In this article, we consider a fractal-fractional tobacco mathematical model with generalized kernels of Mittag-Leffler functions for qualitative and numerical studies. From qualitative point of view, our study includes; existence criteria, uniqueness of solution and Hyers-Ulam stability. For the numerical aspect, we utilize Lagrange's interpolation polynomial and obtain a numerical scheme which is further illustrated simulations. Lastly, a comparative analysis is presented for different fractal and fractional orders. The numerical results are divided into four figures based on different fractal and fractional orders. We have found that the fractional and fractal orders have a significant impact on the dynamical behaviour of the model.
Citation: Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park. A study on the fractal-fractional tobacco smoking model[J]. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
[1] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor . Fractional integral estimations pertaining to generalized γ-convex functions involving Raina's function and applications. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752 |
[2] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[3] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[4] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[7] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir . New generalized integral inequalities with applications. AIMS Mathematics, 2019, 4(3): 984-996. doi: 10.3934/math.2019.3.984 |
In this article, we consider a fractal-fractional tobacco mathematical model with generalized kernels of Mittag-Leffler functions for qualitative and numerical studies. From qualitative point of view, our study includes; existence criteria, uniqueness of solution and Hyers-Ulam stability. For the numerical aspect, we utilize Lagrange's interpolation polynomial and obtain a numerical scheme which is further illustrated simulations. Lastly, a comparative analysis is presented for different fractal and fractional orders. The numerical results are divided into four figures based on different fractal and fractional orders. We have found that the fractional and fractal orders have a significant impact on the dynamical behaviour of the model.
Fractional calculus has emerged as one of the most important interdisciplinary subjects. In recent past it experienced rapid development and consequently several new generalizations of classical concepts of fractional calculus have been obtained in the literature, for example, see [9].
The classical Riemann-Liouville fractional integrals are defined as:
Definition 1.1 ([9]). Let F∈L1[a,b]. Then the Riemann-Liouville integrals Jαa+F and Jαb−F of order α>0 with a≥0 are defined by
Jαa+F(x)=1Γ(α)x∫a(x−v)α−1F(v)dv,x>a, |
and
Jαb−F(x)=1Γ(α)b∫x(v−x)α−1F(v)dv,x<b, |
where
Γ(x)=∫∞0e−vvx−1dv, |
is the well known Gamma function.
Diaz et al. [8] introduced the notion of generalized k-gamma function. The integral form of Γk is given by:
Γk(x)=∞∫0vx−1e−vkkdv,ℜ(x)>0. |
Note that
Γk(x)=kxk−1Γ(xk). |
k-Beta function is defined as:
βk(x,y)=1k1∫0vxk−1(1−v)xk−1dv. |
Obviously
βk(x,y)=1kβ(xk,yk). |
Sarikaya et al. [18] extended the notion of Riemann-Liouville fractional integrals to k-Riemann-Liouville fractional integrals and discussed some of its interesting properties.
To be more precise let F be piecewise continuous on I∗=(0,∞) and integrable on any finite subinterval of I=[0,∞]. Then for v>0, we consider k-Riemann-Liouville fractional integral of F of order α
kJαaF(x)=1kΓk(α)x∫a(x−v)αk−1F(v)dv,x>a,k>0. |
It has been observed that k-fractional integrals are significant generalizations of classical fractional integrals. For more details, see [18].
Ahmad et al. [1] defined fractional integral operators with an exponential kernel and obtained corresponding inequalities.
Definition 1.2. Let F∈[a,b]. The fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) are defined as follows:
Iαa+F(x)=1αx∫ae−1−αα(x−v)F(v)dv, x>a, |
and
Iαb−F(x)=1αb∫xe−1−αα(v−x)F(v)dv, x<b. |
Using the ideas of [1,18], we now introduce the notion of k-fractional integral operators with an exponential kernel.
Definition 1.3. Let F∈L[a,b]. The k-fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) for k>0 are defined as follows
kIαa+F(x)=kαx∫ae−k−αα(x−v)F(v)dv, x>a, |
and
kIαb−F(x)=kαb∫xe−k−αα(v−x)F(v)dv, x<b. |
It is to be noted that by taking k→1 in Definition 1.3, we recapture Definition 1.2. Fractional analogues of integral inequalities have a great many applications in numerical quadrature, transform theory, probability, statistical problems etc. Therefore, a significant and rapid development in this field has been noticed, for details, see [2,3,20,24,25]. Sarikaya et al. [19] utilized the concepts of fractional integrals and obtained new fractional refinements of trapezium like inequalities. This article motivated many researchers and as a result several new fractional extensions of classical inequalities have been obtained in the literature, for example, see [1,4,6,7,11,14,15,16,17,18,19,22,23]. Recently Ahmad et al. [1] used fractional integral operators with an exponential kernel and obtained corresponding inequalities. Wu et al. [23] derived some new identities and bounds pertaining to fractional integrals with the exponential kernel.
The main motivation of this paper is to derive some new fractional refinements of trapezium like inequalities essentially using the new fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and the preinvexity property of the functions. In order to establish the significance of our main results, we offer some applications of our main results to means and q-digamma functions. We hope that the ideas and techniques of this paper will inspire interested readers working in the field of inequalities.
Before we proceed further, we now recall some previously known concepts from convex analysis. We first, start with the definition of invex sets.
Definition 1.4 ([10]). A set K is said to be invex with respect to bifunction θ(.,.), if
x+vθ(y,x)∈K,∀x,y∈K,v∈[0,1]. |
The preinvexity of the functions is defined as:
Definition 1.5 ([21]). A function F:K→R is said to be preinvex with respect to bifunction θ(.,.), if
F(x+vθ(y,x))≤(1−v)F(x)+vf(y),∀x,y∈K,v∈[0,1]. |
In order to obtain some of the main results of the paper, we need the famous condition C, which was introduced by Mohan and Neogy [13]. This condition played a vital role in the development of several results involving preinvex functions.
Condition C. Let θ:K×K→Rn. We say that the bifunction θ(.,.) satisfies the condition C, if for any x,y∈Rn
1. θ(x,x+vθ(y,x))=−vθ(y,x),
2. θ(y,x+vθ(y,x))=(1−v)θ(y,x),
for all v∈[0,1].
Note that for any x,y∈Rn and v1,v2∈[0,1] and from the condition C, we have, see [12]
θ(x+v2θ(y,x),x+v1θ(y,x))=(v2−v1)θ(y,x). |
In this section, we derive some new fractional trapezium type inequalities involving the functions having preinvexity property. For the sake of simplicity, we set ρ=k−ααθ(b,a) and ρ1=1−ααθ(b,a).
Theorem 2.1. Let F:[a,a+θ(b,a)]⊆R→R be a positive function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Suppose F is a preinvex function and θ(.,.) satisfies condition C, then
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤F(a)+F(b)2. | (2.1) |
Proof. By preinvexity of F, we have for every x,y∈[a,a+θ(b,a)] with λ=12
2F(x+θ(y,x)2)≤[F(x)+F(y)], |
with x=a+vθ(b,a),y=a+(1−v)θ(b,a) and using the condition C, we have
2F(a+vθ(b,a)+θ(a+(1−v)θ(b,a),a+vθ(b,a))2)=2F(a+vθ(b,a)+(1−2v)θ(b,a)2)=2F(2a+θ(b,a)2)≤F(a+vθ(b,a))+F(a+(1−v)θ(b,a)). | (2.2) |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
2(1−e−ρ)ρF(2a+θ(b,a)2)≤1∫0e−ρvf(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)ds]=αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
As a result, we get
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. | (2.3) |
For the proof of second inequality, we note that F is a preinvex function, so we have
F(a+vθ(b,a))+F(a+(1−v)θ(b,a))≤F(a)+F(b). | (2.4) |
Multiplying both sides by e−ρv and integrating with respect to v over [0,1], we have
αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤1−e−ρρ[F(a)+F(b)], | (2.5) |
Combining (2.3) and (2.5) completes the proof.
Theorem 2.2. Let F:[a,a+θ(b,a)]⊆R→R be a positive and preinvex function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Let W be a non-negative, integrable and symmetric with respect to 2a+θ(b,a)2, then using the condition C, we have
F(2a+θ(b,a)2)[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]≤kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)≤F(a)+F(b)2[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. | (2.6) |
Proof. Since F is preinvex function on L[a,a+θ(b,a)], so multiplying inequality (2.2) by
e−ρvW(a+vθ(b,a)), | (2.7) |
and then integrating with respect to v over [0,1], we get
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+vθ(b,a))F(a+(1−v)θ(b,a))dv=1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+(1−v)θ(b,a))F(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)W(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)W(s)ds]=αkθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]. |
Thus
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤αkθ(b,a)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]. |
Since W is symmetric with respect to 2a+θ(b,a)2, we have
kIα(a)+W(a+θ(b,a))=kIα(a+θ(b,a))−W(a)=12[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. |
Thus we get the left side of inequality (2.6).
For the proof of right side of inequality (2.6), we multiply (2.7) and (2.4) and then integrating the resulting inequality with respect to v over [0,1], we get the required result.
Theorem 2.3. Let F,W:[a,a+θ(b,a)]⊆R→R be nonnegative and preinvex function on L[a,a+θ(b,a)] with θ(b,a)>0. If θ(.,.) satisfies condition C, then the following inequalities for the k-fractional integrals with exponential kernel holds:
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3, | (2.8) |
and
2F(2a+θ(b,a)2)W(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]≤M(a,b)ρ−2+e−ρ(ρ+2)ρ2(1−e−ρ)+N(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ2(1−e−ρ), | (2.9) |
where
M(a,b)=F(a)W(a)+F(b)W(b), |
and
N(a,b)=F(a)W(b)+F(b)W(a). |
Proof. Since F,W are preinvex functions on [a,a+θ(b,a)], then we have
F(a+vθ(b,a))W(a+vθ(b,a))≤(1−v)2F(a)W(a)+v2F(b)W(b)+v(1−v)N(a,b), |
and
F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤v2F(a)W(a)+(1−v)2F(b)W(b)+v(1−v)N(a,b). |
Adding above inequalities, we have
F(a+vθ(b,a))W(a+vθ(b,a))+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤(2v2−2v+1)M(a,b)+2v(1−v)N(a,b). |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))dv≤M(a,b)1∫0e−ρv(2v2−2v+1)dv+M(a,b)1∫0e−ρv2v(1−v)dv=M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
So,
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
For the proof of inequality (2.9), using the preinvexity of F,W and condition C, we have
F(2a+θ(b,a)2)W(2a+θ(b,a)2)=F(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))×W(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))≤(F(a+vθ(b,a))+F(a+(1−v)θ(b,a))2)(W(a+vθ(b,a))+W(a+(1−v)θ(b,a))2)≤F(a+vθ(b,a))W(a+vθ(b,a))4+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4+v(1−v)2M(a,b)+2v2−2v+14N(a,b). | (2.10) |
Multiplying both sides of inequality (2.10) by e−ρv and integrating with respect to v over [0,1], we get
1−e−ρρF(2a+θ(b,a)2)W(2a+θ(b,a)2)≤1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))4dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4dv+M(a,b)1∫0e−ρvv(1−v)2dv+N(a,b)1∫0e−ρv2v2−2v+14dv, |
which completes the proof.
Lemma 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.1) |
where
Rab=k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]−F(2a+θ(b,a)2), |
and
u={1, for0≤v≤12,−1,for12≤v≤1. |
Proof. By simple calculations, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρvF(a+(1−v)θ(b,a))|10+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a+θ(b,a))−e−ρF(a)+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−ρθ(b,a)a+θ(b,a)∫ae−ρa+θ(b,a)−sθ(b,a)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−ααa+θ(b,a)∫ae−(k−α)α(a+θ(b,a)−s)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−αkkIα(a)+F(a+θ(b,a))], | (3.2) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρ(1−v)F(a+(1−v)θ(b,a))|10−ρ1∫0e−ρ(1−v)F(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a)−e−ρF(a+θ(b,a))−ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+ρθ(b,a)a+θ(b,a)∫ae−ρs−aθ(b,a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−ααa+θ(b,a)∫ae−(k−α)α(s−a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−αkkIα(a+θ(b,a))−F(a)]. | (3.3) |
Also note that
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=−12[F(a+(1−v)θ(b,a))|120−F(a+(1−v)θ(b,a))|112]=F(a)−F(2a+θ(b,a)2)2−F(2a+θ(b,a)2)−F(a+θ(b,a))2. | (3.4) |
Substituting (3.2), (3.3) and (3.4) in (3.1) completes the proof.
Theorem 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)] and |F′| is preinvex on [a,a+θ(b,a)]. Then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.1, preinvexity of |F′| and increasing property of exponential function, we have
|Rab|=|θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv]|≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))|F′(a+(1−v)θ(b,a))|dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)|F′(a+(1−v)θ(b,a))|dv]≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)(v|F′(a)|+(1−v)|F′(b)|)dv]=θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−12∫0(1−e−ρ−e−ρv+e−ρ(1−v))((1−v)|F′(a)|+v|F′(b)|)dv]=θ(b,a)2(1−e−ρ)12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(|F′(a)|+|F′(b)|)dv=θ(b,a)2(1−e−ρ)[1−e−ρ2−1ρ(1−e−ρ2)2](|F′(a)|+|F′(b)|)=θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the fractional integrals with exponential kernel holds:
Lab=θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.5) |
where
Lab=F(a)+F(a+θ(b,a)2−k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
Proof. Using 3.2 and 3.3, we get the required result.
Theorem 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. If |F′| is preinvex function on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.2, preinvexity of |F′| and increasing property of exponential function, we have
|Lab|≤θ(b,a)21∫0|e−ρv−e−ρ(1−v)|1−e−ρ|F′(a+vθ(b,a))|dv≤θ(b,a)2[1∫0|e−ρv−e−ρ(1−v)|1−e−ρv|F′(a)|dv+1∫0|e−ρv−e−ρ(1−v)|1−e−ρ(1−v)|F′(b)|dv]=θ(b,a)2|F′(a)|[12∫0e−ρv−e−ρ(1−v)1−e−ρvdv+1∫12e−ρ(1−v)−e−ρv1−e−ρvdv]+θ(b,a)2|F′(b)|[12∫0e−ρv−e−ρ(1−v)1−e−ρ(1−v)dv+1∫12e−ρ(1−v)−e−ρv1−e−ρ(1−v)dv]=θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Lab=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv. | (3.6) |
Proof. Using (3.5) and integration by parts, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1ρ[e−ρvF′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv]=−1ρ[e−ρF′(a)−F′(a+θ(b,a))+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv], | (3.7) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=1ρ[e−ρ(1−v)F′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]=1ρ[F′(a)−e−ρF′(a+θ(b,a))+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]. | (3.8) |
Substituting (3.7) and (3.8) in (3.5), we have
Lab=θ(b,a)2ρ(1−e−ρ)[(1+e−ρ)(F′(a+θ(b,a))−F′(a))−θ(b,a)1∫0(e−ρv+e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv]=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv, |
which completes the proof.
Theorem 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|). |
Proof. It is to be noted that
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))vdv=1+e−ρ2−1−e−ρρ, | (3.9) |
and
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(1−v)dv=1+e−ρ2−1−e−ρρ. | (3.10) |
Using (3.6), (3.9), (3.10) and the preinvexity of |F′′|, we have
Lab=|θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|), |
the proof is complete.
Lemma 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv, | (3.11) |
where
h(v)={v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ), for0≤v≤12,(1−v)−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ),for12≤v≤1. |
Proof. Using (3.1), we have
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], |
Thus
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=θ(b,a)2[vF′(a+(1−v)θ(b,a))|120+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[vF′(a+(1−v)θ(b,a))|112+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[12F′(2a+θ(b,a)2)+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[F′(a)−12F′(2a+θ(b,a)2)+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[F′(2a+θ(b,a)2)−F′(a)]+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)21∫12F′′(a+(1−v)θ(b,a))dv+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv+θ2(b,a)21∫12(1−v)F′′(a+(1−v)θ(b,a))dv. | (3.12) |
Substituting (3.7), (3.8) and (3.12) in (3.1), we get the required result.
Theorem 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is a twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
Proof. Using (3.11) and preinvexity of |F′′|, we have
|Rab|=|θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)21∫0h(v)|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)212∫0(v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv+θ2(b,a)21∫12(1−v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2[12∫0(v2|F′′(a)|+v(1−v)|F′′(b)|)dv+1∫12(v(1−v)|F′′(a)|+(1−v)2|F′′(b)|)dv]+1ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
The proof is complete.
Remark 3.1. We would like to remark here that by taking k→1, new results can be obtained from our results.
Applications
We now discuss some applications of the results obtained in previous section. Before we proceed further let us recall the definition of arithmetic mean.
The arithmetic mean is defined as
A(a,b):=a+b2,a≠b. |
Proposition 3.1. Suppose all the assumptions of Theorem 3.1 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤(b−a)A(a,b)(12−tanh(ρ14)ρ1). |
Proof. The proof directly follows from Theorem 3.1 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.2. Suppose all the assumptions of Theorem 3.2 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤(b−a)A(a,b)tanh(ρ14). |
Proof. The proof directly follows from Theorem 3.2 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.3. Suppose all the assumptions of Theorem 3.3 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤2(b−a)2A(a,b)ρ1(1−e−ρ1)(1+e−ρ12−1−e−ρ1ρ1). |
Proof. The proof directly follows from Theorem 3.3 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.4. Suppose all the assumptions of Theorem 3.4 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤2(b−a)2A(a,b)(18+1+e−ρ12ρ1(1−e−ρ1)−1ρ21). |
Proof. The proof directly follows from Theorem 3.4 by setting θ(b,a)=b−a,k=1 and F(x)=x2. We now discuss applications to q-digamma functions, which is defined as:
Suppose 0<q<1, the q-digamma function χq(u) is given as
χq(u)=−ln(1−q)+ln(q)∞∑i=0qi+u1−qi+u.=−ln(1−q)+ln(q)∞∑i=0qiu1−qiu. |
For q>1,t>0, then q-digamma function χq can be given as
χq(u)=−ln(q−1)+ln(q)[u−12−∞∑i=0q−(i+u)1−q−(i+u)].=−ln(q−1)+ln(q)[u−12−∞∑i=0q−iu1−q−iu]. |
From the above definition, it is clear that χ′q is completely monotone on (0,∞) for q>0. This implies that χ′q is convex. For more details, see [5].
Proposition 3.5. Under the assumption of Theorem 2.1, the following inequality holds:
χq(a+b2)≤1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]≤χq(a)+χq(b)2. |
Proof. The proof is direct consequence of Theorem 2.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.6. Under the assumption of Theorem 3.1, the following inequality holds:
|1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]−χq(a+b2)|≤b−a2(12−tanh(ρ14)ρ1)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.7. Under the assumption of Theorem 3.1, the following inequality holds:
|χq(a)+χq(b)2−1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]|≤b−a2tanh(ρ14)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
In the article, we have extended the fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and derived several new trapezium type integral inequalities involving the new fractional integral operator essentially using the functions having preinvexity property. We have also discussed some interesting applications of our obtained results, which show the significance of our main results. It is also worth mentioning here that our obtained results are the generalizations of some previously known results and our ideas may lead to a lot of follow-up research.
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
[1] |
A. W. Bergen, N. Caporaso, Cigarette smoking, J. Natl. Cancer Inst., 91 (1999), 1365–1376. https://doi.org/10.1093/jnci/91.16.1365 doi: 10.1093/jnci/91.16.1365
![]() |
[2] |
N. J. Wald, A. K. Hackshaw, Cigarette smoking: an epidemiological overview, Brit. Med. Bull., 52 (1996), 3–11. https://doi.org/10.1093/oxfordjournals.bmb.a011530 doi: 10.1093/oxfordjournals.bmb.a011530
![]() |
[3] | B. Lloyd, K. Lucas, Smoking in adolescence: images and identities, London: Routledge, 1998. |
[4] |
S. Cohen, E. Lichtenstein, Perceived stress, quitting smoking, and smoking relapse, Health Psychol., 9 (1990), 466–478. https://doi.org/10.1037//0278-6133.9.4.466 doi: 10.1037//0278-6133.9.4.466
![]() |
[5] |
A. H. Mokdad, J. S. Marks, D. F. Stroup, J. L. Gerberding, Actual causes of death in the United States, JAMA, 291 (2004), 1238–1245. https://doi.org/10.1001/jama.291.10.1238 doi: 10.1001/jama.291.10.1238
![]() |
[6] |
A. Zeb, G. Zaman, S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37 (2013), 5326–5334. https://doi.org/10.1016/j.apm.2012.10.005 doi: 10.1016/j.apm.2012.10.005
![]() |
[7] |
O. Sharomi, A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475–499. https://doi.org/10.1016/j.amc.2007.05.012 doi: 10.1016/j.amc.2007.05.012
![]() |
[8] |
Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Stability analysis of a giving up smoking model, Int. J. Appl. Math. Res., 3 (2014), 168–177. http://doi.org/10.14419/ijamr.v3i2.2239 doi: 10.14419/ijamr.v3i2.2239
![]() |
[9] | N. H. Shah, F. A. Thakkar, B. M. Yeolekar, Stability analysis of tuberculosis due to smoking, Int. J. Innov. Sci. Res. Tech., 3 (2018), 230–237. |
[10] |
Q. Din, M. Ozair, T. Hussain, U. Saeed, Qualitative behavior of asmoking model, Adv. Differ. Equ., 2016 (2016), 96. https://doi.org/10.1186/s13662-016-0830-6 doi: 10.1186/s13662-016-0830-6
![]() |
[11] |
A. M. Pulecio-Montoya, L. E. Lopez-Montenegro, L. M. Benavides, Analysis of a mathematical model of smoking, Contemp. Eng. Sci., 12 (2019), 117–129. https://doi.org/10.12988/ces.2019.9517 doi: 10.12988/ces.2019.9517
![]() |
[12] |
Z. Zhang, R. Wei, W. Xia, Dynamical analysis of a giving up smoking model with time delay, Adv. Differ. Equ., 2019 (2019), 505. https://doi.org/10.1186/s13662-019-2450-4 doi: 10.1186/s13662-019-2450-4
![]() |
[13] |
S. A. Khan, K. Shah, G. Zaman, F. Jarad, Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative, Chaos, 29 (2019), 013128. https://doi.org/10.1063/1.5079644 doi: 10.1063/1.5079644
![]() |
[14] |
S. Ucar, E. Ucar, N. ozdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306. https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
![]() |
[15] |
G. Rahman, R. P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128–148. https://doi.org/10.1016/j.amc.2019.01.053 doi: 10.1016/j.amc.2019.01.053
![]() |
[16] |
C. Sun, J. Jia, Optimal control of a delayed smoking model with immigration, J. Biol. Dynam., 13 (2019), 447–460. https://doi.org/10.1080/17513758.2019.1629031 doi: 10.1080/17513758.2019.1629031
![]() |
[17] |
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115–128. https://doi.org/10.1007/s40096-019-0284-6 doi: 10.1007/s40096-019-0284-6
![]() |
[18] |
A. M. S. Mahdy, N. H. Sweilam, M. Higazy, Approximate solution for solving nonlinear fractional order smoking model, Alex. Eng. J., 59 (2020), 739–752. https://doi.org/10.1016/j.aej.2020.01.049 doi: 10.1016/j.aej.2020.01.049
![]() |
[19] |
A. A. Alshareef, H. A. Batarfi, Stability analysis of chain, mild and passive smoking model, Amer. J. Comput. Math., 10 (2020), 31–42. https://doi.org/10.4236/ajcm.2020.101003 doi: 10.4236/ajcm.2020.101003
![]() |
[20] |
Z. Zhang, J. Zou, R. K. Upadhyay, A. Pratap, Stability and Hopf bifurcation analysis of a delayed tobacco smoking model containing snuffing class, Adv. Differ. Equ., 2020 (2020), 349. https://doi.org/10.1186/s13662-020-02808-5 doi: 10.1186/s13662-020-02808-5
![]() |
[21] | A. Bernoussi, Global stability analysis of an SEIR epidemic model with relapse and general incidence rates, Appl. Sci., 21 (2019), 54–68. |
[22] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[23] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[24] |
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
![]() |
[25] |
T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 023102. https://doi.org/10.1063/1.5085726 doi: 10.1063/1.5085726
![]() |
[26] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. https://doi.org/10.1186/s13662-018-1914-2 doi: 10.1186/s13662-018-1914-2
![]() |
[27] |
H. Khan, F. Jarad, T. Abdeljawad, A. Khan, A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Soliton. Fract., 129 (2019), 56–61. https://doi.org/10.1016/j.chaos.2019.08.017 doi: 10.1016/j.chaos.2019.08.017
![]() |
[28] |
S. Rezapour, S. Etemad, H. Mohammadi, A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals, Adv. Differ. Equ., 2020 (2020), 481. https://doi.org/10.1186/s13662-020-02937-x doi: 10.1186/s13662-020-02937-x
![]() |
[29] |
H. M. Alshehri, A. Khan, A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel, J. Funct. Space., 2021 (2021), 2524027. https://doi.org/10.1155/2021/2524027 doi: 10.1155/2021/2524027
![]() |
[30] |
C. T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana-Baleanu-Caputo operators, Adv. Differ. Equ., 2021 (2021), 444. https://doi.org/10.1186/s13662-021-03600-9 doi: 10.1186/s13662-021-03600-9
![]() |
[31] |
C. T. Deressa, S. Etemad, M. K. A. Kaabar, S. Rezapour, Qualitative analysis of a hyperchaotic Lorenz-Stenflo mathematical model via the Caputo fractional operator, J. Funct. Space., 2022 (2022), 4975104. https://doi.org/10.1155/2022/4975104 doi: 10.1155/2022/4975104
![]() |
[32] |
P. Kumar, V. S. Erturk, Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative, Chaos Soliton. Fract., 144 (2021), 110672. https://doi.org/10.1016/j.chaos.2021.110672 doi: 10.1016/j.chaos.2021.110672
![]() |
[33] |
A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. https://doi.org/10.1016/j.aej.2021.02.011 doi: 10.1016/j.aej.2021.02.011
![]() |
[34] |
A. Pratap, R. Raja, R. P. Agarwal, J. Alzabut, M. Niezabitowski, E. Hincal, Further results on asymptotic and finite-time stability analysis of fractional-order time-delayed genetic regulatory networks, Neurocomputing, 475 (2022), 26–37. https://doi.org/10.1016/j.neucom.2021.11.088 doi: 10.1016/j.neucom.2021.11.088
![]() |
[35] |
H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
![]() |
[36] |
R. Begum, O. Tunc, H. Khan, H. Gulzar, A. Khan, A fractional order Zika virus model with Mittag-Leffler kernel, Chaos Soliton. Fract., 146 (2021), 110898. https://doi.org/10.1016/j.chaos.2021.110898 doi: 10.1016/j.chaos.2021.110898
![]() |
[37] |
A. Ali, Q. Iqbal, J. K. K. Asamoah, S. Islam, Mathematical modeling for the transmission potential of Zika virus with optimal control strategies, Eur. Phys. J. Plus, 137 (2022), 146. https://doi.org/10.1140/epjp/s13360-022-02368-5 doi: 10.1140/epjp/s13360-022-02368-5
![]() |
[38] |
P. Kumar, V. S. Erturk, H. Almusawa, Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives, Results Phys., 24 (2021), 104186. https://doi.org/10.1016/j.rinp.2021.104186 doi: 10.1016/j.rinp.2021.104186
![]() |
[39] |
R. Zarin, H. Khaliq, A. Khan, D. Khan, A. Akgul, U. W. Humphries, Deterministic and fractional modeling of a computer virus propagation, Results Phys., 33 (2022), 105130. https://doi.org/10.1016/j.rinp.2021.105130 doi: 10.1016/j.rinp.2021.105130
![]() |
[40] |
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
![]() |
[41] |
C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
![]() |
[42] |
J. Alzabut, G. M. Selvam, R. A. El-Nabulsi, D. Vignesh, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
![]() |
[43] |
S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph inclusion problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 171. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4
![]() |
[44] |
P. Kumar, V. S. Erturk, A. Yusuf, K. S. Nisar, S. F. Abdelwahab, A study on canine distemper virus (CDV) and rabies epidemics in the red fox population via fractional derivatives, Results Phys., 25 (2021), 104281. https://doi.org/10.1016/j.rinp.2021.104281 doi: 10.1016/j.rinp.2021.104281
![]() |
[45] |
J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
![]() |
[46] |
H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacial operator, J. Appl. Anal. Comput., 8 (2018), 1211–1226. https://doi.org/10.11948/2018.1211 doi: 10.11948/2018.1211
![]() |
[47] |
A. Omame, U. K. Nwajeri, M. Abbas, C. P. Onyenegecha, A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function, Alex. Eng. J., 61 (2022), 7619–7635. https://doi.org/10.1016/j.aej.2022.01.012 doi: 10.1016/j.aej.2022.01.012
![]() |
[48] |
D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844
![]() |
[49] |
S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166
![]() |
[50] |
E. Ucar, N. Özdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 308. https://doi.org/10.1051/mmnp/2019002 doi: 10.1051/mmnp/2019002
![]() |
[51] |
E. Ucar, S. Ucar, F. Evirgen, N. Özdemir, A fractional SAIDR model in the frame of Atangana-Baleanu derivative, Fractal Fract., 50 (2021), 32. https://doi.org/10.3390/fractalfract5020032 doi: 10.3390/fractalfract5020032
![]() |
[52] |
S. Ucar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Cont. Dyn. Syst. S, 14 (2021), 2571–2589. https://doi.org/10.3934/dcdss.2020178 doi: 10.3934/dcdss.2020178
![]() |
[53] |
S. Ucar, E. Ucar, N. Özdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306. https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
![]() |
[54] |
A. Khan, H. M. Alshehri, J. F. Gómez-Aguilar, Z. A. Khan, G. Fernández-Anaya, A predator-prey model involving variable-order fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 183. https://doi.org/10.1186/s13662-021-03340-w doi: 10.1186/s13662-021-03340-w
![]() |
[55] |
H. M. Alshehri, A. Khan, A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel, J. Funct. Space., 2021 (2021), 2524027. https://doi.org/10.1155/2021/2524027 doi: 10.1155/2021/2524027
![]() |
[56] |
P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
![]() |
[57] |
W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton. Fract., 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199
![]() |
[58] |
R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
![]() |
[59] |
W. Chen, H. G. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020 doi: 10.1016/j.camwa.2009.08.020
![]() |
[60] |
K. M. Owolabi, A. Atangana, A. Akgul, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alex. Eng. J., 59 (2020), 2477–2490. https://doi.org/10.1016/j.aej.2020.03.022 doi: 10.1016/j.aej.2020.03.022
![]() |
[61] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201
![]() |
[62] |
E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alex. Eng. J., 61 (2022), 2016–2028. https://doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010
![]() |
[63] |
M. Alqhtani, K. M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel, AIMS Mathematics, 7 (2022), 6535–6549. https://doi.org/10.3934/math.2022364 doi: 10.3934/math.2022364
![]() |
[64] |
M. Alqhtani, K. M. Saad, Fractal-fractional Michaelis–Menten enzymatic reaction model via different kernels, Fractal Fract., 6 (2021), 13. https://doi.org/10.3390/fractalfract6010013 doi: 10.3390/fractalfract6010013
![]() |
[65] |
K. M. Saad, J. F. Gomez-Aguilar, A. A. Almadiy, A fractional numerical study on a chronic hepatitis C virus infection model with immune response, Chaos Soliton. Fract., 139 (2020), 110062. https://doi.org/10.1016/j.chaos.2020.110062 doi: 10.1016/j.chaos.2020.110062
![]() |
[66] |
K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Mathematics, 6 (2021), 3788–3804. https://doi.org/10.3934/math.2021225 doi: 10.3934/math.2021225
![]() |
[67] |
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[68] |
M. Arfan, K. Shah, A. Ullah, Fractal-fractional mathematical model of four species comprising of prey-predation, Phys. Scr., 96 (2021), 124053. https://doi.org/10.1088/1402-4896/ac2f37 doi: 10.1088/1402-4896/ac2f37
![]() |
[69] |
M. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
![]() |
[70] |
K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of Corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560
![]() |
[71] |
Z. A. Khan, M. ur Rahman, K. Shah, Study of a fractal-fractional smoking models with relapse and harmonic mean type incidence rate, J. Funct. Space., 2021 (2021) 6344079. https://doi.org/10.1155/2021/6344079 doi: 10.1155/2021/6344079
![]() |
[72] |
M. Arif, P. Kumam, W. Kumam, A. Akgul, T. Sutthibutpong, Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium, Sci. Rep., 11 (2021), 20858. https://doi.org/10.1038/s41598-021-00163-3 doi: 10.1038/s41598-021-00163-3
![]() |
[73] |
H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials. Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
![]() |
[74] |
H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009
![]() |
[75] |
A. Atangana, A. Akgul, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005
![]() |
[76] |
A. U. Awan, A. Sharif, K. A. Abro, M. Ozair, T. Hussain, Dynamical aspects of smoking model with cravings to smoke, Nonlinear Eng., 10 (2021), 91–108. http://doi.org/10.1515/nleng-2021-0008 doi: 10.1515/nleng-2021-0008
![]() |