The conjugate descent (CD) method is a conjugate gradient (CG) variant with remarkable convergence properties. This paper presents a modified CD scheme for solving systems of constrained monotone nonlinear equations. Eigenvalue analysis demonstrates that the proposed search direction matrix is positive definite. By incorporating the proposed algorithm with Solodov and Svaiter's projection method (1999), several convex-constrained monotone nonlinear equations were solved, yielding impressive results. The new algorithm exhibits descent properties and achieves global convergence under appropriate assumptions. Numerical comparisons with recent algorithms in the literature highlight the efficiency and effectiveness of the proposed method. Furthermore, the method is applied to signal recovery experiments in compressive sensing.
Citation: Habibu Abdullahi, A. K. Awasthi, Mohammed Yusuf Waziri, Issam A. R. Moghrabi, Abubakar Sani Halilu, Kabiru Ahmed, Sulaiman M. Ibrahim, Yau Balarabe Musa, Elissa M. Nadia. An improved convex constrained conjugate gradient descent method for nonlinear monotone equations with signal recovery applications[J]. AIMS Mathematics, 2025, 10(4): 7941-7969. doi: 10.3934/math.2025365
The conjugate descent (CD) method is a conjugate gradient (CG) variant with remarkable convergence properties. This paper presents a modified CD scheme for solving systems of constrained monotone nonlinear equations. Eigenvalue analysis demonstrates that the proposed search direction matrix is positive definite. By incorporating the proposed algorithm with Solodov and Svaiter's projection method (1999), several convex-constrained monotone nonlinear equations were solved, yielding impressive results. The new algorithm exhibits descent properties and achieves global convergence under appropriate assumptions. Numerical comparisons with recent algorithms in the literature highlight the efficiency and effectiveness of the proposed method. Furthermore, the method is applied to signal recovery experiments in compressive sensing.
| [1] |
N. Alfredo. Iusem, V. Michael. Solodov, Newton-type methods with generalized distances for constrained optimization, Optimization, 41 (1997), 257–278. https://doi.org/10.1080/02331939708844339 doi: 10.1080/02331939708844339
|
| [2] |
A. S. Halilu, A. Majumder, M. Y. Waziri, K. Ahmed, Signal recovery with convex constrained nonlinea monotone equations through conjugate gradient hybrid approach, Math. Comput. Simulat., 187 (2021), 520–539. http://doi.org/10.1016/j.matcom.2021.03.020 doi: 10.1016/j.matcom.2021.03.020
|
| [3] |
A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145 (2019), 507–520. https://doi.org/10.1016/j.apnum.2019.05.012 doi: 10.1016/j.apnum.2019.05.012
|
| [4] |
H. Muhammad, A. B. Abubakar, A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper. Res., 54 (2020), 489–505. https://doi.org/10.1051/ro/2020008 doi: 10.1051/ro/2020008
|
| [5] |
H. Abdullahi, A. K. Awasthi, M. Y. Waziri, A. S. Halilu, A scaled three-term conjugate gradient method for convex-constrained monotone nonlinear equations with applications, J. Phys. Conf. Ser., 2267 (2022), 012066 https://doi.org/10.1088/1742-6596/2267/1/012066 doi: 10.1088/1742-6596/2267/1/012066
|
| [6] |
H. Abdullahi, A. K. Awasthi, M. Y. Waziri, A. S. Halilu, Descent three term DY-type conjugate gradient methods for constrained monotone equations with application, Comp. Appl. Math., 41 (2022), 32. https://doi.org/10.1007/s40314-021-01724-y doi: 10.1007/s40314-021-01724-y
|
| [7] |
B. Khan, P. Singh, Optimal power flow techniques under characterization of conventional and renewable energy sources: A comprehensive analysis, J. Eng., 2017 (2017), 9539506. https://doi.org/10.1155/2017/9539506 doi: 10.1155/2017/9539506
|
| [8] |
S. Aji, P. Kumaam, P. Siricharoen, A. B. Abubakar, M. M. Yahaya, A modified conjugate descent projection method for monotone nonlinear equations and image restoration, IEEE Access, 8 (2020), 158656–158665. https://doi.org/10.1109/ACCESS.2020.3020334 doi: 10.1109/ACCESS.2020.3020334
|
| [9] | M. W. Yusuf, L. W. June, M. A. Hassan, Jacobian-free diagonal Newton's method for solving nonlinear systems with singular Jacobian, Malasian J. Math. Sci., 5 (2011), 241–255. |
| [10] |
D. Li, M. Fukushima, A global and superlinear convergent Gauss-Newton based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37 (1999), 152–172. https://doi.org/10.1137/S0036142998335704 doi: 10.1137/S0036142998335704
|
| [11] |
G. Yuan, X. Lu, A new backtracking inexact BFGS method for symmetric nonlinear equations, Comput. Math. Appl., 55 (2008), 116–129. https://doi.org/10.1016/j.camwa.2006.12.081 doi: 10.1016/j.camwa.2006.12.081
|
| [12] |
W. Hao, A gradient descent method for solving a system of nonlineare quations, Appl. Math. Lett., 112 (2021), 106739. https://doi.org/10.1016/j.aml.2020.106739 doi: 10.1016/j.aml.2020.106739
|
| [13] |
Z. Papp, S. Rapajic, FR type methods for systems of large-scale nonlinear monotone equations, Appl. Math. Comput., 269 (2015), 816–823. https://doi.org/10.1016/j.amc.2015.08.002 doi: 10.1016/j.amc.2015.08.002
|
| [14] | I. S. Mohammed, M. Mamat, M. R. Abashar, Z. Salleh, A modified nonlinear conjugate gradient method for unconstrained optimization, Appl. Math. Sci., 9 (2015), 54. |
| [15] | R. Fletcher, Practical methods of optimization, John Wiley & Sons, 2000. |
| [16] |
X. Yang, Z. Luo, X. Dai, A global convergence of LS-CD hybrid conjugate gradient method, Adv. Numer. Anal., 2013 (2013), 517452. https://doi.org/10.1155/2013/517452 doi: 10.1155/2013/517452
|
| [17] |
P. Kaelo, P. Mtagulwa, M. V. Thuto, A globally convergent hybrid conjugate gradient method with strong Wolfe conditions for unconstrained optimization, Math. Sci., 14 (2020), 1–9. https://doi.org/10.1007/s40096-019-00310-y doi: 10.1007/s40096-019-00310-y
|
| [18] |
S. S. Djordjevic, New hybrid conjugate gradient method as a convex combination of LS and FR methods, Acta Math. Sci., 39 (2019), 214–228. https://doi.org/10.1007/s10473-019-0117-6 doi: 10.1007/s10473-019-0117-6
|
| [19] |
J. K. Liu, J. L. Xu, L. Q. Zhang, Partially symmetrical derivative-free Liu-Storey projection method for convex constrained equations, Int. J. Comput. Math., 96 (2018), 1787–1798. https://doi.org/10.1080/00207160.2018.1533122 doi: 10.1080/00207160.2018.1533122
|
| [20] |
Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: theory, J. Optim. Theory Appl., 69 (1991), 129–137. https://doi.org/10.1007/BF00940464 doi: 10.1007/BF00940464
|
| [21] |
B. S. He, H. Yang, S. L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optimiz. Theory App., 106 (2000), 337–356. https://doi.org/10.1023/A:1004603514434 doi: 10.1023/A:1004603514434
|
| [22] |
X. Y. Wang, S. J. Li, X. P. Kou, A self-adaptive three-term conjugate gradientmethod for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133–145. https://doi.org/10.1007/s10092-015-0140-5 doi: 10.1007/s10092-015-0140-5
|
| [23] |
D. H. Li, X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Algebr. Control, 1 (2011), 71–82. https://doi.org/10.3934/naco.2011.1.71 doi: 10.3934/naco.2011.1.71
|
| [24] |
L. Zhang, W. Zhou, D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561–572. https://doi.org/10.1016/j.amc.2008.03.020 doi: 10.1016/j.amc.2008.03.020
|
| [25] |
J. Liu, S. Li, Multivariate spectral projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13 (2017), 283–295. https://doi.org/10.3934/jimo.2016017 doi: 10.3934/jimo.2016017
|
| [26] |
G. Yu, S. Niu, J. Ma, Multivariate spectral gradient projection method for non-linear monotone equations with convex constraints, J. Ind. Manag. Optim., 9 (2013), 117–129. https://doi.org/10.3934/jimo.2013.9.117 doi: 10.3934/jimo.2013.9.117
|
| [27] |
Z. Wang, P. Li, X. Li, H. Pham, A modified three-term type CD conjugate gradient algorithm for unconstrained optimization problems, Math. Probl. Eng., 2020 (2020), 4381515. https://doi.org/10.1155/2020/4381515 doi: 10.1155/2020/4381515
|
| [28] |
A. H. Ibrahim, M. Alshahrani, S. Al-Homidan, Two classes of spectral three-term derivative-free method for solving nonlinear equations with application, Numer. Algor., 96 (2024), 1625–1645. https://doi.org/10.1007/s11075-023-01679-7 doi: 10.1007/s11075-023-01679-7
|
| [29] |
J. Sabi'u, S. Sirisubtawee, An inertial Dai-Liao conjugate method for convex constrained monotone equations that avoids the direction of maximum magnification, J. Appl. Math. Comput., 70 (2024), 4319–4351. https://doi.org/10.1007/s12190-024-02123-2 doi: 10.1007/s12190-024-02123-2
|
| [30] |
L. Zheng, L. Yang, Y. Liang, A conjugate gradient projection method for solving equations with convex constraints, J. Comput. Appl. Math., 375 (2020), 112781. https://doi.org/10.1016/j.cam.2020.112781 doi: 10.1016/j.cam.2020.112781
|
| [31] |
J. Liu, S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453. https://doi.org/10.1016/j.camwa.2015.09.014 doi: 10.1016/j.camwa.2015.09.014
|
| [32] |
S. Chankong, P. Phaochoo, P. Charongrattanasakul, N. Thongpool, A class of derivative free three-term descent Hestenes-Stiefel conjugate gradient algorithms for constrained nonlinear problems, Results Control Optim., 14 (2024), 100372. https://doi.org/10.1016/j.rico.2024.100372 doi: 10.1016/j.rico.2024.100372
|
| [33] | G. H. Yu, L. T. Guan, New descent nonlinear conjugate gradient methods for large-scale unconstrained optimization, Department of Scientific Computation and Computer, 2005. |
| [34] |
G. Yu, L. Guan, W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optim. Method. Softw., 23 (2008), 275–293. https://doi.org/10.1080/10556780701661344 doi: 10.1080/10556780701661344
|
| [35] |
A. Perry, A modified conjugate gradient zlgorithm, Oper. Res., 26 (1978), 1073–1078. https://doi.org/10.1287/opre.26.6.1073 doi: 10.1287/opre.26.6.1073
|
| [36] | W. Sun, Y. Yuan, Optimization theory and methods: Nonlinear programming, New York: Springer, 2006. https://doi.org/10.1007/b106451 |
| [37] |
M. Y. Waziri, K. Ahmad, A. S. Halilu, A. M. Awwal, A modified Dai Yuan iterative Scheme for nonlinear systems and its application, Numer. Algebr. Control, 13 (2023), 53–80. https://doi.org/10.3934/naco.2021044 doi: 10.3934/naco.2021044
|
| [38] |
N. Zhang, J. K. Liu, B. Tang, A three-term projection method based on spectral secantequation for nonlinear monotone equations, Japan J. Indust. Appl. Math., 41 (2024), 617–635. https://doi.org/10.1007/s13160-023-00624-4 doi: 10.1007/s13160-023-00624-4
|
| [39] |
A. I. Kiri, M. Y. Waziri, A. S. Halilu, Modification of the double direction approach for solving systems of nonlinear equations with application to Chandrasekhar's Integral equation, Iranian J. Numer. Anal. Optim., 12 (2022), 426–448. https://doi.org/10.22067/IJNAO.2022.74201.1083 doi: 10.22067/IJNAO.2022.74201.1083
|
| [40] |
A. M. Awwal, P. Kumam, H. Mohammad, W. Watthayu, A. B. Abubakar, A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing $\ell_1$ regularized problem, Optimization, 70 (2021), 1231–1259. https://doi.org/10.1080/02331934.2020.1808647 doi: 10.1080/02331934.2020.1808647
|
| [41] | K. Ahmed, M. Y. Waziri, A. S. Halilu, S. Murtala, H. Abdullahi, Signal and image reconstruction with a double parameter Hager-Zhang-type conjugate gradient method for system of nonlinear equations, 32 (2025), E2583. https://doi.org/10.1002/nla.2583 |
| [42] |
E. D. Dolan, J. J. More, Bench marking optimization software with performance profiles, Math. program. Ser. A, 91 (2002), 201–213. https://doi.org/10.48550/arXiv.cs/0102001 doi: 10.48550/arXiv.cs/0102001
|
| [43] |
M. R. Banham, A. K. Katsaggelos, Digital image restoration, IEEE Signal Proc. Mag., 14 (1997), 24–41. https://doi.org/10.1109/79.581363 doi: 10.1109/79.581363
|
| [44] |
C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, Image sequence filtering inquantum-limited noise with applications to low-dose fluoroscopy, IEEE T. Med. Imaging, 12 (1993), 610–621. https://doi.org/10.1109/42.241890 doi: 10.1109/42.241890
|
| [45] |
M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems, IEEE J-STSP, 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
|
| [46] |
J. S. Pang, Inexact Newton methods for the nonlinear complementarity problem, Math. Program., 36 (1986), 54–71. https://doi.org/10.1007/BF02591989 doi: 10.1007/BF02591989
|
| [47] |
Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for $\ell_1$-norm problems with applications to compressed sensing, Nonlinear Anal Theor., 74 (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
|