This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
Citation: Devendra Kumar, Jogendra Singh, Dumitru Baleanu. Dynamical and computational analysis of a fractional predator-prey model with an infectious disease and harvesting policy[J]. AIMS Mathematics, 2024, 9(12): 36082-36101. doi: 10.3934/math.20241712
[1] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[2] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[3] | Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280 |
[4] | Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364 |
[5] | Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820 |
[6] | Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767 |
[7] | Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041 |
[8] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[9] | Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar . Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2022, 7(1): 1155-1184. doi: 10.3934/math.2022068 |
[10] | Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063 |
This paper examined the features of an infection therapy for fractional-order quarry-hunter systems in order to control sickness. It focused especially on how illnesses and several populations combine to affect how well harvesting policies work. We created a new dynamic model full of such ideas by examining systems with fractional-order non-integer systems and introducing fractional-order systems that can remember in order to comprehend that specific system. These thresholds are essential for directing management strategies, according to research on the presence, uniqueness, and stability of solutions to these models. Additionally, we presented particular MATLAB-based numerical methods for fractional-order model. Through a series of numerical application experiments, we validated the method's efficacy and its value in guiding strategy modifications regarding harvesting rates in the face of epidemic infections. This demonstrates the necessity of using a fractional approach in ecosystem research in order to improve the methods used for resource management. This paper primarily focused on the unique insight brought into the quarry-hunter models with infectious diseases by the fractional-order dynamics in ecology. The results are meaningful especially since they can be utilized to come up with effective measures to control diseases and even promote the sustainability of ecological systems.
Fractional calculus has come out as one of the most applicable subjects of mathematics [1]. Its importance is evident from the fact that many real-world phenomena can be best interpreted and modeled using this theory. It is also a fact that many disciplines of engineering and science have been influenced by the tools and techniques of fractional calculus. Its emergence can easily be traced and linked with the famous correspondence between the two mathematicians, L'Hospital and Leibnitz, which was made on 30th September 1695. After that, many researchers tried to explore the concept of fractional calculus, which is based on the generalization of nth order derivatives or n-fold integration [2,3,4].
Recently, Khan and Khan [5] have discovered novel definitions of fractional integral and derivative operators. These operators enjoy interesting properties such as continuity, boundedeness, linearity etc. The integral operators, they presented, are stated as under:
Definition 1 ([5]). Let h∈Lθ[s,t](conformable integrable on [s,t]⊆[0,∞)). The left-sided and right-sided generalized conformable fractional integrals τθKνs+ and τθKνt− of order ν>0 with θ∈(0,1], τ∈R, θ+τ≠0 are defined by:
τθKνs+h(r)=1Γ(ν)r∫s(rτ+θ−wτ+θτ+θ)ν−1h(w)wτdθw,r>s, | (1.1) |
and
τθKνt−h(r)=1Γ(ν)t∫r(wτ+θ−rτ+θτ+θ)ν−1h(w)wτdθw,t>r, | (1.2) |
respectively, and τθK0s+h(r)=τθK0t−h(r)=h(r). Here Γ denotes the well-known Gamma function.
Here the integral t∫sdθw represents the conformable integration, defined as:
t∫sh(w)dθw=t∫sh(w)wθ−1dw. | (1.3) |
The operators defined in Definition 1 are in generalized form and contain few important operators in themselves. Here, only the left-sided operators are presented, the corresponding right-sided operators may be deduced in the similar way. Moreover, to understand the theory of conformable fractional calculus, one can see [5,6,7]. Also, the basic theory of fractional calculus can be found in the books [1,8,9] and for the latest research in this field one can see [3,4,10,11,12] and the references there in.
Remark 1. 1) For θ=1 in the Definition 1, the following Katugampula fractional integral operator is obtained [13]:
τ1Kνs+h(r)=1Γ(ν)r∫s(rτ+1−wτ+1τ+1)ν−1h(w)dw,r>s. | (1.4) |
2) For τ=0 in the Definition 1, the New Riemann Liouville type conformable fractional integral operator is obtained as given below:
0θKνs+h(r)=1Γ(ν)r∫s(rθ−wθθ)ν−1h(w)dθw,r>s. | (1.5) |
3) Using the definition of conformable integral given in (1.3) and L'Hospital rule, it is straightforward that when θ→0 in (1.5), we get the Hadamard fractional integral operator as follows:
00+Kνs+h(r)=1Γ(ν)r∫s(logrw)ν−1h(w)dww,r>s. | (1.6) |
4) For θ=1 in (1.5), the well-known Riemann-Liouville fractional integral operator is obtained as follows:
01Kνs+h(r)=1Γ(ν)r∫s(r−w)ν−1h(w)dw,r>s. | (1.7) |
5) For the case ν=1,τ=0 in Definition 1, we get the conformable fractional integrals. And when θ=ν=1, τ=0, we get the classical Riemann integrals.
This subsection is devoted to start with the definition of convex function, which plays a very important role in establishment of various kinds of inequalities [14]. This definition is given as follows [15]:
Definition 2. A function h:I⊆R→R is said to be convex on I if the inequality
h(ηs+(1−η)t)≤ηh(s)+(1−η)h(t) | (1.8) |
holds for all s,t∈I and 0≤η≤1. The function h is said to be concave on I if the inequality given in (1.8) holds in the reverse direction.
Associated with the Definition 2 of convex functions the following double inequality is well-known and it has been playing a key role in various fields of science and engineering [15].
Theorem 1. Let h:I⊆R→R be a convex function and s,t∈I with s<t. Then we have the following Hermite-Hadamard inequality:
h(s+t2)≤1t−st∫sh(τ)dτ≤h(s)+h(t)2. | (1.9) |
This inequality (1.9) appears in a reversed order if the function h is supposed to be concave. Also, the relation (1.9) provides upper and lower estimates for the integral mean of the convex function h. The inequality (1.9) has various versions (extensions or generalizations) corresponding to different integral operators [16,17,18,19,20,21,22,23,24,25] each version has further forms with respect to various kinds of convexities [26,27,28,29,30,31,32] or with respect to different bounds obtained for the absolute difference of the two leftmost or rightmost terms in the Hermite-Hadamard inequality.
By using the Riemann-Liouville fractional integral operators, Sirikaye et al. have proved the following Hermite-Hadamard inequality [33].
Theorem 2. ([33]). Let h:[s,t]→R be a function such that 0≤s<t and h∈L[s,t]. If h is convex on [s,t], then the following double inequality holds:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (1.10) |
For more recent research related to generalized Hermite-Hadamard inequality one can see [34,35,36,37,38,39,40,41,42] and the references therein.
Motivated from the Riemann-Liouville version of Hermite-Hadamard inequality (given above in (1.10)), we prove the same inequality for newly introduced generalized conformable fractional operators. As a result we get a more generalized inequality, containing different versions of Hermite-Hadamard inequality in single form. We also prove an identity for generalized conformable fractional operators and establish a bound for the absolute difference of two rightmost terms in the newly obtained Hermite-Hadamard inequality. We point out some relations of our results with those of other results from the past. At the end we present conclusion, where directions for future research are also mentioned.
In the following theorem the well-known Hermite-Hadamard inequality for the newly defined integral operators is proved.
Theorem 3. Let ν>0 and τ∈R,θ∈(0,1] such that τ+θ>0. Let h:[s,t]⊆[0,∞)→R be a function such that h∈Lθ[s,t](conformal integrable on [s, t]). If h is also a convex function on [s,t], then the following Hermite-Hadamard inequality for generalized conformable fractional Integrals τθKνs+ and τθKνt− holds:
h(s+t2)≤(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]≤h(s)+h(t)2, | (2.1) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
Proof. Let η∈[0,1]. Consider x,y∈[s,t], defined by x=ηs+(1−η)t,y=(1−η)s+ηt. Since h is a convex function on [s,t], we have
h(s+t2)=h(x+y2)≤h(x)+h(y)2=h(ηs+(1−η)t)+h((1−η)s+ηt)2. | (2.2) |
Multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η, we get
(t−s)(τ+θ)1−νΓ(ν)h(s+t2)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη≤(t−s)(τ+θ)1−νΓ(ν)12{1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh((1−η)s+ηt)dη}. | (2.3) |
Note that we have
1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη=1ν(τ+θ)(t−s)(tτ+θ−sτ+θ)ν. |
Also, by using the identity ˜h((1−η)s+ηt)=h(ηs+(1−η)t), and making substitution (1−η)s+ηt=w, we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη=(τ+θ)1−νΓ(ν)t∫swτ+θ−1[tτ+θ−wτ+θ]1−ν˜h(w)dw=(τ+θ)1−νΓ(ν)t∫swτ[tτ+θ−wτ+θ]1−ν˜h(w)dθw=τθKνs+˜h(t). | (2.4) |
Similarly
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη=τθKνs+h(t). | (2.5) |
By substituting these values in (2.3), we get
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνs+H(t)2. | (2.6) |
Again, by multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and then integrating with respect to η and by using the same techniques used above, we can obtain:
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνt−H(s)2. | (2.7) |
Adding (2.7) and (2.6), we get:
h(s+t2)≤Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]. | (2.8) |
Hence the left-hand side of the inequality (2.1) is established.
Also since h is convex, we have:
h(ηs+(1−η)t)+h((1−η)s+ηt)≤h(s)+h(t). | (2.9) |
Multiplying both sides
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη≤(t−s)(τ+θ)1−νΓ(ν)[h(s)+h(t)]1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη, | (2.10) |
that is,
τθKνs+H(t)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.11) |
Similarly multiplying both sides of (2.9) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and integrating with respect to η, we can obtain
τθKνt−H(s)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.12) |
Adding the inequalities (2.11) and (2.12), we get:
Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)]≤h(s)+h(t)2. | (2.13) |
Combining (2.8) and (2.13), we get the required result.
The inequality in (2.1) is in compact form containing few inequalities for different integrals in it. The following remark tells us about that fact.
Remark 2. 1) For θ=1 in (2.1), we get Hermite-Hadamard inequality for Katugampola fractional integral operators, as follows [38]:
h(s+t2)≤(τ+1)νΓ(ν+1)4(tτ+1−sτ+1)ν[τ1Kνs+H(t)+τ1Kνt−H(s)]≤h(s)+h(t)2, | (2.14) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
2) For τ=0 in (2.1), we get Hermite-Hadamard inequality for newly obtained Riemann Liouville type conformable fractional integral operators, as follows:
h(s+t2)≤θνΓ(ν+1)4(tθ−sθ)ν[0θKνs+H(t)+0θKνt−H(s)]≤h(s)+h(t)2, | (2.15) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
3) For τ+θ→0, in (2.1), applying L'Hospital rule and the relation (1.3), we get Hermite-Hadamard inequality for Hadamard fractional integral operators, as follows:
h(s+t2)≤Γ(ν+1)2(lnts)ν[00+Kνs+h(t)+00+Kνt−h(s)]≤h(s)+h(t)2. | (2.16) |
4) For τ+θ=1 in (2.1), the Hermite-Hadamard inequality is obtained for Riemann-Liouville fractional integrals [33]:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (2.17) |
5) For the case ν=1,τ=0 in (2.1), the Hermite-Hadamard inequality is obtained for the conformable fractional integrals as follows:
h(s+t2)≤θ2(tθ−sθ)t∫sH(w)dθw≤h(s)+h(t)2. | (2.18) |
6) When θ=ν=1, τ=0 the Hermite-Hadamard inequality is obtained for classical Riemann integrals [15]:
h(s+t2)≤1t−st∫sh(w)dw≤h(s)+h(t)2. | (2.19) |
To bound the difference of two rightmost terms in the main inequality (2.1), we need to establish the following Lemma.
Lemma 1. Let τ+θ>0 and ν>0. If h∈Lθ[s,t], then
h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]=t−s4(tτ+θ−sτ+θ)ν1∫0Δντ+θ(η)h′(ηs+(1−η)t)dη, | (2.20) |
where
Δντ+θ(η)=[(ηs+(1−η)t)τ+θ−sτ+θ]ν−[(ηt+(1−η)s)τ+θ−sτ+θ]ν+[tτ+θ−((1−η)s+ηt)τ+θ]ν−[tτ+θ−((1−η)t+ηs)τ+θ]ν. |
Proof. With the help of integration by parts, we have
τθKνs+H(t)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(s)+(t−s)ν(τ+θ)νΓ(ν+1)1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη. | (2.21) |
Similarly, we have
τθKνt−H(s)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(t)−(t−s)ν(τ+θ)νΓ(ν+1)1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη. | (2.22) |
Using (2.21) and (2.22) we have
4(tτ+θ−sτ+θ)νt−s(h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)])=1∫0([((1−η)s+ηt)τ+θ−sτ+θ]ν−[(tτ+θ−((1−η)s+ηt)τ+θ]ν)H′(ηt+(1−η)s)dη. | (2.23) |
Also, we have
H′(ηt+(1−η)s)=h′(ηt+(1−η)s)−h′(ηs+(1−η)t),η∈[0,1]. | (2.24) |
And
1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη=1∫0[((1−η)t+ηs)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη−1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη. | (2.25) |
Also, we have
1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη=1∫0[tτ+θ−((1−η)t+ηs)τ+θ]νh′(ηs+(1−η)t)dη−1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νh′(ηs+(1−η)t)dη. | (2.26) |
Using (2.23), (2.25) and (2.26) we get the required result.
Remark 3. When τ+θ=1 in Lemma 1, we get the Lemma 2 in [33].
Definition 3. For ν>0, we define the operators
Ων1(x,y,τ+θ)=s+t2∫s|x−w||yτ+θ−wτ+θ|νdw−t∫s+t2|x−w||yτ+θ−wτ+θ|νdw, | (2.27) |
and
Ων2(x,y,τ+θ)=s+t2∫s|x−w||wτ+θ−yτ+θ|νdw−t∫s+t2|x−w||wτ+θ−yτ+θ|νdw, | (2.28) |
where x,y∈[s,t]⊆[0,∞) and τ+θ>0.
Theorem 4. Let h be a conformable integrable function over [s,t] such that |h′| is convex function. Then for ν>0 and τ+θ>0 we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤Kντ+θ(s,t)4(t−s)(tτ+θ−sτ+θ)ν(|h′(s)|+|h′(t)|), | (2.29) |
where Kντ+θ(s,t)=Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)−Ων1(s,t,τ+θ).
Proof. Using Lemma 1 and convexity of |h′|, we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤t−s4(tτ+θ−sτ+θ)ν1∫0|Δντ+θ(η)||h′(ηs+(1−η)t)|dη≤t−s4(tτ+θ−sτ+θ)ν(|h′(s)|1∫0η|Δντ+θ(η)|dη+|h′(t)|1∫0(1−η)|Δντ+θ(η)|dη). | (2.30) |
Here 1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du,
and ψ(u)=(uτ+θ−sτ+θ)ν−((t+s−u)τ+θ−sτ+θ)ν+(tτ+θ−(s+t−u)τ+θ)ν−(tτ+θ−uτ+θ)ν.
We observe that ψ is a nondecreasing function on [s,t]. Moreover, we have:
ψ(s)=−2(tτ+θ−sτ+θ)ν<0, |
and also ψ(s+t2)=0. As a consequence, we have
{ψ(u)≤0,if s≤u≤s+t2,ψ(u)>0,if s+t2<u≤t. |
Thus we get
1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du=1(t−s)2[−s+t2∫sψ(u)(t−u)du+t∫s+t2ψ(u)(t−u)du]=1(t−s)2[K1+K2+K3+K4], | (2.31) |
where
K1=−s+t2∫s(t−u)(uτ+θ−sτ+θ)νdu+t∫s+t2(t−u)(uτ+θ−sτ+θ)νdu, | (2.32) |
K2=s+t2∫s(t−u)((t+s−u)τ+θ−sτ+θ)νdu−t∫s+t2(t−u)((t+s−u)τ+θ−sτ+θ)νdu, | (2.33) |
K3=−s+t2∫s(t−u)(tτ+θ−(s+t−u)τ+θ)νdu+t∫s+t2(t−u)(tτ+θ−(s+t−u)τ+θ)νdu, | (2.34) |
and
K4=s+t2∫s(t−u)(tτ+θ−uτ+θ)νdu−t∫s+t2(t−u)(tτ+θ−uτ+θ)νdu. | (2.35) |
We can see here that K1=−Ων2(t,s,τ+θ), K4=Ων1(t,t,τ+θ).
Also, by using of change of the variables v=s+t−u, we get
K2=Ων2(s,s,τ+θ),K3=−Ων1(s,t,τ+θ). | (2.36) |
By substituting these values in (2.31), we get
1∫0ηΔντ+θ(η)dη=−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.37) |
Similarly, we can find
1∫0(1−η)Δντ+θ(η)dη=Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.38) |
Finally, by using (2.30), (2.37) and (2.38) we get the required result.
Remark 4. when τ+θ=1 in (2.29), we obtain
|h(s)+h(t)2−Γ(ν+1)2(t−s)ν[01Kνt−h(s)+01Kνs+h(t)]|≤(t−s)2(ν+1)(1−12ν)[h′(s)+h′(t)], |
which is Theorem 3 in [33].
A generalized version of Hermite-Hadamard inequality via newly introduced GC fractional operators has been acquired successfully. This result combines several versions (new and old) of the Hermite-Hadamard inequality into a single form, each one has been discussed by fixing parameters in the newly established version of the Hermite-Hadamard inequality. Moreover, an identity containing the GC fractional integral operators has been proved. By using this identity, a bound for the absolute of the difference between the two rightmost terms in the newly established Hermite-Hadamard inequality has been presented. Also, some relations of our results with those of already existing results have been pointed out. Since this is a fact that there exist more than one definitions for fractional derivatives [2] which makes it difficult to choose a convenient operator for solving a given problem. Thus, in the present paper, the GC fractional operators (containing various previously defined fractional operators into a single form) have been used in order to overcome the problem of choosing a suitable fractional operator and to provide a unique platform for researchers working with different operators in this field. Also, by making use of GC fractional operators one can follow the research work which has been performed for the two versions (1.9) and (1.10) of Hermite-Hadamard inequality.
This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | A. J. Lotka, Elements of physical biology, Williams and Wilkins, 1925. |
[2] |
V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Marine Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
![]() |
[3] | J. D. Murray, Mathematical biology, Berlin, Heidelberg: Springer, 1989. https://doi.org/10.1007/978-3-662-08539-4 |
[4] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
![]() |
[5] |
H. W. Hethcote, W. D. Wang, L. T. Han, Z. E. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010 doi: 10.1016/j.tpb.2004.06.010
![]() |
[6] | A. Johri, N. Trivedi, A. Sisodiya, B. Singh, S. Jain, Study of a prey-predator model with diseased prey, Int. J. Contemp. Math. Sci., 7 (2012), 489–498. |
[7] |
M. S. S. Rahman, S. Chakravarty, A predator-prey model with disease in prey, Nonlinear Anal. Model. Control, 18 (2013), 191–209. https://doi.org/10.15388/NA.18.2.14022 doi: 10.15388/NA.18.2.14022
![]() |
[8] |
S. K. Nandi, P. K. Mondal, S. Jana, P. Haldar, T. K. Kar, Prey-predator model with two-stage infection in prey: concerning pest control, J. Nonlinear Dyn., 2015 (2015), 948728. https://doi.org/10.1155/2015/948728 doi: 10.1155/2015/948728
![]() |
[9] |
W. Mbava, J. Y. T. Mugisha, J. W. Gonsalves, Prey, predator and super-predator model with disease in the super-predator, Appl. Math. Comput., 297 (2017), 92–114. https://doi.org/10.1016/j.amc.2016.10.034 doi: 10.1016/j.amc.2016.10.034
![]() |
[10] |
W. B. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Appl. Math. Model., 53 (2018), 433–446. https://doi.org/10.1016/j.apm.2017.09.020 doi: 10.1016/j.apm.2017.09.020
![]() |
[11] |
J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747–766. https://doi.org/10.1016/S0362-546X(98)00126-6 doi: 10.1016/S0362-546X(98)00126-6
![]() |
[12] |
K. P. Das, J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in both populations, Int. J. Biomath., 8 (2015), 1550015. https://doi.org/10.1142/S1793524515500151 doi: 10.1142/S1793524515500151
![]() |
[13] | K. P. Dash, S. Gnanavel, R. Bhardwaj, R. Kumar, Allee effect in a harvested predator-prey model with disease in both populations, Nonlinear Stud., 29 (2022), 965. |
[14] |
K. Q. Al-Jubouri, R. M. Hussien, N. M. G. Al-Saidi, The effect of harvesting policy on an eco-epidemiological model, AIP Conf. Proc., 2183 (2019), 070007. https://doi.org/10.1063/1.5136169 doi: 10.1063/1.5136169
![]() |
[15] | J. P. Tripathi, K. P. Das, S. Bugalia, H. Choudhary, D. Kumar, J. Singh, Role of harvesting and Allee in a predator-prey model with disease in both populations, Nonlinear Stud., 28 (2021), 939. |
[16] |
M. M. Khader, J. E. Macías-Díaz, K. M. Saad, W. M. Hamanah, Vieta-Lucas polynomials for the Brusselator system with the Rabotnov fractional-exponential kernel fractional derivative, Symmetry, 15 (2023), 1–10. https://doi.org/10.3390/sym15091619 doi: 10.3390/sym15091619
![]() |
[17] |
S. Al-Nassir, Dynamic analysis of a harvested fractional-order biological system with its discretization, Chaos Solitons Fract., 152 (2021), 111308. https://doi.org/10.1016/j.chaos.2021.111308 doi: 10.1016/j.chaos.2021.111308
![]() |
[18] |
M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population, Adv. Differ. Equ., 2020 (2020), 1–24. https://doi.org/10.1186/s13662-020-2522-5 doi: 10.1186/s13662-020-2522-5
![]() |
[19] |
R. Kaviya, P. Muthukumar, Correction to: Dynamical analysis and optimal harvesting of conformable fractional prey-predator system with predator immigration, Eur. Phys. J. Plus, 136 (2021), 606. https://doi.org/10.1140/epjp/s13360-021-01598-3 doi: 10.1140/epjp/s13360-021-01598-3
![]() |
[20] |
Y. K. Xie, Z. Wang, B. Meng, X. Huang, Dynamical analysis for a fractional-order prey-predator model with Holling Ⅲ type functional response and discontinuous harvest, Appl. Math. Lett., 106 (2020), 106342. https://doi.org/10.1016/j.aml.2020.106342 doi: 10.1016/j.aml.2020.106342
![]() |
[21] |
S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 1–16. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9
![]() |
[22] |
P. Ramesh, M. Sambath, M. H. Mohd, K. Balachandran, Stability analysis of the fractional-order prey-predator model with infection, Int. J. Model. Simul., 41 (2021), 434–450. https://doi.org/10.1080/02286203.2020.1783131 doi: 10.1080/02286203.2020.1783131
![]() |
[23] |
J. Alidousti, E. Ghafari, Dynamic behavior of a fractional order prey-predator model with group defense, Chaos Solitons Fract., 134 (2020), 109688. https://doi.org/10.1016/j.chaos.2020.109688 doi: 10.1016/j.chaos.2020.109688
![]() |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[25] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[26] |
I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. V. Jara, Matrix approach to discrete fractional calculus Ⅱ: partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014
![]() |
[27] |
A. M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6
![]() |
[28] |
S. Abbasbandy, A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fract., 31 (2007), 257–260. https://doi.org/10.1016/j.chaos.2005.10.071 doi: 10.1016/j.chaos.2005.10.071
![]() |
[29] | S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992. |
[30] |
S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370 (2007), 379–387. https://doi.org/10.1016/j.physleta.2007.05.083 doi: 10.1016/j.physleta.2007.05.083
![]() |
[31] |
J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
![]() |
[32] |
A. Yildirim, Application of the homotopy perturbation method for the Fokker-Planck equation, Int. J. Numer. Methods Biomed. Eng., 26 (2010), 1144–1154. https://doi.org/10.1002/cnm.1200 doi: 10.1002/cnm.1200
![]() |
[33] |
J. H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
![]() |
[34] |
Y. Khan, An effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 1373–1376. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1373 doi: 10.1515/IJNSNS.2009.10.11-12.1373
![]() |
[35] |
Y. Khan, Q. B. Wu, Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math. Appl., 61 (2011), 1963–1967. https://doi.org/10.1016/j.camwa.2010.08.022 doi: 10.1016/j.camwa.2010.08.022
![]() |
[36] |
D. Zhao, J. Singh, D. Kumar, S. Rathore, X. J. Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, J. Nonlinear Sci. Appl., 10 (2017), 1478–1486. http://dx.doi.org/10.22436/jnsa.010.04.17 doi: 10.22436/jnsa.010.04.17
![]() |
[37] |
D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87 (2017), 511–517. https://doi.org/10.1007/s11071-016-3057-x doi: 10.1007/s11071-016-3057-x
![]() |
[38] |
R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
![]() |
[39] |
K. Singh, R. Saxena, S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain, IEEE J. Emerging Sel. Top. Circuits Syst., 3 (2013), 330–337. https://doi.org/10.1109/JETCAS.2013.2272837 doi: 10.1109/JETCAS.2013.2272837
![]() |
[40] |
D. Baleanu, O. P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087–1092. https://doi.org/10.1007/s10582-006-0406-x doi: 10.1007/s10582-006-0406-x
![]() |
[41] |
K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028
![]() |
[42] |
M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023
![]() |
[43] | D. Mozyrska, D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210–221. |
[44] | I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18101-6 |
[45] |
K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-Ⅲ functional response, Adv. Differ. Equ., 2018 (2018), 1–20. https://doi.org/10.1186/s13662-018-1535-9 doi: 10.1186/s13662-018-1535-9
![]() |
[46] |
R. Soni, U. Chouhan, A dynamic effect of infectious disease on prey predator system and harvesting policy, Biosci. Biotech. Res. Commun., 11 (2018), 231–237. http://dx.doi.org/10.21786/bbrc/11.2/6 doi: 10.21786/bbrc/11.2/6
![]() |
[47] |
C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
![]() |
[48] |
M. Bandyopadhyay, J. Chattopadhyay, Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913. https://doi.org/10.1088/0951-7715/18/2/022 doi: 10.1088/0951-7715/18/2/022
![]() |
[49] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y
![]() |
[50] |
R. Naresh, A. Tripathi, D. Sharma, Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives, Math. Comput. Model., 49 (2009), 880–892. https://doi.org/10.1016/j.mcm.2008.09.013 doi: 10.1016/j.mcm.2008.09.013
![]() |
[51] |
E. Venturino, Epidemics in predator-prey models: disease in the predators, Math. Med. Biol., 19 (2002), 185–205. https://doi.org/10.1093/imammb/19.3.185 doi: 10.1093/imammb/19.3.185
![]() |
[52] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
![]() |
[53] |
A. M. Bate, F. M. Hilker, Complex dynamics in an eco-epidemiological model, Bull. Math. Biol., 75 (2013), 2059–2078. https://doi.org/10.1007/s11538-013-9880-z doi: 10.1007/s11538-013-9880-z
![]() |
1. | Rania Saadeh, Laith Hamdi, Ahmad Qazza, 2024, Chapter 18, 978-981-97-4875-4, 259, 10.1007/978-981-97-4876-1_18 | |
2. | Saad Ihsan Butt, Ahmad Khan, Sanja Tipurić-Spužević, New fractal–fractional Simpson estimates for twice differentiable functions with applications, 2024, 51, 23074108, 100205, 10.1016/j.kjs.2024.100205 | |
3. | Rania Saadeh, Motasem Mustafa, Aliaa Burqan, 2024, Chapter 17, 978-981-97-4875-4, 239, 10.1007/978-981-97-4876-1_17 |