We propose mathematical model for the transmission of the Zika virus for humans spread by mosquitoes. We construct a scheme for the Zika virus model with Atangna-Baleanue Caputo sense and fractal fractional operator by using generalized Mittag-Leffler kernel. The positivity and boundedness of the model are also calculated. The existence of uniquene solution is derived and stability analysis has been made for the model by using the fixed point theory. Numerical simulations are made by using the Atangana-Toufik scheme and fractal fractional operator with a different dimension of fractional values which support the theoretical outcome of the proposed system. Developed scheme including simulation will provide better understanding in future analysis and for control strategy regarding Zika virus.
Citation: Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad. Modeling and analysis of fractional order Zika model[J]. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
[1] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[2] | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395 |
[3] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[4] | Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162 |
[5] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[6] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[7] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[8] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
[9] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[10] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
We propose mathematical model for the transmission of the Zika virus for humans spread by mosquitoes. We construct a scheme for the Zika virus model with Atangna-Baleanue Caputo sense and fractal fractional operator by using generalized Mittag-Leffler kernel. The positivity and boundedness of the model are also calculated. The existence of uniquene solution is derived and stability analysis has been made for the model by using the fixed point theory. Numerical simulations are made by using the Atangana-Toufik scheme and fractal fractional operator with a different dimension of fractional values which support the theoretical outcome of the proposed system. Developed scheme including simulation will provide better understanding in future analysis and for control strategy regarding Zika virus.
Let A denote the class of functions f which are analytic in the open unit disk Δ={z∈C:|z|<1}, normalized by the conditions f(0)=f′(0)−1=0. So each f∈A has series representation of the form
f(z)=z+∞∑n=2anzn. | (1.1) |
For two analytic functions f and g, f is said to be subordinated to g (written as f≺g) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for z∈Δ such that f(z)=(g∘ω)(z).
A function f∈A is said to be in the class S if f is univalent in Δ. A function f∈S is in class C of normalized convex functions if f(Δ) is a convex domain. For 0≤α≤1, Mocanu [23] introduced the class Mα of functions f∈A such that f(z)f′(z)z≠0 for all z∈Δ and
ℜ((1−α)zf′(z)f(z)+α(zf′(z))′f′(z))>0(z∈Δ). | (1.2) |
Geometrically, f∈Mα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.
A function f∈S is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ ∈Δ onto a starlike arc with respect to f(ζ). A function f∈C is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ ∈Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].
In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k≥0) of k-uniformly convex functions. A function f∈A is said to be in the class k-UCV if it satisfies the condition
ℜ(1+zf″(z)f′(z))>k|zf′(z)f′(z)|(z∈Δ). | (1.3) |
In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.
In 2015, Sokół and Nunokawa [33] introduced the class MN, a function f∈MN if it satisfies the condition
ℜ(1+zf″(z)f′(z))>|zf′(z)f(z)−1|(z∈Δ). |
In [28], it is proved that if ℜ(f′)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function f∈B if it satisfies the condition ℜ(f′)>0 for z∈Δ. A natural generalization of the class B is B(δ1) (0≤δ1<1), a function f∈B(δ1) if it satisfies the condition
ℜ(f′(z))>δ1(z∈Δ;0≤δ1<1), | (1.4) |
for details associated with the class B(δ1) (see [5,6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.
Definition 1. Let k≥0 and 0≤α≤1. A function f∈A is said to be in the class k-Q(α) if it satisfies the condition
ℜ((zf′(z))′f′(z))>k|(1−α)f′(z)+α(zf′(z))′f′(z)−1|(z∈Δ). | (1.5) |
It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:
1. k-Q(1)=k-UCV;
2. 0-Q(α)=C.
In what follows, we give an example for the class k-Q(α).
Example 1. The function f(z)=z1−Az(A≠0) is in the class k-Q(α) with
k≤1−b2b√b(1+α)[b(1+α)+2]+4(b=|A|). | (1.6) |
The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.
To prove our main results, we need the following lemmas.
Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0≤γ1<1. If
h(z)+βzh′(z)h(z)≺1+(1−2γ1)z1−z, |
then
h(z)≺1+(1−2δ)z1−z, |
where
δ=(2γ1−β)+√(2γ1−β)2+8β4. | (2.1) |
Lemma 2. Let h be analytic in Δ and of the form
h(z)=1+∞∑n=mbnzn(bm≠0) |
with h(z)≠0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h′(z0)h(z0)=iℓρ, where
ℓ:{ℓ≥n2(c+1c)(argh(z0)=πρ2),ℓ≤−n2(c+1c)(argh(z0)=−πρ2), |
and (h(z0))1/ρ=±ic(c>0).
This result is a generalization of the Nunokawa's lemma [29].
Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t∈[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all z∈Δ. In addition, suppose that ℜ(ϝ(z,t))>0, ϝ(−r,t) is real and ℜ(1/ϝ(z,t))≥1/ϝ(−r,t) for |z|≤r<1 and t∈[0,1]. If ϝ(z)=∫10ϝ(z,t)dε(t), then ℜ(1/ϝ(z))≥1/ϝ(−r).
Lemma 4. ([22]) If −1≤D<C≤1, λ1>0 and ℜ(γ2)≥−λ1(1−C)/(1−D), then the differential equation
s(z)+zs′(z)λ1s(z)+γ2=1+Cz1+Dz(z∈Δ) |
has a univalent solution in Δ given by
s(z)={zλ1+γ2(1+Dz)λ1(C−D)/Dλ1∫z0tλ1+γ2−1(1+Dt)λ1(C−D)/Ddt−γ2λ1(D≠0),zλ1+γ2eλ1Czλ1∫z0tλ1+γ2−1eλ1Ctdt−γ2λ1(D=0). |
If r(z)=1+c1z+c2z2+⋯ satisfies the condition
r(z)+zr′(z)λ1r(z)+γ2≺1+Cz1+Dz(z∈Δ), |
then
r(z)≺s(z)≺1+Cz1+Dz, |
and s(z) is the best dominant.
Lemma 5. ([36,Chapter 14]) Let w, x and\ y≠0,−1,−2,… be complex numbers. Then, for ℜ(y)>ℜ(x)>0, one has
1. 2G1(w,x,y;z)=Γ(y)Γ(y−x)Γ(x)∫10sx−1(1−s)y−x−1(1−sz)−wds;
2. 2G1(w,x,y;z)= 2G1(x,w,y;z);
3. 2G1(w,x,y;z)=(1−z)−w2G1(w,y−x,y;zz−1).
Firstly, we derive the following result.
Theorem 1. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then f∈B(δ), where
δ=(2μ−λ)+√(2μ−λ)2+8λ4(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). | (3.1) |
Proof. Let f′=ℏ, where ℏ is analytic in Δ with ℏ(0)=1. From inequality (1.5) which takes the form
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|=k|1−α−ℏ(z)+αℏ(z)−αzℏ′(z)ℏ(z)|, |
we find that
ℜ(ℏ(z)+1+αkk(1−α)zℏ(z)ℏ(z))>k−αk−1k(1−α), |
which can be rewritten as
ℜ(ℏ(z)+λzℏ(z)ℏ(z))>μ(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
The above relationship can be written as the following Briot-Bouquet differential subordination
ℏ(z)+λzℏ′(z)ℏ(z)≺1+(1−2μ)z1−z. |
Thus, by Lemma 1, we obtain
ℏ≺1+(1−2δ)z1−z, | (3.2) |
where δ is given by (3.1). The relationship (3.2) implies that f∈B(δ). We thus complete the proof of Theorem 3.1.
Theorem 2. Let 0<α≤1, 0<β<1, c>0, k≥1, n≥m+1(m∈ N ), |ℓ|≥n2(c+1c) and
|αβℓ±(1−α)cβsinβπ2|≥1. | (3.3) |
If
f(z)=z+∞∑n=m+1anzn(am+1≠0) |
and f∈k-Q(α), then f∈B(β0), where
β0=min{β:β∈(0,1)} |
such that (3.3) holds.
Proof. By the assumption, we have
f′(z)=ℏ(z)=1+∞∑n=mcnzn(cm≠0). | (3.4) |
In view of (1.5) and (3.4), we get
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|. |
If there exists a point z0∈Δ such that
|argℏ(z)|<βπ2(|z|<|z0|;0<β<1) |
and
|argℏ(z0)|=βπ2(0<β<1), |
then from Lemma 2, we know that
z0ℏ′(z0)ℏ(z0)=iℓβ, |
where
(ℏ(z0))1/β=±ic(c>0) |
and
ℓ:{ℓ≥n2(c+1c)(argℏ(z0)=βπ2),ℓ≤−n2(c+1c)(argℏ(z0)=−βπ2). |
For the case
argℏ(z0)=βπ2, |
we get
ℜ(1+z0ℏ′(z0)ℏ(z0))=ℜ(1+iℓβ)=1. | (3.5) |
Moreover, we find from (3.3) that
k|(1−α)ℏ(z0)+α(1+z0ℏ′(z0)ℏ(z0))−1|=k|(1−α)(ℏ(z0)−1)+αz0ℏ′(z0)ℏ(z0)|=k|(1−α)[(±ic)β−1]+iαβℓ|=k√(1−α)2(cβcosβπ2−1)2+[αβℓ±(1−α)cβsinβπ2]2≥1. | (3.6) |
By virtue of (3.5) and (3.6), we have
ℜ(1+zℏ′(z0)ℏ(z0))≤k|(1−α)ℏ(z0)+α(1+z0ℏ(z0)ℏ(z0))−1|, |
which is a contradiction to the definition of k-Q(α). Since β0=min{β:β∈(0,1)} such that (3.3) holds, we can deduce that f∈B(β0).
By using the similar method as given above, we can prove the case
argℏ(z0)=−βπ2 |
is true. The proof of Theorem 2 is thus completed.
Theorem 3. If 0<β<1 and 0≤ν<1. If f∈k-Q(α), then
ℜ(f′)>[2G1(2β(1−ν),1;1β+1;12)]−1, |
or equivalently, k-Q(α)⊂B(ν0), where
ν0=[2G1(2β(1−μ),1;1β+1;12)]−1. |
Proof. For
w=2β(1−ν), x=1β, y=1β+1, |
we define
ϝ(z)=(1+Dz)w∫10tx−1(1+Dtz)−wdt=Γ(x)Γ(y) 2G1(1,w,y;zz−1). | (3.7) |
To prove k-Q(α)⊂B(ν0), it suffices to prove that
inf|z|<1{ℜ(q(z))}=q(−1), |
which need to show that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
By Lemma 3 and (3.7), it follows that
ϝ(z)=∫10ϝ(z,t)dε(t), |
where
ϝ(z,t)=1−z1−(1−t)z(0≤t≤1), |
and
dε(t)=Γ(x)Γ(w)Γ(y−w)tw−1(1−t)y−w−1dt, |
which is a positive measure on [0,1].
It is clear that ℜ(ϝ(z,t))>0 and ϝ(−r,t) is real for |z|≤r<1 and t∈[0,1]. Also
ℜ(1ϝ(z,t))=ℜ(1−(1−t)z1−z)≥1+(1−t)r1+r=1ϝ(−r,t) |
for |z|≤r<1. Therefore, by Lemma 3, we get
ℜ(1/ϝ(z))≥1/ϝ(−r). |
If we let r→1−, it follows that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
Thus, we deduce that k-Q(α)⊂B(ν0).
Theorem 4. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then
f′(z)≺s(z)=1g(z), |
where
g(z)=2G1(2λ,1,1λ+1;zz−1)(λ=1+αkk(1−α)). |
Proof. Suppose that f′=ℏ. From the proof of Theorem 1, we see that
ℏ(z)+zℏ′(z)1λℏ(z)≺1+(1−2μ)z1−z≺1+z1−z(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
If we set λ1=1λ, γ2=0, C=1 and D=−1 in Lemma 4, then
ℏ(z)≺s(z)=1g(z)=z1λ(1−z)−2λ1/λ∫z0t(1/λ)−1(1−t)−2/λdt. |
By putting t=uz, and using Lemma 5, we obtain
ℏ(z)≺s(z)=1g(z)=11λ(1−z)2λ∫10u(1/λ)−1(1−uz)−2/λdu=[2G1(2λ,1,1λ+1;zz−1)]−1, |
which is the desired result of Theorem 4.
The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.
The authors declare no conflict of interest.
[1] |
V. Sikka, V. K. Chattu, R. K. Popli, S. C. Galwankar, D. Kelkar, S. G. Sawicki, et al., The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint Working Group (JWG), J. Glob. Infect. Dis., 8 (2016), 3-15. doi: 10.4103/0974-777X.176140. doi: 10.4103/0974-777X.176140
![]() |
[2] |
M. Z. Mehrjardi, Is Zika virus an Emerging TORCH agent? An invited commentary, Virology: Res. Treat., 8 (2017), 1-3. doi: 10.1177/1178122X17708993. doi: 10.1177/1178122X17708993
![]() |
[3] | D. M. Knipe, P. M. Howley, Fields virology, 5 Eds., Lippincott Williams & Wilkins, 1156 (2017), 1199. |
[4] |
E. B. Hayes, Zika virus outside Africa, Emerg. Infect. Dis., 15 (2009), 1347-1350. doi: 10.3201/eid1509.090442. doi: 10.3201/eid1509.090442
![]() |
[5] |
D. Baleanu, A. Mousalou, S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Bound. Value Probl., 145 (2017). doi: 10.1186/s13661-017-0867-9. doi: 10.1186/s13661-017-0867-9
![]() |
[6] |
D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019-3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053
![]() |
[7] |
D. Baleanu, Z. Nazemi, S. Rezapour, Attractivity for a k-dimensional system of fractional functional differential equations and global attractively for a k-dimensional system of nonlinear fractional differential equations, J. Inequal. Appl., 31 (2014). doi: 10.1186/1029-242X-2014-31. doi: 10.1186/1029-242X-2014-31
![]() |
[8] |
F. Mainardi, Fractional calculus: Theory and applications, Mathematics, 6 (2018), 145. doi: 10.3390/math6090145. doi: 10.3390/math6090145
![]() |
[9] |
M. A. C. Pinto, J. A. T. Machado, Fractional dynamics of computer virus propagation, Math. Probl. Eng., 2014 (2014). doi: 10.1155/2014/476502. doi: 10.1155/2014/476502
![]() |
[10] |
E. K. Akgul, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. doi: 10.1063/1.5084035. doi: 10.1063/1.5084035
![]() |
[11] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, USA, 2001. |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. |
[13] |
H. Bulut, H. M. Baskonus, F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by sumudu transform method, Abst. Appl. Anal., 2013 (2013). doi: 10.1155/2013/203875. doi: 10.1155/2013/203875
![]() |
[14] |
A. Atangana, B. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439. doi: 10.3390/e17064439
![]() |
[15] |
A. Atangana, B. T. Alkahtani, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos Soliton. Fract., 89 (2016), 566-571. doi: 10.1016/j.chaos.2016.03.027. doi: 10.1016/j.chaos.2016.03.027
![]() |
[16] |
A. Atangana, A. Akgul, Can transfer function and Bode diagram be obtained from Sumudu transform, Alex. Eng. J., 59 (2020), 1971-1984. doi: 10.1016/j.aej.2019.12.028. doi: 10.1016/j.aej.2019.12.028
![]() |
[17] |
D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dyn., 87 (2017), 511-517. doi: 10.1007/s11071-016-3057-x. doi: 10.1007/s11071-016-3057-x
![]() |
[18] | M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Naeem, D. Baleanue, Epidemiological analysis of the coronavirus disease outbreak with random effects, CMC-Comput. Mater. Con., 67 (2021), 3215-3227. |
[19] |
H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021). doi: 10.1016/j.rinp.2021.104666. doi: 10.1016/j.rinp.2021.104666
![]() |
[20] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1-13. |
[21] |
S. Javeed, S. Anjum, K. S. Alimgeer, M. Atif, S. W. Yao, W. A. Farooq, et al., A novel mathematical model for COVID-19 with remedial strategies, Results Phys., 27 (2021). doi: 10.1016/j.rinp.2021.104248. doi: 10.1016/j.rinp.2021.104248
![]() |
[22] |
M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Rizwan, M. O Ahmad, A mathematical analysis and simulation for Zika virus model with time fractional derivative, Math. Method. Appl. Sci., 2020 (2020), 1-12. doi: 10.1002/mma.6891. doi: 10.1002/mma.6891
![]() |
[23] |
I. E. Kibona, C. H. Yang, SIR model of spread of Zika virus infections: Zikv linked to microcephaly simulations, Health, 9 (2017), 1190-1210. doi: 10.4236/health.2017.98086. doi: 10.4236/health.2017.98086
![]() |
[24] |
A. Maysaroh, S. B. Waluya, W. Wuryanto, Analysis and simulation model mathematical model of Zika disease with one serotype virus Zika, Unnes J. Math., 8 (2019), 56-71. doi: 10.15294/ujm.v8i1.23297. doi: 10.15294/ujm.v8i1.23297
![]() |
[25] |
B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams typepredictor-corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191-3200. doi: 10.22436/jnsa.010.06.32. doi: 10.22436/jnsa.010.06.32
![]() |
[26] |
S. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Differ. Equ., 589 (2020). doi: 10.1186/s13662-020-03044-7. doi: 10.1186/s13662-020-03044-7
![]() |
[27] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
![]() |
[28] |
M. Higazy, F. M. Allehiany, E. E. Mahmoud, Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group, Results Phys., 22 (2021), 103852. doi: 10.1016/j.rinp.2021.103852. doi: 10.1016/j.rinp.2021.103852
![]() |
[29] |
M. Higazy, E. E. Mahmoud, E. M. Khalil, S. Abdel-Khalek, S. M. Abo-Dahab, H. Alotaibi, Dynamics and robust control of a new realizable chaotic nonlinear model, Complexity, 17 (2021). doi: 10.1155/2021/6692369. doi: 10.1155/2021/6692369
![]() |
[30] |
A. M. S. Mahdy, M. S. Mohamed, K. A. Gepreel, A. AL-Amiri, M. Higazy, Dynamical characteristics and signal flow graph of nonlinear fractional smoking mathematical model, Chaos Soliton. Fract., 141 (2020), 110308. doi: 10.1016/j.chaos.2020.110308. doi: 10.1016/j.chaos.2020.110308
![]() |
[31] |
E. E. Mahmoud, M. Higazy, O. A. Althagafi, A novel strategy for complete and phase robust synchronizations of chaotic nonlinear systems, Symmetry, 12 (2020), 1765. doi: 10.3390/sym12111765. doi: 10.3390/sym12111765
![]() |
[32] |
K. A. Gepreel, M. Higazy, A. M. S. Mahdy, Optimal control, signal flow graph, and system electronic circuit realization for nonlinear Anopheles mosquito model, Int. J. Mod. Phys. C, 31 (2020), 2050130. doi: 10.1142/S0129183120501302. doi: 10.1142/S0129183120501302
![]() |
[33] |
M. Higazy, M. A. Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, Alex. Eng. J., 59 (2020), 4719-4736. doi: 10.1016/j.aej.2020.08.034. doi: 10.1016/j.aej.2020.08.034
![]() |
[34] |
M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Soliton. Fract., 138 (2020), 110007. doi: 10.1016/j.chaos.2020.110007. doi: 10.1016/j.chaos.2020.110007
![]() |
[35] |
A. Mahdy, M. Higazy, Numerical different methods for solving the nonlinear biochemical reaction model, Int. J. Appl. Comput. Math., 5 (2019), 148. doi: 10.1007/s40819-019-0740-x. doi: 10.1007/s40819-019-0740-x
![]() |
[36] |
E. E Mahmoud, M. Higazy, T. M. Al-Harthi, A new nine-dimensional chaotic Lorenz system with quaternion variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, 7 (2019), 877. doi: 10.3390/math7100877. doi: 10.3390/math7100877
![]() |
[37] |
E. E. Mahmoud, M. Higazy, A. Hammad, S. M. Abo-Dahab, S. Abdel-Khalek, E. M. Khalil, Quaternion anti-synchronization of a novel realizable fractional chaotic model, Chaos Soliton. Fract., 144 (2021), 110715. doi: 10.1016/j.chaos.2021.110715. doi: 10.1016/j.chaos.2021.110715
![]() |
[38] |
Z. Memon, S. Qureshi, B. R. Memon, Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study, Chaos Soliton. Fract., 144 (2021), 110655. doi: 10.1016/j.chaos.2021.110655. doi: 10.1016/j.chaos.2021.110655
![]() |
[39] |
S. Qureshi, M. M. Chang, A. A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, atangana beta and conformable derivatives, J. Ocean Eng. Sci., 6 (2021), 217-227. doi: 10.1016/j.joes.2020.11.006. doi: 10.1016/j.joes.2020.11.006
![]() |
[40] |
S. Qureshi, R. Jan, Modeling of measles epidemic with optimized fractional order under Caputo differential operator, Chaos Soliton. Fract., 145 (2021), 110766. doi: 10.1016/j.chaos.2021.110766. doi: 10.1016/j.chaos.2021.110766
![]() |
1. | A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647 | |
2. | Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574 |