Research article

Analysis of a derivative with two variable orders

  • Received: 12 August 2021 Revised: 11 January 2022 Accepted: 17 January 2022 Published: 10 February 2022
  • MSC : 26A33, 33F05

  • In this paper, we investigate a derivative with the two variable orders. The first one shows the variable order fractal dimension and the second one presents the fractional order. We consider these derivatives with the power law kernel, exponential decay kernel and Mittag-Leffler kernel. We give the theory of this derivative in details. We also present the numerical approximation. The results we obtained in this work are very useful for researchers to improve many things for fractal fractional derivative with two variable orders.

    Citation: Abdon Atangana, Ali Akgül. Analysis of a derivative with two variable orders[J]. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406

    Related Papers:

    [1] Ihtisham Ul Haq, Shabir Ahmad, Sayed Saifullah, Kamsing Nonlaopon, Ali Akgül . Analysis of fractal fractional Lorenz type and financial chaotic systems with exponential decay kernels. AIMS Mathematics, 2022, 7(10): 18809-18823. doi: 10.3934/math.20221035
    [2] Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail . Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584
    [3] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [4] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [5] Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212
    [6] Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi . Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259
    [7] Ricardo Almeida . Variational problems of variable fractional order involving arbitrary kernels. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028
    [8] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [9] Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855
    [10] Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039
  • In this paper, we investigate a derivative with the two variable orders. The first one shows the variable order fractal dimension and the second one presents the fractional order. We consider these derivatives with the power law kernel, exponential decay kernel and Mittag-Leffler kernel. We give the theory of this derivative in details. We also present the numerical approximation. The results we obtained in this work are very useful for researchers to improve many things for fractal fractional derivative with two variable orders.



    Very recently due to the complexities of nature and the inaccuracy of existing mathematical model to replicate physical observed problem, a new mathematical concept was introduced and called fractal fractional differential and integral operators. These operators appear to be superior to fractal and fractional operators as when the fractal dimension turns to 1, we recover the fractional differential operators and also when the fractional order turns to 1, one recovers the fractal differential operators. Additionally when the fractional order and fractal dimension are 1 then we recover the classical differential operators. Nevertheless, to further empower the concept of differentiation, Atangana and Anum suggested an extension of the fractal dimension into variable order fractal dimension; this idea was also applied in some problem with great success. While the idea introduced by Atangana and Anum was precious, to modeling real world problem, it become important to recall that fractional differential operator with variable orders are leader in terms of modeling anomalous diffusion and many other important anomalous problems that cannot be described by fractional differential and integral operators with constant orders [1]. Due to the wider applicability of the concept of variable order, one will ask the question to know if the concept of fractal-fractional differential operator could not be extended totally to the concept of variable orders. This is to say the fractional order and the fractal dimension are converted into variable order. This is extended version of to the extension make by Atangana and Anum [1]. As when the fractional variable order is constant, we obtain the operators suggested by Atangana and Anum. Nevertheless, if the fractal dimension is constant that a new operator is obtained. In this paper, we will present generalization of the fractal-fractional differential operators with three different kernels to the concept of variable order fractal-fractional differential operators. We have to admit that such operators may not have a corresponding integral [2,3,4,5,6,7,8,9,10]. For more details see [11,12,13,14,15,16,17,18,19].

    We give the following definitions for real variables.

    Definition 2.1. Let u be a differentiable function. Let γ(z) and θ(z) be two continuous functions such that 0<γ(z)<1. We define a fractal fractional derivative with fractional of variable order γ(z) and variable fractal order θ(z) as:

    C0Dγ(z),θ(z)zu(z)=1Γ(1γ(z))z0du(p)dpθ(p)(zp)γ(p)dp. (2.1)
    R0Dγ(z),θ(z)zu(z)=1Γ(1γ(z))ddzθ(z)z0u(p)(zp)γ(p)dp. (2.2)

    Definition 2.2. Let u be a differentiable function. Let γ(z) and θ(z) be two continuous functions such that 0<γ(z)<1. We define a fractal fractional derivative with fractional of variable order γ(z) and variable fractal order θ(z) with exponential decay as:

    CE0Dγ(z),θ(z)zu(z)=M(γ(z))1γ(z)z0du(p)dpθ(p)exp(γ(p)1γ(p)(zp))dp. (2.3)
    RE0Dγ(z),θ(z)zu(z)=M(γ(z))1γ(z)ddzθ(z)z0u(p)exp(γ(p)1γ(p)(zp))dp. (2.4)

    Definition 2.3. Let u be a differentiable function. Let γ(z) and θ(z) be two continuous functions such that 0<γ(z)<1. We define a fractal fractional derivative with fractional of variable order γ(z) and variable fractal order θ(z) with the generalized Mittag-Leffler kernel as:

    CM0Dγ(z),θ(z)zu(z)=AB(γ(z))1γ(z)z0du(p)dpθ(p)Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp. (2.5)
    RM0Dγ(z),θ(z)zu(z)=AB(γ(z))1γ(z)ddzθ(z)z0u(u)Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp. (2.6)

    We present some properties of the new differential operators.

    Corollary 1. Let γ(z) and θ(z) be two continuous and bounded functions. Let u(z) be continuous such that

    |C0Dγ(z),θ(z)zu(z)|=|1Γ(1γ(z))z0du(p)dpθ(z)(zp)γ(p)dp||1Γ(1γ(z))|z0|du(p)dpθ(p)(zp)γ(p)|dp|1Γ(1γ(z))|z0|du(p)dp(zp)γ(p)pθ(p)θ(p)ln(p)+θ(p)p|dp<supz[0,Z]|1Γ(1γ(z))|z0supl[0,p]|du(l)dl|×supl[0,p]|lθ(l)θ(l)ln(l)+β(l)l|(zp)γ(p)dp<M1M2M3t0(tτ)α(τ)dτ

    where

    M1=supz[0,Z]|1Γ(1γ(z))| (2.7)
    M2=supz[0,Z]|zθ(z)θ(z)ln(z)+θ(z)z| (2.8)
    M3=supz[0,Z]|du(z)dz| (2.9)

    Nevertheless, since γ(z) is continuously bounded then there exists ξ[0,Z]. z[0,Z] γ(ξ)>M in this case

    z0(zp)γ(p)dp<z0(zp)Mdp<z1M1M. (2.10)

    Thus, we obtain

    |C0Dγ(z),θ(z)zu(z)|<M1M2M3z1M1M.

    Also

    |R0Dγ(z),θ(z)zu(z)|=|1Γ(1γ(z))ddzθ(z)z0u(p)(zp)γ(p)dp| (2.11)

    Using the fact that the integral is differentiable then the above can be reformulated as:

    |R0Dγ(z),θ(z)zu(z)|=|1Γ(1γ(z))ddzθ(z)z0u(p)(zp)γ(p)dp||1Γ(1γ(z))ddzz0u(p)(zp)γ(p)zθ(z)θ(z)ln(z)+θ(z)zdp||1Γ(1γ(z))||ddzz0u(p)(zp)γ(p)dp||zθ(z)θ(z)ln(z)+θ(z)z|<supz[0,Z]|1Γ(1γ(z))||supz[0,Z]||zθ(z)θ(z)ln(z)+θ(z)z|×|ddtt0f(τ)(tτ)α(τ)dτ|

    Noting that the function γ(z) is continuous and bounded then we can find ξ[0,Z] such that

    |ddzz0u(p)(zp)α(p)dp|<|ddzz0u(p)(zp)Mdp|

    Nevertheless, we have that

    |ddzz0u(p)(zp)Mdp|<|u(z)+z0ddpu(p)(zp)Mdp|<|u(z)|+|z0ddpu(p)(zp)Mdp|<supz[0,Z]|u(z)|+|z0ddpu(p)(zp)Mdp|<u+z0|ddpu(p)|(zp)Mdp<u+z0supz[0,Z]|ddpu(p)|(zp)Mdp<u+dudzz0(zp)Mdp<u+ddzz1M1M

    Thus putting all together, we have

    |R0Dγ(z),θ(z)zu(z)|<M1M2(u+dudzz1M1M)

    We consider the case when the kernel is the exponential decay law.

    |CE0Dγ(z),θ(z)zu(z)|=|M(γ(z))1γ(z)z0du(p)dpθ(p)exp(γ(p)1γ(p)(zp))dp||M(γ(z))1γ(z)||z0du(p)dpexp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|<supz[0,Z]|M(γ(z))1γ(z)|z0|du(p)dp|exp(γ(p)1γ(p)(zp))×pθ(p)θ(p)ln(p)+θ(p)pdp<M1z0supz[0,Z]|du(p)dp|exp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp<M1z0du(p)dpexp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp<M1du(z)dzz0exp(γ(p)1γ(p)(tp))pθ(p)θ(p)ln(p)+θ(p)pdp

    Since γ(z) is continuously bounded there exists ξ[0,Z] such that

    |z0exp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|<|z0exp(γ1γ(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|

    Now

    z0exp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp

    Since γ(p) is continuous and bounded there exists ξ[0,Z] such that γ(ξ)=M and

    |z0exp(M1M(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|>|z0exp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|

    Nevertheless

    |z0exp(M1M(zp))pθ(p)θ(p)ln(p)+θ(p)pdp|<z0|pθ(p)θ(p)ln(p)+θ(p)p|exp(M1M(tp))dp<z0supp[0,Z]|pθ(p)θ(p)ln(p)+θ(p)p|exp(M1M(zp))dp<supp[0,Z]|zθ(z)θ(z)ln(z)+θ(z)z|z0exp(M1M(zp))dp<supz[0,Z]|zθ(z)θ(z)ln(z)+θ(z)z|z0dp<supz[0,Z]|zθ(z)θ(z)ln(z)+θ(z)z|z

    So replacing the above in the formulas, we obtain

    |CE0Dγ(z),θ(z)zu(z)|<M1du(z)dzM2z

    Now we consider the case when the kernel is the generalized Mittag-Leffler function.

    |CM0Dγ(z),θ(z)zu(z)|=|AB(γ(z))1γ(z)z0du(p)dpθ(p)Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp||AB(γ(z))1γ(z)|t0|du(p)dpθ(p)|Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp<supz[0,Z]|AB(γ(z))1γ(z)|z0|du(p)dp||pθ(p)θ(p)ln(p)+θ(p)p|×Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp<supz[0,Z]|AB(γ(z))1γ(z)|z0supz[0,Z]|du(p)dp|supz[0,Z]|pθ(p)θ(p)ln(p)+θ(p)p|×Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp<supz[0,Z]|AB(γ(z))1γ(z)|supz[0,Z]|du(p)dp|supz[0,Z]|pθ(p)θ(p)ln(p)+θ(p)p|×z0Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp

    Since the function γ(z) is continuous and bounded there exists ξ[0,Z] such that p[0,Z],

    Eγ(ξ)(γ(ξ)1γ(ξ)(zξ)γ(ξ))Eγ(p)(γ(p)1γ(p)(zp)γ(p)). (2.12)

    Therefore, we have the following inequality

    |CM0Dγ(z),θ(z)zu(z)|<supz[0,Z]|AB(γ(z))1γ(z)| du(p)dpsupz[0,Z]|zθ(z)θ(z)ln(z)+θ(z)z|×z0Eγ(ξ)(γ(ξ)1γ(ξ)(zp)γ(ξ))dp

    Let θ1=γ(ξ) then we have

    z0Eθ1(θ11θ1(zp)θ1)dp=z0Eγ(ξ)(γ(ξ)1γ(ξ)(zp)γ(ξ))dp. (2.13)

    By putting λ=θ11θ1, we obtain

    z0Eθ1(λ(zp)θ1)dp=t0k=0(λ(zp)θ1)kΓ(θ1k+1)dpk=0(λ)kΓ(θ1k+1)t0(zp)θ1kdpk=0(λ)kΓ(θ1k+1)10(zxh)θ1ktdhk=0(λ)kΓ(θ1k+1)10tθ1k+1(1h)θ1kdhzk=0(λtθ1)kΓ(θ1k+1)10h11(1h)θ1k+11dhzk=0(λtθ1)kΓ(θ1k+1)B(1,θ1k+1)zk=0(λtθ1)kΓ(θ1k+1)Γ(1)Γ(θ1k+1)Γ(θ1k+2)zEθ1,2(λtθ1).

    Replacing in the inequality, we get

    |CM0Dγ(z),θ(z)zu(z)|<supz[0,Z]|AB(γ(z))1γ(z)| du(p)dpsupz[0,Z]|zθ(z)θ(z)ln(z)+θ(z)x|×xEγ(ξ),2(γ(ξ)1γ(ξ)zγ(ξ))

    We consider two continuous functions f and g. Let γ(z) and θ(z) be two continuous bounded functions. We aim to evaluate

    |CM0Dγ(z),θ(z)zu(z)CM0Dγ(z),θ(z)zg(z)|=|AB(γ(z))1γ(z)z0du(p)dpθ(p)Eγ(p)(γ(p)1γ(p)(zp)γ(p))dpAB(γ(z))1γ(z)z0dg(p)dpθ(p)Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp||AB(γ(z))1γ(z)z0(du(p)dpdg(p)dp)pθ(p)θ(p)ln(p)+θ(p)p×Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp|<|AB(γ(z))1γ(z)|z0(ddp(u(p)g(p))|pθ(p)θ(p)ln(p)+θ(p)p|×Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp<supz[0,Z]|AB(γ(z))1γ(z)|z0supp[0,Z]|pθ(p)θ(p)ln(p)+θ(p)p|×(ddp(u(p)g(p)))Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp<M1M2z0|ddp(u(p)g(p))|Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp<M1M2z0supp[0,Z]|ddp(u(p)g(p))|×Eγ(p)(γ(p)1γ(p)(zp)γ(p))dp<M1M2ddz(u(z)g(z))z0Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp.

    As presented earlier

    z0Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp=xEγ(ξ),2(γ(ξ)1γ(ξ)tγ(ξ)). (2.14)

    Thus, we have

    |CM0Dγ(t),θ(t)zu(z)CM0Dγ(t),θ(t)zg(z)|<M1M2tddt(u(z)g(z))×Eγ(ξ),2(γ(ξ)1γ(ξ)tγ(ξ)).

    Theorem 2.4. Let u and g be continuous functions. Let γ(z) and θ(z) be two continuous functions such that 0<γ(z),θ(z)<1. If

    ddz(ug)<θug (2.15)

    then

    |CM0Dγ(z),θ(z)zu(z)CM0Dγ(z),θ(z)zg(z)|<M1M2θugxEγ(ξ),2(γ(ξ)1γ(ξ)zγ(ξ))<Kug.

    The proof is directly obtained from the above derivation.

    Corollary 2. Let u and g be two continuous bounded functions. Let 0<γ(z),θ(z)<1. Then, we have

    C0Dγ(z),θ(z)z(u(z)g(z))=θ1(C0Dγ(z)zu(z))+θ2(C0Dγ(z)zg(z)).

    Proof. Since u and g are continuous there exist Mu and Mg such that u=Mu and g=Mg. Thus, we obtain

    C0Dγ(z),θ(z)z(u(z)g(z))=1Γ(1γ(t))z0d(u(p)g(p))dpθ(p)(zp)γ(p)dp1Γ(1γ(z))z0d(u(p)g(p))dp(zp)γ(p)pθ(p)θ(p)ln(p)+θ(p)pdp1Γ(1γ(z))z0(g(p)du(p)dp+u(p)dg(p)dp)(zp)γ(p)×pθ(p)θ(p)ln(p)+θ(p)pdpg1Γ(1γ(z))z0du(p)dp(zp)γ(p)pθ(p)θ(p)ln(p)+θ(p)pdp+u1Γ(1γ(z))z0dg(p)dp(zp)γ(p)pθ(p)θ(p)ln(p)+θ(p)pdpg1Γ(1γ(z))z0du(p)dp(zp)γ(p)dp+u1Γ(1γ(z))z0dg(p)dp(zp)γ(p)dp<Mg(C0Dγ(t)zu(z))+Mu(C0Dγ(z)zg(z)).

    This completes the proof.

    Corollary 3. Let u and g be two continuous bounded functions. Let 0<γ(z),θ(z)<1. Then, we have

    CE0Dγ(z),θ(z)z(u(z)g(z))=θ1(CE0Dγ(z)zu(z))+θ2(CE0Dγ(t)zg(z)).

    Proof. Since u and g are continuous there exist Mu and Mg such that u=Mu and g=Mg. Thus, we obtain

    CE0Dγ(z),θ(z)z(u(z)g(z))=M(γ)1γ(z)z0d(u(p)g(p))dpθ(p)exp(γ(p)1γ(p)(zp))dpM(γ)1γ(z)z0d(u(p)g(p))dpexp(γ(p)1γ(p)(tp))pθ(p)θ(p)ln(p)+θ(p)pdpM(γ)1γ(z)z0(g(p)du(p)dp+u(p)dg(p)dp)exp(γ(p)1γ(p)(zp))×pθ(p)θ(p)ln(p)+θ(p)pdpgM(γ)1γ(z)z0du(p)dpexp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdp+uM(γ)1γ(z)z0dg(p)dpexp(γ(p)1γ(p)(zp))pθ(p)θ(p)ln(p)+θ(p)pdpgM(γ)1γ(z)z0du(p)dpexp(γ(p)1γ(p)(zp))dp+uM(γ)1γ(z)z0dg(p)dpexp(γ(p)1γ(p)(zp))dp<Mg(CE0Dγ(z)zu(z))+Mu(CE0Dγ(z)zg(z)).

    This completes the proof.

    Corollary 4. Let u and g be two continuous bounded functions. Let 0<γ(z),θ(z)<1. Then, we have

    CM0Dγ(z),θ(z)z(u(z)g(z))=θ1(CM0Dγ(z)zu(z))+θ2(CM0Dγ(z)zg(z)).

    Proof. Since u and g are continuous there exist Mu and Mg such that u=Mf and g=Mg. Thus, we obtain

    CM0Dγ(z),θ(z)z(u(z)g(z))=AB(γ)1γ(z)z0d(u(p)g(p))dpθ(p)Eγ(p)(γ(p)1γ(p)(tp)γ(p))dpAB(γ)1γ(z)z0d(u(p)g(p))dpEγ(p)(γ(p)1γ(p)(tp)γ(p))pθ(p)θ(p)ln(p)+θ(p)pdpAB(γ)1γ(z)z0(g(p)du(p)dp+u(p)dg(p)dp)Eγ(p)(γ(p)1γ(p)(zp)γ(p))×pθ(p)θ(p)ln(p)+θ(p)pdpgAB(γ)1γ(t)z0du(p)dpEγ(p)(γ(p)1γ(p)(zp)γ(p))pθ(p)θ(p)ln(p)+θ(p)pdp+uM(γ)1γ(z)z0dg(p)dpEγ(p)(γ(p)1γ(p)(zp)γ(p))pθ(p)θ(p)ln(p)+θ(p)pdpgAB(γ)1γ(z)z0du(p)dpEγ(p)(γ(p)1γ(p)(tp)γ(p))dp+uAB(γ)1γ(z)t0dg(p)dpEγ(p)(γ(p)1γ(p)(zp)γ(p))dp<Mg(CM0Dγ(t)zu(z))+Mu(CM0Dγ(z)zg(z)).

    This completes the proof.

    Let us consider the following general Cauchy problem where the derivative is given as:

    {CM0Dγ(z),θ(z)zu(z)=f(z,u(z)),0<zy(0)=y0

    We aim to prove that the above equation has a unique solution under certain conditions. To achieve the conditions of existence it is important to note that there exists ξ[0,Z] such that ξ[0,Z]

    CM0Dγ(ξ),θ(ξ)zu(z)CM0Dγ(z),θ(z)zu(z). (2.16)

    For this point, there exist two positive numbers γ1 and θ1 such that γ(ξ)=γ1 and θ(ξ)=θ1. Thus, we obtain

    CM0Dγ(ξ),θ(ξ)zu(z)CM0Dγ1,θ1zu(z). (2.17)

    that is to say

    f(z,u(z))CM0Dγ1,θ1zu(z). (2.18)

    Applying the corresponding integral on both sides, we get

    θ1Γ(γ1)z0pθ11(zp)γ11f(y,u(p))dpu(z)u(0). (2.19)

    So that

    u(z)u(0)θ1Γ(γ1)z0pθ11(zp)γ11f(y,u(p))dp. (2.20)

    In this case, we can set a compact closed set of real numbers. But also we consider the following interval for time [Ω,γ]. So Ω,γ=¯CΩ(z0)ׯγ(y(0)). We have defined ¯CΩ(z0)=[x0Ω,x0+Ω] and ¯γ(y(0))=[y(0)γ,y(0)+γ].

    The real compact cylinder Ω,γ will be the interval within which the function f(z,u(z)) is defined. We assume that the function f(z,u(z)) is bounded within the compact cylinder Ω,γ. Then we can find a positive number ξ such that ξ=supΩ,γ|f|. To make the proof simple, we assume that the function f(z,u(z)) Lipschitz with respect to the second part u(z). That is to say, there exists a real positive number K such that u1,u2¯γ(u(0)),

    f(z,u1(z))f(z,u2(z))<Ku1u2. (2.21)

    Of course we have

    u=sup|u(z)|. (2.22)

    Between the functional space of continuous function, we defined a Picard's operator φγ,θ=Ω,γΩ,γ.

    φγ,θψu0+z0θ1pθ11Γ(γ1)(zp)γ11f(y,ψ(p))dy. (2.23)

    We must prove that the defined map is complete.

    φγ,θψu0θ1Γ(γ1)z0pθ11(zp)γ11f(y,ψ(p))dyθ1Γ(γ1)z0pθ11(tp)γ11f(y,ψ(p))dy<θ1Γ(γ1)t0pθ11(tp)γ11supy[0,t]|f(y,ψ(p))|dy<ξθ1Γ(γ1)z0pθ11(zp)γ11dy<ξθ1Γ(γ1)10(zh)θ11(zxh)γ11xdh<ξzθ1+γ11θ1Γ(γ1)10hθ11(1h)γ11dh<ξzθ1+γ11θ1Γ(γ1)B(θ1,γ1)

    Also given two functions ψ1 and ψ2 we want to show that

    φγ1,θ1ψ1φγ1,θ1ψ2Lψ1ψ2 (2.24)

    where L<1. So let x such that

    φγ1,θ1ψ1φγ1,θ1ψ2=(φγ1,θ1ψ1φγ,θψ2)(z) (2.25)

    Therefore from the definition, we have

    φγ1,θ1ψ1φγ1,θ1ψ2=θ1Γ(γ1)z0pθ11(zp)γ11(f(y,ψ1(p))f(y,ψ2(p)))dyθ1Γ(γ1)z0pθ11(tp)γ11f(y,ψ1(p))f(y,ψ2(p))dyθ1Γ(γ1)z0pθ11(zp)γ11Lψ1ψ2dyLψ1ψ2θ1Γ(γ1)z0pθ11(zp)γ11dyzθ1+γ11Lψ1ψ2θ1Γ(γ1)B(γ1,θ1)

    Therefore, we obtain

    φγ1,θ1ψ1φγ1,θ1ψ2<L1ψ1ψ2

    where

    L=zθ1+γ11Lθ1Γ(γ1)B(γ1,θ1).

    Then, we have

    L1<1L<Γ(γ1)θ1B(γ1,θ1)tθ1+γ11.

    In conclusion, the contraction is reached if and only if

    {ξzθ1+γ11θ1Γ(γ1)B(θ1,γ1)<γ,L<Γ(γ1)θ1B(γ1,θ1)tθ1+γ11}

    That is to say

    Ω<min{(γ1Γ(γ1)θ1ξB(γ1,θ1))1θ1+γ11,(Γ(γ1)B(γ1,θ1)Lθ1)1θ1+γ11}

    Within the above inequality the defined operator be said Lipschitz.

    In this section, we derive the numerical approximation of the defined operators. We consider first the case with exponential decay kernel.

    CE0Dγ(t),θ(t)tu(z)=M(γ(t))1γ(t)t0du(p)dpθ(p)exp(γ(p)1γ(p)(tp))dp.

    We consider the above when t=tn+1, then the right hand side will be

    M(γ(tn+1))1γ(tn+1)tn+10du(p)dppθ(p)θ(p)ln(p)+θ(p)pexp(γ(p)1γ(p)(tn+1p))dp=M(γ(tn+1))1γ(tn+1)nj=0tj+1tjfj+1fjΔttθ(tj)jθ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×exp(γ(tj)1γ(tj)(tn+1p))dp

    For simplicity we let

    γ(tj)=tθ(tj)jθ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj,p(tj)=γ(tj)1γ(tj)

    Such that

    M(γ(tn+1))1γ(tn+1)nj=0tj+1tjfj+1fjΔtγ(tj)exp(p(tj)(tn+1p))dp=M(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔtγ(tj)tj+1tjexp(p(tj)(tn+1p))dp=M(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔtγ(tj)[1p(tj)exp(p(tj)(tn+1p))]tj+1tj=M(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔtγ(tj)1p(tj)[exp(p(tj)(tn+1tj+1)exp(p(tj)(tn+1tj))]

    Therefore replacing all by their values, the variable order with exponential decay can be approximated as

    CE0Dγ(t),θ(t)tu(z)|t=tn+1M(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)jθ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×1p(tj)[exp(p(tj)(tn+1tj+1)exp(p(tj)(tn+1tj))]

    We continue with the power law case

    C0Dγ(t),θ(t)tu(z)=1Γ(1γ(t))t0du(p)dpθ(p)(tp)γ(p)dp

    at t=tn+1

    C0Dγ(t),θ(t)tu(z)|t=tn+1=1Γ(1γ(tn+1))tn+10du(p)dptθ(p)θ(p)ln(p)+θ(p)p(tn+1p)γ(p)dp1Γ(1γ(tn+1))nj=0tj+1tjfj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×(tn+1p)γ(tj)dp1Γ(1γ(tn+1))nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×tj+1tj(tn+1p)γ(tj)dp1Γ(1γ(tn+1))nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×[(tn+1tj)1γ(tj)1γ(tj)(tn+1tj+1)1γ(tj)1γ(tj)]

    In the light of what is presented above, the variable order derivative can be approximated as:

    C0Dγ(t),θ(t)tu(z)1Γ(1γ(tn+1))nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×[(tn+1tj)1γ(tj)1γ(tj)(tn+1tj+1)1γ(tj)1γ(tj)]

    We continue with the Mittag-Leffler kernel case:

    CM0Dγ(t),θ(t)tu(z)=AB(γ(t))1γ(t)t0du(p)dpθ(p)Eγ(p)(γ(p)1γ(p)(tp)γ(p))dp.

    at t=tn+1

    CM0Dγ(t),θ(t)tu(z)|t=tn+1=AB(γ(tn+1))1γ(tn+1)tn+10du(p)dptθ(p)θ(p)ln(p)+θ(p)p×Eγ(p)(γ(p)1γ(p)(tn+1p)γ(p))dpAB(γ(tn+1))1γ(tn+1)nj=0tj+1tjfj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×Eγ(tj)(γ(tj)1γ(tj)(tn+1p)γ(tj))dpAB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×tj+1tjEγ(tj)(γ(tj)1γ(tj)(tn+1p)γ(tj))dpAB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×tj+1tjk=0(γ(tj)1γ(tj))k(tn+1p)γ(tj)kΓ(γ(tj)k+1)dpAB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×k=0(γ(tj)1γ(tj))kΓ(γ(tj)k+1)tj+1tj(tn+1p)γ(tj)kdpAB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×k=0(γ(tj)1γ(tj))kΓ(γ(tj)k+1)[(tn+1tj+1)γ(tj)k+1γ(tj)k+1(tn+1tj)γ(tj)k+1γ(tj)k+1]AB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×[(tn+1tj+1)Eγ(tj),2(γ(tj)1γ(tj)((tn+1tj+1)γ(tj)))(tn+1tj)Eγ(tj),2(γ(tj)1γ(tj)((tn+1tj)γ(tj)))]

    In the light of what is presented above, the variable order derivative with the Mittag-Leffler kernel can be approximated as:

    CM0Dγ(t),θ(t)tu(z)AB(γ(tn+1))1γ(tn+1)nj=0fj+1fjΔttθ(tj)θ(tj+1)θ(tj)Δtln(tj)+θ(tj)tj×[(tn+1tj+1)Eγ(tj),2(γ(tj)1γ(tj)((tn+1tj+1)γ(tj)))(tn+1tj)Eγ(tj),2(γ(tj)1γ(tj)((tn+1tj)γ(tj)))]

    We consider the following problem:

    mC0Dα(t),θ(t)tV(t)+cdVdt+kV=0

    We demonstrate the numerical simulation of the problem by Figure 1. Then, we consider

    md2Vdt2+cC0Dα(t),θ(t)tV(t)+kV=0
    Figure 1.  Simulation for m=c=k=1 and θ=1.0.

    We demonstrate the numerical simulations of this problem by Figure 2.

    Figure 2.  Simulation for m=c=k=1 and θ=1.0.

    In the Figures 1 and 2, V(t) shows the approximate solution of the equations.

    Recently, differential operators with variable orders have being acknowledged as more convenient mathematical operators. Therefore, we presented an updated version of the so-called fractal-fractional derivative, where the constant fractal dimension is replaced by variable order fractal dimension and constant fractional order is replaced by the variable order function. We demonstrated some important properties of this new derivative and showed the numerical approximation of it. When the two variable orders are constants, we get well the so-called fractal-fractional differential operators.

    We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.

    The authors declare no conflict of interests.



    [1] A. Atangana, A. Shafiq, Differential and integral operators with constant fractional order and variable fractional dimension, Chaos Soliton. Fract., 127 (2019), 226–243. https://doi.org/10.1016/j.chaos.2019.06.014 doi: 10.1016/j.chaos.2019.06.014
    [2] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [3] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [4] O. A. Arqub, M. Al-Smadi, Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in hilbert space, Chaos Soliton. Fract., 117 (2018), 161–167. https://doi.org/10.1016/j.chaos.2018.10.013 doi: 10.1016/j.chaos.2018.10.013
    [5] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract. 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032
    [6] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. https://doi.org/10.1063/1.5084035 doi: 10.1063/1.5084035
    [7] N. A. Asif, Z. Hammouch, M. B. Riaz, H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272. https://doi.org/10.1140/epjp/i2018-12098-6 doi: 10.1140/epjp/i2018-12098-6
    [8] K. M. Owolabi, Z. Hammouch, Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A, 523 (2019), 1072–1090. https://doi.org/10.1016/j.physa.2019.04.017 doi: 10.1016/j.physa.2019.04.017
    [9] K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145. https://doi.org/10.1063/1.5086909 doi: 10.1063/1.5086909
    [10] S. Kumar, A. Kumar, J. J. Nieto, B. Sharma, AtanganaBaleanu Derivative with Fractional Order Applied to the Gas Dpnamics Equations, In: Fractional Derivatives with Mittag-Leffler Kernel, Springer, Cham. 2019,235–251. https://doi.org/10.1007/978-3-030-11662-0_14
    [11] J. Morais, H. M. Zayed, R. Srivastava, Third-order differential subordinations for multivalent functions in the theory of source-sink dynamics, Math. Meth. Appl. Sci. 44 (2021), 11269–11287. https://doi.org/10.1002/mma.7486
    [12] J. Morais, H. M. Zayed, Applications of differential subordination and superordination theorems to fluid mechanics involving a fractional higher-order integral operator, Alex. Eng. J., 60 (2021), 3901–3914. https://doi.org/10.1016/j.aej.2021.02.037 doi: 10.1016/j.aej.2021.02.037
    [13] A. O. Mostafa, M. K. Aouf, H. M. Zayed, T. Bulboaca, Multivalent functions associated with Srivastava-Saigo-Owa fractional differintegral operator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 112 (2018), 1409–1429. https://doi.org/10.1007/s13398-017-0436-1 doi: 10.1007/s13398-017-0436-1
    [14] M. K. Aouf, A. O. Mostafa, H. M. Zayed, On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr Mat., 28 (2017), 99–107. https://doi.org/10.1007/s13370-016-0433-0
    [15] F. Özköse, S. Yılmaz, M. Yavuz, I. Öztürk, M. T. Şenel, B. S. Bağcı, et al., A fractional modeling of tumor–immune system interaction related to Lung cancer with real data, Eur. Phys. J. Plus, 137 (2022), 1–28. https://doi.org/10.1140/epjp/s13360-021-02254-6 doi: 10.1140/epjp/s13360-021-02254-6
    [16] P. Veeresha, M. Yavuz, C. Baishya, A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators, An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 11 (2021), 52–67. https://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
    [17] M. Partohaghighi, M. Inc, M. Bayram, D. Baleanu, On numerical solution of the time fractional advection-diffusion equation involving Atangana-Baleanu-Caputo derivative, Open Phys., 17 (2019), 816–822. https://doi.org/10.1515/phys-2019-0085 doi: 10.1515/phys-2019-0085
    [18] A. S. Hendy, M. A. Zaky, M. Abbaszadeh, Long time behavior of Robin boundary sub-diffusion equation with fractional partial derivatives of Caputo type in differential and difference settings, Math. Comput. Simulat., 190 (2021), 1370–1378. https://doi.org/10.1016/j.matcom.2021.07.006 doi: 10.1016/j.matcom.2021.07.006
    [19] H. M. Zayed, S. A. Mohammadein, M. K. Aouf, Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113 (2019), 1499–1514. https://doi.org/10.1007/s13398-018-0559-z doi: 10.1007/s13398-018-0559-z
  • This article has been cited by:

    1. Hamid Reza Marzban, Atiyeh Nezami, Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method, 2022, 162, 09600779, 112499, 10.1016/j.chaos.2022.112499
    2. Peibo Tian, Yingjie Liang, Material coordinate driven variable-order fractal derivative model of water anomalous adsorption in swelling soil, 2022, 164, 09600779, 112754, 10.1016/j.chaos.2022.112754
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1886) PDF downloads(149) Cited by(2)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog