mahzir, M. Y. Misro, K. T. Miura, Preserving monotone or convex data using quintic trigonometric bézier curves, AIMS Math., 9 (2024), 5971–5994. https://dx.doi.org/10.3934/math.2024292 doi: 10.3934/math.2024292
    [10] M. A. Aceves-Fernández, Swarm Intelligence-Recent Advances and Current Applications, IntechOpen, Rijeka, 2023. https://dx.doi.org/10.5772/intechopen.100661
    [11] G. Hu, J. Zheng, X. Ji, X. Qin, Enhanced tunicate swarm algorithm for optimizing shape of ${C}^{2}$ rqi-spline curves, Eng. Appl. Artif. Intel., 121 (2023), 105958. https://dx.doi.org/10.1016/j.engappai.2023.105958 doi: 10.1016/j.engappai.2023.105958
    [12] J. Zheng, G. Hu, X. Ji, X. Qin, Quintic generalized hermite interpolation curves: Construction and shape optimization using an improved gwo algorithm, Comput. Appl. Math., 41 (2022), 115. https://dx.doi.org/10.1007/s40314-022-01813-6 doi: 10.1007/s40314-022-01813-6
    [13] X. Wei, H. Huang, A survey on several new popular swarm intelligence optimization algorithms, Research Square. https://doi.org/10.21203/rs.3.rs-2450545/v1
    [14] M. Li, L. D. Li, A novel method of curve fitting based on optimized extreme learning machine, Appl. Artif. Intell., 34 (2020), 849–865. https://dx.doi.org/10.1080/08839514.2020.1787677 doi: 10.1080/08839514.2020.1787677
    [15] G. Hu, X. Zhu, G. Wei, C. T. Chang, An improved marine predators algorithm for shape optimization of developable ball surfaces, Eng. Appl. Artif. Intell., 105 (2021), 104417. https://dx.doi.org/10.1016/j.engappai.2021.104417 doi: 10.1016/j.engappai.2021.104417
    [16] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://dx.doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [17] M. H. Nadimi-Shahraki, H. Zamani, Z. Asghari Varzaneh, S. Mirjalili, A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations, Arch. Comput. Meth. E., 30 (2023), 4113–4159. https://dx.doi.org/10.1007/s11831-023-09928-7 doi: 10.1007/s11831-023-09928-7
    [18] S. Mostafa Bozorgi, S. Yazdani, Iwoa: An improved whale optimization algorithm for optimization problems, J. Comput. Des. Eng., 6 (2019), 243–259. https://dx.doi.org/10.1016/j.jcde.2019.02.002 doi: 10.1016/j.jcde.2019.02.002
    [19] G. Kaur, S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284. https://dx.doi.org/10.1016/j.jcde.2017.12.006 doi: 10.1016/j.jcde.2017.12.006
    [20] M. M. Mafarja, S. Mirjalili, Hybrid whale optimization algorithm with simulated annealing for feature selection, Neurocomputing, 260 (2017), 302–312. https://dx.doi.org/10.1016/j.neucom.2017.04.053 doi: 10.1016/j.neucom.2017.04.053
    [21] H. Chen, Y. Xu, M. Wang, X. Zhao, A balanced whale optimization algorithm for constrained engineering design problems, Appl. Math. Model., 71 (2019), 45–59. https://dx.doi.org/10.1016/j.apm.2019.02.004 doi: 10.1016/j.apm.2019.02.004
    [22] H. Singh, V. Rai, N. Kumar, P. Dadheech, K. Kotecha, G. Selvachandran, A. Abraham, An enhanced whale optimization algorithm for clustering, Multimed. Tools Appl., 82 (2023), 4599–4618. https://dx.doi.org/10.1007/s11042-022-13453-3 doi: 10.1007/s11042-022-13453-3
    [23] Y. Zhou, Z. Hao, Multi-strategy improved whale optimization algorithm and its engineering applications, Biomimetics, 10 (2025), 47. https://dx.doi.org/10.1016/j.engappai.2021.104558 doi: 10.1016/j.engappai.2021.104558
    [24] S. Golmaei, J. Vahidi, M. Jamshidi, Whale algorithm for schedule optimization of construction projects employing building information modeling, Eng. Rep., 7 (2025), e70022. https://doi.org/10.1002/eng2.70022 doi: 10.1002/eng2.70022
    [25] S. A. A. Karim, K. V. Pang, Monotonicity preserving using $GC^{1}$ rational quartic spline, in AIP Conference Proceedings, vol. 1482, American Institute of Physics, 2012, 26–31. https://dx.doi.org/10.1063/1.4757432
    [26] S. A. B. A. Karim, Rational cubic spline interpolation for monotonic interpolating curve with ${C}^{2}$ continuity, in MATEC Web of Conferences, vol. 131, EDP Sciences, 2017, 04016. https://dx.doi.org/10.1051/matecconf/201713104016
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(847) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog