The purpose of this study was to investigate the oscillation criteria for nonlinear second-order neutral differential equations with deviating arguments, with a particular emphasis on their non-canonical forms. The primary goal was to expand the current theoretical framework by introducing new relations that improved the monotonicity of positive solutions. To attain this purpose, an iterative technique was used to deduce new oscillation criteria, which helped to enhance present understanding in this field. The study process was based on a thorough review of previous literature, followed by the creation of new oscillation criteria with both theoretical and applied significance. The obtained results were validated by three illustrative instances, demonstrating the importance and influence of these criteria in the study of neutral differential equations, particularly in the study of neutral differential equations, especially in nonlinear contexts.
Citation: Fahd Masood, Salma Aljawi, Omar Bazighifan. Novel iterative criteria for oscillatory behavior in nonlinear neutral differential equations[J]. AIMS Mathematics, 2025, 10(3): 6981-7000. doi: 10.3934/math.2025319
The purpose of this study was to investigate the oscillation criteria for nonlinear second-order neutral differential equations with deviating arguments, with a particular emphasis on their non-canonical forms. The primary goal was to expand the current theoretical framework by introducing new relations that improved the monotonicity of positive solutions. To attain this purpose, an iterative technique was used to deduce new oscillation criteria, which helped to enhance present understanding in this field. The study process was based on a thorough review of previous literature, followed by the creation of new oscillation criteria with both theoretical and applied significance. The obtained results were validated by three illustrative instances, demonstrating the importance and influence of these criteria in the study of neutral differential equations, particularly in the study of neutral differential equations, especially in nonlinear contexts.
| [1] |
J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Mathematische Nachrichten, 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
|
| [2] | R. Bellman, K. L. Cooke, Differential-Difference Equations, New York: Academic Press, 1963. |
| [3] | J. K. Hale, Theory of Functional Differential Equations, Berlin/Heidelberg: Springer, 1977. http://dx.doi.org/10.1007/978-1-4612-9892-2 |
| [4] | L. H. Erbe, H. Wang, Oscillation theory for delay differential equations with deviating arguments, J. Math. Anal. Appl., 164 (1992), 472–486. |
| [5] |
S. R. Grace, Oscillation of certain neutral difference equations of mixed type, J. Math. Anal. Appl., 224 (1998), 241–254. https://doi.org/10.1006/jmaa.1998.6001 doi: 10.1006/jmaa.1998.6001
|
| [6] |
R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Appl. Math. Lett., 18 (2005), 1201–1207. https://DOI:10.1007/978-94-017-2515-6 doi: 10.1007/978-94-017-2515-6
|
| [7] | S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 187 (2006), 123–141. |
| [8] |
F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. El-Metwally, On the monotonic properties and oscillatory behavior of solutions of neutral differential equations, Demonstr. Math., 56 (2023), 20230123. https://doi.org/10.1515/dema-2023-0123 doi: 10.1515/dema-2023-0123
|
| [9] |
B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Asymptotic and Oscillatory Properties for Even-Order Nonlinear Neutral Differential Equations with Damping Term, Symmetry, 17 (2025), 87. https://doi.org/10.3390/sym17010087 doi: 10.3390/sym17010087
|
| [10] |
C. G. Philos, Oscillation theorems for linear differential equation of second order, Arch. Math, 53 (1989), 483–492. http://dx.doi.org/10.1007/BF01324723 doi: 10.1007/BF01324723
|
| [11] | S. H. Saker, R. P. Agarwal, Oscillation criteria for second-order neutral delay differential equations, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3587–3595. |
| [12] | C. Tunc, New oscillation criteria for certain second-order neutral differential equations, Nonlinear Dyn., 73 (2013), 1087–1093. |
| [13] |
Z. Han, T. Li, S. Sun, Y. Sun, Remarks on the paper, Appl. Math. Comput., 215 (2010), 3998–4007. https://doi.org/10.1016/j.amc.2009.12.006 doi: 10.1016/j.amc.2009.12.006
|
| [14] |
B. Baculíková, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Letters, 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
|
| [15] |
J. Džurina, I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
|
| [16] |
I. Jadlovská, G. E. Chatzarakis, J. Džurina, S. R. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 14 (2021), 1675. https://doi.org/10.3390/math9141675 doi: 10.3390/math9141675
|
| [17] |
O. Bazighifan, H. Alotaibi, A. A. A. Mousa, Neutral Delay Differential Equations: Oscillation Conditions for the Solutions, Symmetry, 13 (2021), 101. https://doi.org/10.3390/sym13010101 https://doi.org/10.3390/sym13010101 doi: 10.3390/sym13010101
|
| [18] |
O. Moaaz, B. Almarri, F. Masood, D. Atta, Even-order neutral delay differential equations with noncanonical operator: New oscillation criteria, Fractal and Fractional, 6 (2022), 313. https://doi.org/10.3390/fractalfract6060313 doi: 10.3390/fractalfract6060313
|
| [19] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
|
| [20] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, S. S. Rabie, E. M. Elabbasy, Oscillation of Third-Order Differential Equations with Advanced Arguments, Mathematics, 12 (2024), 93. https://doi.org/10.3390/math12010093 doi: 10.3390/math12010093
|
| [21] |
Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations, Electron. J. Qual. Theory Differ. Equ., 2019, 89. https://doi.org/10.14232/ejqtde.2019.1.89 doi: 10.14232/ejqtde.2019.1.89
|
| [22] |
Y. G. Sun, F. W. Meng, Note on the paper of Džurina and Stavroulakis, Appl. Math. Comput., 164 (2006), 1634–1641. https://doi.org/10.1016/j.amc.2005.07.008 doi: 10.1016/j.amc.2005.07.008
|
| [23] |
T. Kusano, Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hung., 76 (1997), 81–99. https://doi.org/10.1007/bf02907054 doi: 10.1007/bf02907054
|
| [24] | R. P. Agarwal, M. Bohner, T. Li, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1–6. http://www.jstor.org/stable/43999551 |
| [25] |
Z. Han, T. LI, S. Sun, W. Chen, On the oscillation of second-order neutral delay differential equations, Adv. Differ. Equ., 8 (2010), 289340. http://doi:10.1155/2010/763278 doi: 10.1155/2010/763278
|
| [26] | S. R. Grace, B. S. Lalli, Oscillation of nonlinear second order neutral delay differential equations, Rad. Math., 3 (1987), 77–84. |
| [27] |
M. Bohner, S. R. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 60. http://doi:10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
|
| [28] |
C. Zhang, M. T. Şenel, T. Li, Oscillation of second-order half-linear differential equations with several neutral terms, J. Appl. Math. Comput., 44 (2014), 511–518. http://10.1007/s12190-013-0705-x doi: 10.1007/s12190-013-0705-x
|
| [29] |
S. Sun, T. Li, Z. Han, H. Li, Oscillation Theorems for Second-Order Quasilinear Neutral Functional Differential Equations, Abstr. Appl. Anal., 2012 (2012), 819342. https://doi.org/10.1155/2012/819342 doi: 10.1155/2012/819342
|
| [30] |
O. Moaaz, F. Masood, C. Cesarano, S. A. M. Alsallami, E. M. Khalil, M. L. Bouazizi, Neutral Differential Equations of Second-Order: Iterative Monotonic Properties, Mathematics, 10 (2022), 1356. https://doi.org/10.3390/math10091356 doi: 10.3390/math10091356
|
| [31] |
A. Alemam, A. Al-Jaser, O. Moaaz, F. Masood, H. El-Metwally, Second-Order Neutral Differential Equations with a Sublinear Neutral Term: Examining the Oscillatory Behavior, Axioms, 13 (2024), 681. https://doi.org/10.3390/axioms13100681 doi: 10.3390/axioms13100681
|
| [32] |
B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Nonlinear Neutral Delay Differential Equations: Novel Criteria for Oscillation and Asymptotic Behavior, Mathematics, 13 (2025), 147. https://doi.org/10.3390/math13010147 doi: 10.3390/math13010147
|
| [33] | G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, New York: Marcel Dekker, 1987. |