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Abstract: The purpose of this study was to investigate the oscillation criteria for nonlinear second-
order neutral differential equations with deviating arguments, with a particular emphasis on their non-
canonical forms. The primary goal was to expand the current theoretical framework by introducing
new relations that improved the monotonicity of positive solutions. To attain this purpose, an iterative
technique was used to deduce new oscillation criteria, which helped to enhance present understanding
in this field. The study process was based on a thorough review of previous literature, followed by the
creation of new oscillation criteria with both theoretical and applied significance. The obtained results
were validated by three illustrative instances, demonstrating the importance and influence of these
criteria in the study of neutral differential equations, particularly in the study of neutral differential
equations, especially in nonlinear contexts.
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1. Introduction

In this paper, we investigate the oscillatory properties of nonlinear second-order neutral differential
equations (NDEs) of the form:

b
(k(s) (W' (s))*) + f h(s, O)y* (o (s, £))dt = 0, (1.1)
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where w (s) = y(s) +u(s)y (7 (s)). The following hypotheses are assumed throughout this study:

(Hyp.1) 0 < @ £ 1, @ > B are ratios of odd positive integers;
(Hyp.2) h € C([sg, ) X (a,b),R) and h(s, £) > 0;

(Hyp'3) ue C ([SO’ OO) 5 (Oa OO)) 5 O <u (S) < 1’ TE Cl([SO’ 00), R)a o€ Cl([s()’ OO) X (a$ b) 5 R)7 T(S) < S,
o(s,{) < s, o has nonnegative partial derivatives with respect to s and nondecreasing with respect
to €, limg_,,, T(8) = o0, and limg_,, 0°(s, £) = oo for £ € [a, b];

(Hyp.4) k € C ([sg, ), R") satisfies the noncanonical case. That is

0 1
&(so) = j;) K1/a—@d9 < oo, (1.2)

where

0 1
£(s) = f e

(Hyp.5) u(s) < &(s)/&(7(s)).

Below we provide some basic definitions [1]:

(i) A function y (s) € C([sy, ), R), sy > so, is said to be a solution of (1.1) which has the property
k(s) (w (8))* € C! [sy, o), and it satisfies (1.1) for all s € [sy, o). We consider only those solutions y(s)
of (1.1) that are defined on a half-line [s, c0) and satisfy the condition

sup{ly(s)| : s > S} > 0, forall S > s,.

(i1) A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory.

(ii1) The Eq (1.1) is said to be oscillatory if all its solutions are oscillatory.

The study of differential equations (DEs) is a cornerstone of mathematical analysis, particularly in
understanding dynamic systems that arise in various scientific and engineering applications. Among
these, (NDEs) play a critical role in modeling phenomena where the derivative of the unknown function
depends not only on the function itself but also on its delayed or advanced argument. In recent decades,
there has been a growing interest in the qualitative analysis of such equations, particularly regarding
their oscillatory behavior. This interest stems from the fact that oscillatory solutions often represent
stable or periodic phenomena in real-world systems; see [2—4].

Oscillation theorems are pivotal in the analysis of DEs, as they provide critical insight into the
nature of solutions, particularly in identifying whether these solutions exhibit oscillatory behavior
over time. These theorems are essential tools for mathematicians and scientists alike, helping to
predict and understand the dynamics of various physical, biological, and engineering systems.
Historically, oscillation criteria have been developed and refined to handle a wide array of DEs, from
simple linear forms to more intricate nonlinear systems. In recent years, there has been significant
progress in extending these classical theorems to accommodate the growing complexity of DEs,
including those with non-standard, non-canonical forms. These advancements reflect the continuous
evolution of mathematical methods and the increasing sophistication of the systems being studied,
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making oscillation theorems more relevant and applicable than ever before in addressing
contemporary challenges across multiple disciplines; see [5-9].

Second-order non-linear neutral differential equations (NDEs) with deviating arguments constitute
a specialized class of DEs that have garnered significant attention due to their broad applications in
physics, engineering, and biological systems. These equations are distinguished by terms involving
delays or advanced arguments, adding layers of complexity to their analysis and necessitating advanced
mathematical techniques for understanding their behavior. While previous studies have extensively
examined the existence and stability of solutions, less attention has been given to their oscillatory
behavior. The oscillation of solutions to such equations, however, remains an active area of research,
motivated by the need to establish precise conditions under which solutions oscillate or converge. In
particular, the interplay between nonlinear terms and deviating arguments presents unique challenges
that require refined criteria and novel analytical approaches, see [10-12].

In recent years, the study of the oscillatory and exponential behavior of DEs with delays and
neutral terms across different orders has seen increasing interest, as illustrated by the work of Han et
al. [13], Baculikova [14], DZurina et al. [15], Jadlovska et al. [16], Bazighifan et al. [17], Moaaz et
al. [18], and Aldiaiji et al [19,20]. This broad interest has led to major advances in the understanding
of complex periodic solutions ranging from simple harmonic motion to chaotic oscillations and has
enabled accurate analyses of critical properties such as amplitude, frequency, and stability. Here is a
comprehensive review of the foundational studies that have contributed significantly to this field:
Baculikovd [21] investigated the second-order delay differential equations (DDEs) oscillatory
characteristics:

(k(s)y" (5))" + h(s)y(o(s)) = 0, (1.3)
under the case (1.2). However, both Sun and Meng [22], and Kusano et al. [23] noted that NDEs had
the following characteristics:

(ko
and the linear form that corresponds to them

(k()y' (8)) +h(s)y(s) =0. (1.5)

Sufficient criteria have been established by Agarwal et al. [24] to guarantee the oscillatory behavior
of second-order DEs with a neutral term:

y oy (s))' +h©) |y @)y ) =0, (1.4)

(k) (y (5) +u () y" (z (S)))’)/ +h(s)y(o(s)) = 0, (1.6)
under the conditions: _
—do = o,
fso @
and
foo Ld < 00
o k() g

Han et al. [25] reviewed oscillations in second-order linear NDEs (1.6) where @ = 1, and introduced
criteria under the condition 0 <u(s) <uy < oco. This analysis was expanded upon by Grace and Lalli [26]
to the equation

(k©GE+uEys-0)) +hE) fy(s-0) =0, (1.7)
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where f (y) /y > k > 0 and fsz" 1/k (€) d¢ = 0.
Bohner et al. [27] also investigated the oscillations of the second-order quasi-linear NDEs

(k(s) [ (9)]) +h(8)y* (o (s)) =0, (1.8)

under the condition (1.2).
In similar studies, Zhang et al. [28] considered a particular type of second-order NDEs

(k® I G ' ®) +h©]y @)y ) =0, (1.9)

where w (s) =y (s) + X7, u; (8) y (7; (s)) , which helps simplify the analysis of these equations.
In the same context, Sun [29] established oscillation criteria for second-order nonlinear NDEs

(k1 G o ®) +h(s) f(s,y @ () =0, (1.10)

they relied on a new variational principle to extract these criteria.
Finally, Moaaz et al. [30] presented a study on the oscillation properties of NDEs

(k(5) (@ () + D l9)y"((s)) = 0. (L.11)
i=1

They proposed new properties characterized by a recursive nature, and extracted oscillation
conditions that guarantee the oscillation of all solutions. Alemam et al. [31] also made an in-depth
study of the oscillatory properties of the second-order NDEs:

(k[ +uEy ) |) + Y ey ois) =0, (1.12)
i=1

by using the Riccati transformation method to establish oscillation criteria.

While much of the previous research has concentrated on the oscillatory properties of linear and
quasi-linear second-order NDEs, resulting in significant advancements in the understanding of their
behavior, the oscillatory characteristics of nonlinear second-order NDEs have not received the same
level of attention, leaving a notable gap in the literature. This study aims to address this gap by
extending the investigation of oscillatory behavior to encompass nonlinear second-order equations.
Building on the work of [30], which explored the oscillatory properties of quasi-linear second-order
equations, this paper adapts and extends the approach to include nonlinear terms. Through this
extension, new oscillation criteria are introduced, tailored to the distinctive features of nonlinear
equations, thereby offering a more comprehensive and nuanced understanding of their oscillatory
dynamics.

2. Preliminary results
Let us define
|1, ifa=p
Ty ifa> B
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and

b B
= @@ ,0)
h(s) := L h(s, {’)(1 —f @ G.0) u(o(s,{))] d¢, 2.1)

for s € [sg, o).

Lemma 2.1. [32] Assume that y(s) is an eventually positive solution of (1.1), then the corresponding
function w(s) satisfies one of two cases eventually:

(C) : w(s)>0, & (s)>0,(k(s)(w (5)") <0,
(C) : w(s)>0, ' (s) <0, (K(S) (w’ (s))")’ <0,

fors >s; = sg.

The subsequent considerations aim to demonstrate that the class (C,) is fundamental.

00 1 v l/a
f (— f h(Q)dQ) dv = oo, (2.2)
s \KOV) Jgg

then, the positive solution y(s) of (1.1) satisfies (C,) in Lemma 2.1 and, moreover
(A1) k()W ()E(s) + w(s) = 0;
(A12) w(s)/&(s) is increasing;
(A1) 1 (9)2 y; B
(A14) (K(8) (W ()Y < =P (0 (s,b)h(s);
(A15) limg_,e w(s) = 0.

Lemma 2.2. If

Proof. Suppose on the contrary that y is a positive solution to (1.1) that meets case (C;) in Lemma 2.1
for s > s; > so. Then there exists a constant ¢y > 0 such that w(s) > ¢y and w (0 (s, £)) > ¢, eventually.
Using the definition of w, we deduce that

YO =w () —u(s)y(T(s) > w(s) —u)w(T(s) > (1 —uls)w().

Then (1.1) becomes

(k(s) (' (8))")

b
-~ f h(s, O)y* (o (s, £))d¢

IA

b
—f h(s, &) (1 = u(o (s, 0)) & (o (s, 0)) de. (2.3)

Since &’ (s) < 0 and 7(s) < s, we get

JCAC0)
E(o(s,0))
and then

£ G.0) (0 (s,0). (2.4)

1-u(o(s,¢)=>1
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By combining (2.3) and (2.4) and integrating the resulting inequality from s; to co, we conclude

that
B
k(1) (@ (51))" j‘bflm &(r—f““’“f”)<a@¢m)aﬁ«ﬂ&€»d&m

Y

£ (.0)
E(T (0 (s,0))) ¢

= Cﬁfsl f h“’“(l‘ Fo6.0) ““’(S’f”) dtdo

> 4 [ T @5)

It follows from (2.2) and (hyp.5) that £ TH(Q) do must be unbounded. Furthermore, since &’ (s) < 0,
it’s clear that

fSH(Q)dQ — c0as s — oo, (2.6)

81
which with (2.5) gives a contradiction.
(A1) Based on case (C,) of Lemma 2.1, it follows that w (s) is positive and decreases for every s >
s1 = sg. By the definition of w (s), we obtain w (s) > y (s) and

y(S) = w(s)—us)w(r(s)), s=s; = sp. 2.7
Since « (s) (w’ (s))” is decreasing, we get
k") w' (s) = kM (D w' (1) forl>s.
1/a

Dividing the resulting inequality by «

k() (8)E(s) + w(s) = 0. (2.8)

(/) and then integrating from s to co, we get

(A;,) From (2.8), we obtain

(w@)_MM@w@mw+mw>o
- KU ()E2(s) g

(A1) In the case where a = 3, it is easy to see that w?/*! (s) = 1. Now, let & > . Since w'(s) < 0,
there exists a constant / > 0, such that
w(s) <1,

and consequently,
W7 (s) = Pt =y,

(A 4) Since w(s)/&(s) is increasing, we get

(T (9))

w(tT(8)) < ) w(s).
In view of the definition of w, we get
_ E(T ()
y) =w(s)—u@E)y@@) Z2w@E) —ud)w(T(s) 2 w(s)|1—ul) s |
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Thus, (1.1) becomes

(k(s) (&' ()"

b
- f h(s, Oy (o (s, £))d¢

b B
£( (0 (s,0)
< —j; h(s,{’)(l —u(a(s,[))m wﬂ(o-(s,f))df
< - (o (s,b)h(s),
that is, _
(k(s) (' (9))") < = (0 (s,b)) h (s). (2.9)

(A;5) Since w(s) > 0, and &'(s) < 0, then lims, w(s) = ¢; > 0. We assert that ¢; = 0. If not,
w(s) > ¢y > 0 fors > s, > s;. Integrating (1.1) from s; to s yields

K(s) (@' (s))" < k(s1) (' (31)" — f o (o (0,b)h(0)do < —&* f h (o) do,
sl S1

and so
Ja

Cf s 1/a
w'(s) < _Kl/“(s) (L h(g)dg) .

Integrating this inequality from s; to co, we find

00 v 1/a
w(sl)zc‘f/“f (Lf'ﬁ(g)dg) dv — o0 as's — oo,
S1 K(V) sl

which contradicts (2.2). Therefore, ¢; = 0.
As aresult, the lemma has been completely proven. O

3. Main results

In this section, we will discuss new monotonic properties for the solutions of (1.1).

Lemma 3.1. Let y(s) be a positive solution of (1.1), and assume that (2.2) holds. If oo € (0, 1) with

1 —
EKI/" (s)h(s) €™ (s) = 65, po = ydo, (3.1

then

(Az1) w(s)/&°(s) is decreasing;
(Az2) limy,eo w(s)/67(s) = 0;
(Ag3) w(s)/E17P(s) is increasing.

Proof. For the purposes of this discussion, let y(s) be an eventually positive solution of (1.1). From
(3.1), it follows that:

0 1 v __ 1/a y 00 1 v 1 1/a
f (@f h@dg) o= 5°fso (x(v)fsl Kl/cv(g)fa“(g)dg) @
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00 l Vv 1 1/a
= a]/“(iof (f dg) dv
o K \Js, «Y(0) &7 (o)

S|
o fso () (EW) - €7%s) " dw.

From (A, 5), we know that lim,_,, w (s) = 0. Then, there exists s; > sy such that £&*(s) — £7%(s;) >
€& “(s) where € € (0, 1). Thus, we have

” 1 Y~ e 1/a * 1
fso (m f; h (o) d@) dv > €% j;) T IED) o) dv
= €%, Slgg In é;((sso)) — 00

Hence, from Lemma 2.2, we have that (A ;)—(A4) hold.
(A1) Integrating (A 4) from s, to s, we obtain

WS @) 2 ks (@ s)) + f W (o (0.b) T (o) do
> k() (1) + & (o (5, b)) f (o) do.

By using (3.1), we get

\Y%

S 6(1/
—k(s) (w'(3))” —k(s1) (@' (31))" + &P(s) f - %

d
] 1/a (Q) é_‘(l+1 (Q) Q
W’(s) 5 W’ ()

= —k(s1) (w'(s1))" + 53% — 0 sy’ (3.2)
Since w(s) — 0 as t — oo, as stated in (A 5), we have
of
—k(s1) (@' (s1))" = 53% >0, s>s,,
and so, (3.2) becomes
Ja
00 > 2,
and so,
k()W (s) + 60w (s) < 0. (3.3)
Furthermore, from (A, 3), we see that
KMU(S)EBS)W (8) + YOow(s) < k¥ ()E(S)w (s) + Fow??(s) < 0.
This results in
KU($)EBS)W (s) + pow(s) < 0. (3.4)
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Consequently,

W) ' _ KIUDESW ($) + powls) _
&P (s) KHe(s)éMro(s) B
(Az2) Since w (s) /&°(s) 1s positive and decreasing, lim,_ . w (s) /E°(s) = ¢; > 0. We assert that
c; = 0. If not, eventually w (s) /€”(s) > ¢, > 0. We now present the function

W(s) = (K/7(8)0 (S)E) + w(s)) 7 (5).
We observe that w(s) > 0 in context of (A ;) in Lemma 2.2, and

&)

<A (s)
1)
<7 (s)

1
— (' ©) e f h(s. Oy (o(s, )AL + po ()7 (5) + pow(s) ™=

E71P(s)
kle(s)

w'(s)

(K7($)0 () €79(5) = (1 = po) &/ ()67 (5) + 0/ () P2(5) + pocols)

1 , — B
— (K() (@' (9))") (K510 () E7P2(5) + poc ()6 (5) + pocols)

E177(s)
l/a(s)

IA

1
- (K010 (5) " € )0 (0 (5, BYT(S) + pow! ()6 + poco(s)
By using (A;3), (3.1), (3.3) and (3.4), we find

5 ” £1(s)
Wwﬁ (8) + pow' ()™ + pow(s) K7o(s)

+ pow' ()67 (8) + pow(s)

w'(s)

( e ) W

el §7(s)
) /e (s)
&) . &)

eGs) * Pow/ ($)E7 (8) + pow(s) 7 ®
—1—po —l—po(s)

) T Pow’ ()7 (s) + pow(s) e (s)

- ey PO o wl)
PO <" O TR Orm < TR 7

IA

IA

—ybow(s)

IA

—pow(s)

IA

Using the fact that w (s) /&°(s) > c,, we get

P0C2

A (EE)

When we integrate the previous inequality from s; to s, we get

&(s1)

w(s) < —

w(s;) > pécz In — 00as s — 09,

which is a contradiction. Thus, ¢, = 0.
(A,3) Finally, we have

(kG0 ©EG) +w ) = (K6 (5) £6) - () + W (5)
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()0 () ()

1 , -

— (k) (@ ) (M © ' ) )
a

< “HeLFOE O ©) o
04
. 1 WPl (s)\' "
< —5omwﬂ (s) (—5ow) £(s)
L1 WPl (s)\'
< mEe” O )
-8 Ja
S ICTIOR
—Y%0 —Po
= e Y S e
When we integrate the previous inequality from s to co, we get
@ (q) 1 w() w(s) (7
K (8)’ (8) € (s) + w (s) Zpofs m@de Ll M (Q)dg > pow (s) .
Thus
()’ ()& (s) + (1 = po) w () 2 0,
and hence ,
( w(s) ) _ KU)W (3) + (1 = po)a(s) >0
gn(s)) K1 (5)E20(s) o
Hence, the proof is complete. O
Theorem 3.1. Assume that (2.2) and (3.1) hold. If
1
Po > 5’ (35)

then, (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that y is an eventually positive solution of (1.1). Referring
to the proof of Lemma 3.1, we obtain

k()0 () € (5) + pow () < O, (3.6)

and
K1)’ (8)E(s) + (1 = po) w(s) = 0. (3.7)

By combining (3.6) and (3.7), we find

0 < k()W ($)E(S) + (1= po) w(s)
= &S () £(s) + pow (5) + (1 = 2p0) w (5)
< (1-2pp)w(s).
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Since w (s) > 0, it must hold that 1 — 2p, > 0, which implies that
po < 1/2,
which leads to a contradiction. This completes the proof. O

When py < %, it is possible to refine the results stated in Lemma 3.1. Since &(s) is a decreasing
function, there exists a constant A > 1 such that

£(a(s, b))

> A (3.8)
£(s)
We introduce the constant p; > pg as follows
ABpo
P1 = Po 4 7 (3.9
1 =2po

Lemma 3.2. Assume (2.2) and (3.1) hold. If y(s) is a positive solution of (1.1), then
(Az1) w(s)/EP'(s) is decreasing;

(Az2) limg_e w(8)/E7'(s) =

(As3) w(s)/E7P1(s) is increasing.

Proof. Assume that y(s) is an eventually positive solution of (1.1) satisfying condition (C;) in
Lemma 2.1 for s > s; > so. From Lemma 2.2, we have that (A ;)-(A;s) hold. Additionally, Lemma
3.1 implies that conditions (A, 1)-(A,3) are satisfied.

(As,) Integrating (A, 4) from s; to s, we get

—k(s) (w'(8))" = —k(s1) (W'(s1))" + f o (o (0, b)) h (o) do.

By using the fact w(s)/£7°(s) is decreasing, we have

s B
—k(s) (W' ()" > —k(s1) (@' (s1))" + fM (%) & (0 (0, b)h (o) do

w(s, b)
& (s, b)

> —k(s1) (W' (s1))" + ( ) f £ (0 (0, b))h (0) do.

By using (3.1) and (3.8), we get

WO > w0 @)+ f‘;ffz))ﬁ I e (0 b))e
> —K(sl)(w’(sl))"+( ;}(2))/3 fl s %fm(g)d@
o s 5] [ £
> k(o) (@ (s1)" + (ﬁﬂg,;) ( g‘jo((ss))) [0-e(5) — gp-as))|
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’ « 6a poo 0~ (Y a)(S)
> —k(s1)(W'(s1))" — (1- —po)fﬁp (s1) (fPO(S))
N SeA W(s)
(1-Lpy ()
Since 5(2)0(2) — 0 ast — oo, as stated in (A, ), we have
’ a 5(1/1&00 0~ a)(S)
—k(87) ((U (Sl)) - (1 - _po)fﬁp & )(é.‘po(s))
and hence 8PP
—k(s) (w,(s))a > 0 (L)B(S)

(1= 2pp) €7 ()

Bpo Ve 1 Pl
g (1 - §po) OO

o\ 1
0
T\, E®KTE)

NBpo /
p 0(1 _ gpo) £(5) 17 (s)

1
P1 £ K(s) w(s),

This implies that

w'(s)

%

v

w(s)

w(s)

which is equivalent to
kM(S)E(S)w (s) + praw(s) < 0. (3.10)

Consequently,

<0.

w(s) | _ KUS)E)w () + prev(s)
&r1(s) KM ($)EM1(s)
So w(s)/&P'(s) is decreasing.
The same procedures as in the Lemma 3.1 proof can be used to verify that conditions (A3,) and
(A3 3) are satisfied. O

If p; < 1/2, we can repeat the previous process and deduce that 9, > §; as follows

ABp1
p2 = po @ .
1- §p1

More generally, if p; < 1/2 fori =1,2,...,n — 1, it is possible to describe

/llgpn—l (3 11)
Pn =P |—5—- :
1- 'gpn—l
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Additionally, by taking the identical actions as in the Lemma 3.2 proof, we may verify the following:
(An1) w(s)/én(s) is decreasing;
(Ap2) limg_,eo w(s)/E77(s) = 0;
(A,3) W(s)/E7P(s) is increasing.

Theorem 3.2. Let (2.2) and (3.1) hold. If there exists a n € N such that

1
n > s 3.12
Pn> 3 (3.12)
then (1.1) is oscillatory.
Theorem 3.3. Let (2.2) and (3.1) hold. If there exists n € N such that
S B\ —a a—1 1 - "
hminff lf(@) (0) do > 2P (1-p )’ (3.13)
so0 Jop £ (0 (0, D)) e

then (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that y(s) is an eventually positive solution of (1.1).
Condition (2.2) guarantees that y(s) satisfies (C,). From Lemma 2.2, we have that (A )—(A4) hold.
We generate the sequence {p,} using (3.11).

We now define the function:

Y (s) = ks)w’ () E(s) + w(s). (3.14)

Based on (A} ;) in Lemma 2.2, we can conclude that ¥(s) > 0. Furthermore, from (A, ;), we can
derive
K (8)w’ (8) € () + paw (s) < 0.

Next, based on the definition of W (s), we get

Y (s)

k() (8)E(8) + puw (s) = puw (s) + w (s)
(I=pa)w(s). (3.15)

From (3.14), (A,4) and (3.4), we deduce that

IA

T (s)

(k"0 (9) £() - ' (8) + 0 (5)
(") ) €(5)

1 , —a
~ (k) (@ ) (" ) ) )
a

IA

IA

1— —a
—h©) o (@ 6.0) (M $) ' (5) €
04

w ()

£6)
1 —
_Epi—“.g (8)h(s) o (o (s, D)) (

IA

1-a
) £(s)

w (S))l—a
§))

1~
—~h(s) o (o (s, b)) (pn

IA

(3.16)
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We observe that w (s) /£ (s) is increasing from (A;,) in Lemma 2.2, then

w((s,b) _w(s)
(o (s,0) ~ &()

Considering that 0 < @ < 1, then

((,L)(O' (S, b)))l—a/ 3 (&)l—a
&(o (s, b)) “\éG))

Hence, (3.16) yields

IA

\Ij/
® (0 (.D))

WP (o (s,b) w (o (s,b)).

l-a
—épi‘“ﬁ(S)f(S)aﬁ (o (5, b)) (M)

£(s)

1 l-a7.
S MY a e

From (A 3) we know that w?~® (o (s, b)) > y°. Therefore the above inequality leads to

£(s)
&= (o (s, D)

By using (3.15) we see that w (s) is a positive solution of

ngs—g;;ﬁkg w (o (s,b)).

04 1-a T
g (s) + L Pn EGNE) g 5.0y <0,

a (1-p,) & (o (s,b))

(3.17)

This results in a contradiction, as Theorem 2.1.1 in [33] ensures that condition (3.13) implies (3.17)

has no positive solution. This contradiction concludes the proof of the theorem.

4. Examples

We provide examples to demonstrate the significance of the obtained results.

Example 4.1. Consider

b
(SZ“ ((y (S) + ugy (TOS))/)Q) + f hos® P (oos0)d€ = 0, s > 1,

that | é@o6s0) 1
T(Oo (S, _
O e W
and
— 1V
m@:w—mmf*@—;%).
0
AIMS Mathematics

O

4.1)

where a > 3,0 <ug < 1, 79, 09 € (0,1), 0of < 1, and hg > 0. When comparing (1.1) and (4.1), we
can see that k (s) = s**, h(s,£) = hos®™, u(s) = ug, o (s,€) = oost, and 7 (s) = 1os. It is easy to find
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For (3.1), we set

g
v [ho (b= a) (1 = Luo)
0o = ” .
Applying (3.8), we obtain A = Uio Now, we define the sequence {p,},_, as

1 1 Ben-1
pn=po\| —5— =]
’ 1 - gpn—l (0-0)

i/ho (b-a)(1 - Lup)
Po =Y .

[0

with

Then, condition (3.5) reduces to

hy > -, (4.2)

and condition (3.13) becomes

. £@h) - f £(@h(o)
1 f — " do =1 f —-———"4d
e Ir(s,b) &2 (o (0,b)) € e aobs €7 (00b0) ¢

s 1 B
= liminf f -0 (oob)™! (b—a)hog“—l(l ——uo) do

§—00 obs © To

= lim inff (o) (b —a)hy (1 - —uo) —do
fog To Y

obs
= (b-a)(ooph) "ho|l — —ug| liminf f —do
TO §—o Uobs Q
| 1 Y. . 1
= (b-a)(ooh)* hy|l — —up| liminfln —
To s 0o
1 1 Vo1
= (b-a)(coh)* holl — —uy| In—,
To O'ob
which leads to |
—ano-1 (] _ N 1
h > @y Py (1= pn) - 4.3)

(b—a)(oob)™" (1 - %uo)ﬁ In L

oob

Theorems 3.1 and 3.3 show that the solution of (4.1) is oscillatory if either (4.2) or (4.3) holds.
Example 4.2. Consider the NDE

2/3 1 1 Y ! -2/3..1/5 4
N R A PR
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a=1/2,b=1a=1/3,8=1/5«(s) = s** h(s,0) = hgs™>, u(s) = 1/4, 57 (s,€) = £s and
7(s) = %s. It is easy to find that
1 é@(o(s,0)
OS5 oo

and

—~ 1
h(s) = %hos‘m.

For (3.1), we set
o = 2.2267h;.
Using (3.8), we have A = 3. Here, we define the sequence {p,},_, as

1 3ot
Pn = p0ﬁ3 =,
(1 - §pn—1)
with
po = 2.2267hjy, y > 0.

Then, condition (3.12) reduces to
0.60781

P

0> 4.5)

and condition (3.13) becomes

(Y £@h() Y A VS [
imin [ Fetorgme = min [ Gt e

11 "
= ——hliminf | -
2675 3273 O I 0%

11
= 26535 In (3) hy = 0.22989hy,

which leads to

Y P (1= pa)
0.7e

Theorems 3.1 and 3.3 show that the solution of (4.4) is oscillatory if either (4.5) or (4.6) holds.

1 (WY ¢
2 : 13t _
(s (y(s)+ 16y(25))) +f(; hoy (4s)d€ 0, 4.7)
Clearly:

a=1,8=1/3,k(s)=s* h(s,0) = ho,u(s) = 1/16, o (s,0) = ts and 7 (s) = is. It can be easily
verified that

hy > , v>0. (4.6)

Example 4.3. Consider

1 EG@6.0)
‘0= oty

and _
h(s) = 0.95647h,.
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For (3.1), we set
0o = 0.95647h,.

From (3.8), we obtain A = 4. The sequence {p,},_, is then defined as
Lo 22%%1

Pn =
1- %pn—l

b

with
po = 0.95647hyy, v > 0.
On the other hand, if we choose hy = 0.8 and y = 0.7, then py = 0.535 62 and condition (3.5) is
satisfied, which implise that (4.7) is oscillatory.
Forhy = 0.7 and y = 0.5, we compute

po = 0.33476, p; = 0.43985, p, = 0.48069, p3 = 0.49778, ps = 0.50516,
and (3.12) holds for n = 4, which implies that for hy = 0.7 and y = 0.5 (4.7) is oscillatory.

5. Conclusions

This research has established sufficient conditions to ensure the oscillatory behavior of all
solutions within a certain class of second-order nonlinear NDEs. By focusing on the noncanonical
forms of these equations, we have revealed new monotonic properties of positive solutions and
proposed novel oscillation criteria, which expand the scope of current research in the field of
second-order quasilinear NDEs. The contributions made in this study are an important step toward
building a more comprehensive theoretical framework for understanding the oscillatory nature of
these systems and paving the way for future research. Applying these analytical methods to
higher-order nonlinear NDEs represents a promising path that may reveal more complex dynamics
and novel oscillatory behaviors, greatly enhancing the understanding of this complex field and
deepening theoretical and experimental studies in it.
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