Research article

Estimates for functions of generalized Marcinkiewicz operators related to surfaces of revolution

  • Received: 09 May 2024 Revised: 03 July 2024 Accepted: 10 July 2024 Published: 17 July 2024
  • MSC : 42B20, 42B25

  • In this paper, specific Lp estimates for generalized Marcinkiewicz operators correlated to surfaces of revolution are proved. These estimates and the extrapolation procedure of Yano are employed to confirm the Lp boundedness of the above-mentioned integrals under weaker assumptions on the singular kernels. Our findings generalize and improve several known results.

    Citation: Mohammed Ali, Qutaibeh Katatbeh, Oqlah Al-Refai, Basma Al-Shutnawi. Estimates for functions of generalized Marcinkiewicz operators related to surfaces of revolution[J]. AIMS Mathematics, 2024, 9(8): 22287-22300. doi: 10.3934/math.20241085

    Related Papers:

    [1] Mohammed Ali, Hussain Al-Qassem . On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces. AIMS Mathematics, 2024, 9(2): 4816-4829. doi: 10.3934/math.2024233
    [2] Badriya Al-Azri, Ahmad Al-Salman . Weighted $ L^{p} $ norms of Marcinkiewicz functions on product domains along surfaces. AIMS Mathematics, 2024, 9(4): 8386-8405. doi: 10.3934/math.2024408
    [3] Ebner Pineda, Luz Rodriguez, Wilfredo Urbina . Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388
    [4] Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
    [5] Sharifah E. Alhazmi, M. A. Abdou, M. Basseem . Physical phenomena of spectral relationships via quadratic third kind mixed integral equation with discontinuous kernel. AIMS Mathematics, 2023, 8(10): 24379-24400. doi: 10.3934/math.20231243
    [6] Gauhar Rahman, Muhammad Samraiz, Manar A. Alqudah, Thabet Abdeljawad . Multivariate Mittag-Leffler function and related fractional integral operators. AIMS Mathematics, 2023, 8(6): 13276-13293. doi: 10.3934/math.2023671
    [7] Ancheng Chang . Weighted boundedness of multilinear integral operators for the endpoint cases. AIMS Mathematics, 2022, 7(4): 5690-5711. doi: 10.3934/math.2022315
    [8] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
    [9] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [10] Ahmad Alalyani, M. A. Abdou, M. Basseem . The orthogonal polynomials method using Gegenbauer polynomials to solve mixed integral equations with a Carleman kernel. AIMS Mathematics, 2024, 9(7): 19240-19260. doi: 10.3934/math.2024937
  • In this paper, specific Lp estimates for generalized Marcinkiewicz operators correlated to surfaces of revolution are proved. These estimates and the extrapolation procedure of Yano are employed to confirm the Lp boundedness of the above-mentioned integrals under weaker assumptions on the singular kernels. Our findings generalize and improve several known results.



    Throughout this article, assume that Sη1 (η2) is the unit sphere in the Euclidean space Rη, that is equipped with the spherical measure dση(). Also, assume that v=v/|v| for vRη{0}.

    For n=α+iβ (αR+ and βR), let KΨ,h(v)=Ψ(v)h(|v|)|v|ηn, where h is a measurable mapping on R+ and ΨL1(Sη1) is a measurable mapping satisfying the following conditions:

    Ψ(tv)=Ψ(v),t>0, (1.1)
    Sη1Ψ(v)dσ(v)=0. (1.2)

    For an appropriate mapping ϕ:R+R, we define the generalized Marcinkiewicz operator G(γ)Ψ,ϕ,h by

    G(γ)Ψ,ϕ,h(ϝ)(ˉw)=(R+|1tn|v|tϝ(wv,wη+1ϕ(|v|))KΨ,h(v)dv|γdtt)1/γ,

    where ϝC0(Rη+1), ˉw=(w,wη+1)Rη+1, and γ>1.

    When γ=2, ϕ0, and h1, we denote G(γ)Ψ,ϕ,h by GΨ,n, and when n=1, we denote GΨ,n by GΨ. The operator GΨ is basically the traditional Marcinkiewicz operator defined in [1] where the author studied the Lp (1<p2) boundedness of GΨ whenever the singular kernel Ψ belongs to the space Lipτ(Sη1) with τ(0,1]. This result was improved in [2], in which the author obtained the L2 boundedness of GΨ under the condition ΨL(logL)1/2(Sη1). Also, he obtained that the assumption ΨL(logL)1/2(Sη1) is optimal in the sense that when it is replaced by any weaker assumption ΨL(logL)η(Sη1) with η(0,1/2), then GΨ will not be bounded on L2(Rη). Later, the authors of [3] confirmed the results in [2] not only for p=2, but for all p(1,). On the other side, the Lp boundedness of GΨ was proved by Al-Qassem and Al-Salman in [4] for all p(1,) provided that ΨB(0,1/2)q(Sη1) for some q>1. Also, they proved the optimality of the assumption ΨB(0,1/2)q(Sη1). When γ=2, ΨL(logL)1/2(Sη1), hκ(R+) with Ψ>1, and ϕHd, the Lp boundedness of G(2)Ψ,ϕ,h was established in [5] for all |2p2p|<min{1/κ,1/2}. Here, κ(R+) indicates the set of measurable mappings h on R+, satisfying

    hκ(R+)=supjZ(2j+12j|h(t)|κdtt)1/κ<.

    The integral operator G(2)Ψ,ϕ,h under several assumptions has been investigated by many researchers: For the case hL(R)+ [6,7], along surfaces [8,9,10,11], using extrapolation [12,13].

    The study of the generalized Marcinkiewicz operator G(γ)Ψ,ϕ,h was started in [14], in which the authors proved that whenever ΨLq(Sη1) with q>1, ϕ(t)=t, h0, and 1<γ<, then the inequality

    G(γ)Ψ,ϕ,1(ϝ)Lp(Rη)Cϝ.F0,γp(Rη), (1.3)

    holds for all p(1,). This result was improved in [15] where the author satisfied inequality (1.3) under the weaker conditions that hmax{κ,2}(R+) and ΨL(logL)(Sη1).

    Later, the authors of [16] extended and improved these results. Precisely, they used the extrapolation argument of Yano to show that if ϕ(t)=t, hκ(R+) with κ>2 and ΨL(logL)1/γ(Sη1)B(0,1γ1)q(Sη1), then G(γ)Ψ,ϕ,h is bounded on Lp(Rη) for all p(1,γ) with γκ and also for all p(κ,) with γ>κ. For recent advances on the investigation of the operator G(γ)Ψ,ϕ,h and their developments, the readers can refer to [1718,19,20,21,22], among others.

    For rR and γ,p(1,), the homogeneous Triebel-Lizorkin space .Fr,γp(Rη) is given by

    .Fr,γp(Rη)={ϝS(Rη):ϝ.Fr,γp(Rη)=(jZ2jrγ|ϑjϝ|γ)1/γLp(Rη)<},

    where S is the tempered distribution class on Rη, ^ϑj(η)=A(2jη), and AC0(Rη) is a radial mapping with the following properties:

    (a) 0A1,

    (b) A(η)K>0 if |η|[35,53],

    (c) supp(A){η:|η|[1/2,2]},

    (d) jZA(2jη)=1 if η0.

    It was proved in [18] that the space .Fr,γp(Rη) satisfies the following:

    (ⅰ) S(Rη) is dense in .Fr,γp(Rη),

    (ⅱ) For p(1,), Lp(Rη)=.F0,2p(Rη),

    (ⅲ) .Fs,γ1p(Rη).Fs,γ2p(Rη) if γ1γ2.

    For d0, let Hd be the set of all mappings ϕ:R+R that satisfies the following conditions:

    (a) |ϕ(t)|k1td,

    (b) k2td1|ϕ(t)|k3td1,

    (c) |ϕ(t)|k4td2,

    where k1, k2, k3, and k4 are positive numbers independent of t.

    In the light of the findings in [16] about the estimates for the generalized Marcinkiewicz operator G(γ)Ψ,ϕ,h whenever ϕ(t)=t, and of the findings in [5] concerning the boundedness of Marcinkiewicz integral operator G(2)Ψ,ϕ,h, it is natural to ask whether the operator G(γ)Ψ,ϕ,h is bounded under the same assumptions in [5] replacing γ=2 by any γ>1?

    In this paper, the above question will be answered affirmatively. Our main results is described as follows.

    Theorem 1.1. Assume that ΨLq(Sη1), q(1,2] satisfies (1.1) . Let hκ(R+) with κ(1,2] and ϕHd. Then there is a constant Cp>0 such that the inequalities

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(1(κ1)(q1))1/γϝ.F0,γp(Rη+1)ifγpκγγκ,
    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(1(κ1)(q1))κγγ+κκγϝ.F0,γp(Rη+1)ifκγκγγ+κ<p<γ,

    and

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(1(κ1)(q1))κγγ+1γκϝ.F0,γp(Rη+1)ifγκκγγ+1<p<γ

    hold for all ϝ.F0,γp(Rη+1), where Cp,Ψ,h=CpΨLq(Sη1)hκ(R+).

    Theorem 1.2. Assume that Ψ and ϕ are given as in Theorem 1.1, and that hκ(R+) with 2<κ<. Then, a bounded number Cp>0 exists so that

    (a) If γ>κ, we have for κ<p<,

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(1q1)1/κϝ.F0,γp(Rη+1).

    (b) If γκ, we have for 1<p<γ,

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(1q1)ϝ.F0,γp(Rη+1).

    The estimates come from Theorems 1.1 and 1.2 allow us to utilize the extrapolation argument of Yano (see also [23,24,25]) to obtain the following results.

    Theorem 1.3. Assume that ϕHd and hκ(R+) with κ(1,2].

    (a) If ΨL(logL)1/γ(Sη1), then for p[γ,κγγκ],

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+ΨL(logL)1/γ(Sη1))hκ(R+) Cp.

    (b) If ΨL(logL)κγγ+κκγ(Sη1), then for p(κγκγγ+κ,γ),

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+ΨL(logL)κγγ+κκγ(Sη1))hκ(R+) Cp.

    (c) If ΨL(logL)κγγ+1γκ(Sη1), then for p(γκγκγ+1,γ),

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+ΨL(logL)κγγ+1κγ(Sη1))hκ(R+) Cp.

    (d) If ΨB(0,1/γ)q(Sη1) with q>1, then for p[γ,κγγκ],

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+Ψq(0,1/γ)(Sη1))hκ(R+) Cp.

    (e) If ΨB(0,κγκγ)q(Sη1) with q>1, then for p(κγκγγ+κ,γ),

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+ΨB(0,κγκγ)q(Sη1))hκ(R+) Cp.

    (f) If ΨB(0,1γγκ)q(Sη1) with q>1, then for p(γκγγκ+1,γ),

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)ϝ.F0,γp(Rη+1)(1+ΨB(0,1γγκ)q(Sη1))hκ(R+) Cp.

    Theorem 1.4. Assume that ϕHd and hκ(R+) for some 2<κ<.

    (a) If ΨL(logL)1/κ(Sη1), then

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)hκ(R+)(1+ΨL(logL)1/κ(Sη1))ϝ.F0,γp(Rη+1) Cp,

    for κ<p< and γ>κ.

    (b) If ΨL(logL)(Sη1), then we have

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)hκ(R+)(1+ΨL(logL)(Sη1))ϝ.F0,γp(Rη+1) Cp,

    for 1<p<γ and γκ.

    (c) If ΨB(0,1/κ)q(Sη1) with q>1, then

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)hκ(R+)(1+Ψq(0,1/κ)(Sη1))ϝ.F0,γp(Rη+1) Cp,

    for κ<p< and κ<γ.

    (d) If ΨB(0,0)q(Sη1) with q>1, then

    G(γ)Ψ,ϕ,h(ϝ)Lp(Rη+1)hκ(R+)(1+Ψq(0,0)(Sη1))ϝ.F0,γp(Rη+1) Cp,

    for all 1<p<γ and γκ.

    Remark 1.5 (ⅰ) For the special cases ϕ0, h1, γ=2, and n=1, the Lp (1<p2) boundedness of G(γ)Ψ,ϕ,h was established in [1] only whenever ΨLipτ(Sη1) for some τ(0,1]. As Lipτ(Sη1)L(logL)r(Sη1)B(0,r)q(Sη1), then our results generalize, extend, and also improve what was proved in [1].

    (ⅱ) For the cases hκ(R+), ϕ0, and γ=2, n=1, the authors of [8] only obtained the L2 boundedness of G(γ)Ψ,ϕ,h under the condition ΨL(logL)(Sη1). Hence, our results are essential generalization and improvement to the results in [8].

    (ⅲ) For the cases ϕ0, h0, and γ=2, the conditions on Ψ in our results are the best possible among their respective classes, (see [2,4]).

    (ⅳ) In Theorem 1.3, if we take γ=2 and κ(1,2], then the range of p is better than the range of p in the results found in [5]: (2κκ2,2κ2κ).

    (ⅴ) In Theorem 1.3, the conditions on Ψ in (c) and (e) are stronger than the conditions on Ψ in (b) and (d). However, the range of p in (c) and (e) are better than the range of p in (b) and (d).

    (ⅵ) In Theorem 1.4, the spaces that the singular kerenels belong to in (a) and (c) are better than the spaces in (b) and (d).

    In this section, we prove some auxiliary results which will be the key role in the proof of the main results. For μ2 and appropriate mappings {h:R+C}, Ψ:Sη1R, and ϕ:R+R, we consider the family of measures {Ψ,ϕ,h,t:h,t:tR+} and their related maximal operators Ψ,h and MΨ,h,μ on Rη+1 by

    Rη+1ϝdh,t=1tnt/2|v|tϝ(v,ϕ(|v|))KΨ,h(v)dv,
    Ψ,hϝ(ˉw)=suptR+||h,t|ϝ(ˉw)|,

    and

    MΨ,h,μϝ(ˉw)=supjZμj+1μj||h,l|ϝ(ˉw)|dtt,

    where |h,t| is defined similar to h,t with replacing hΨ by |hΨ|.

    Utilizing similar arguments (with minor modifications) employed in the proof of Theorem 1.3 in [5] gives the following.

    Lemma 2.1. Let μ2, hκ(R+), and ΨLq(Sη1) for some κ,q>1. Let ϕ be an arbitrary function on R+. Then, there are positive constants C and δ<1/(2q) such that

    μj+1μj|ˆh,t(ζ,ζη+1)|2dttC(lnμ),μj+1μj|ˆh,t(ζ,ζη+1)|2dttC(lnμ)Ψ2Lq(Sη1)h2κ(R+)min{|μjζ|δlnμ,|μjζ|δlnμ}.

    Lemma 2.2. Let Ψ, h and ϕ be given as in Theorem 1.1. Then there exists a constant Cp,Ψ,h>0 such that for all p>κ,

    MΨ,h,μ(ϝ)Lp(Rη+1)Cp,Ψ,h(lnμ)ϝLp(Rη+1) (2.1)

    and

    Ψ,h(ϝ)Lp(Rη+1)Cp,Ψ,h(lnμ)1/κϝLp(Rη+1). (2.2)

    By employing similar arguments as employed in [16], we get the following.

    Lemma 2.3. Let Ψ, ϕ, and γ be given as in Theorem 1.2. Suppose that hκ(R+) with 2<κ<. Then, for μ2, a constant Cp,Ψ,h exists such that:

    (a) If γ>κ, we have for κ<p<,

    (jZμj+1μj|h,tUj|γdtt)1γLp(Rη+1)Cp,Ψ,h(lnμ)1/κ(jZ|Uj|γ)1/γLp(Rη+1).

    (b) If γκ, we have for 1<p<γ,

    (jZμj+1μj|h,tUj|γdtt)1γLp(Rη+1)Cp,Ψ,h(lnμ)(jZ|Uj|γ)1/γLp(Rη+1),

    where {Uj(),jZ} is any sequence of functions on Rη+1.

    Proof. One can easily check that

    supjZsupt[1,μ]|h,tμjUj|Lp(Rη+1)Ψ,h(supjZ|Uj|)Lp(Rη+1)Cp,Ψ,hln(μ)1/κsupjZ|Uj|Lp(Rη+1),

    which means that

    h,tμjUjL([1,μ],dtt)l(Z)Lp(Rη+1)Cp,Ψ,hln(μ)1/κUjl(Z)Lp(Rη+1). (2.3)

    If p>κ<γ, then the duality gives that a function JL(p/κ)(Rη+1) with JL(p/κ)(Rη+1)1 and

    (jZμ1|h,tμjUj|κdtt)1κκLp(Rη+1)=Rη+1jZμ1|h,tμjUj(ˉw)|κdttJ(w,wη+1)dwdwη+1CΨ(κ/κ)L1(Sη1)hκκ(R+)Rη+1jZ|Uj(w,wη+1)|κΨ,1J(w,wη+1)dwdwη+1CΨ(κ/κ)L1(Sη1)hκκ(R+)jZ|Uj|κL(p/κ)(Rη+1)Ψ,1(J)L(p/κ)(Rη)C(lnμ)Ψ(κ/κ)+1Lq(Sη1)hκκ(R+)(jZ|Uj|κ)1κκLp(Rη+1), (2.4)

    where J(w,wη+1)=J(w,wη+1). This leads to

    (jZμ1|h,tμjUj|κdtt)1/κLp(Rη+1)Cp,Ψ,hln(μ)1/κ(jZ|Uj|κ)1/κLp(Rη+1). (2.5)

    Define a linear operator T on any function U=Uj(w,wη+1) by T(U)=h,tμjUj(w,wη+1), then interpolate the estimate in (2.3) with the estimate in (2.5) to get

    (jZμj+1μj|h,tUj|γdtt)1/γLp(Rη+1)(jZμ1|h,tμjUj|γdtt)1/γLp(Rη+1)    Cp,Ψ,h(lnμ)1/κ(jZ|Uj|γ)1/γLp(Rη+1), (2.6)

    for all κ<p< with γ>κ and κ>2. Hence, the proof of first estimate of this lemma is complete.

    Now, if 1<p<γκ, then p/γ>1. Thanks to the duality, there are functions gj(ˉw,t) on Rη+1×R+ with gjLγ([μj,μj+1],dtt)lγLp(Rη+1)1 and

    jZμjμj|h,tUj|γdtt1/γLp/γ(Rη+1)=Rη+1jZμj+1μj(h,tUj(ˉw))gj(ˉw,t)dttdˉw                    Cp(lnμ)1/γ(Γ(gj))1/γLp(Rη+1)jZ|Uj|γ1/γLp/γ(Rη+1), (2.7)

    where

    Γ(gj)(ˉw)=jZμj+1μj|h,tgj(ˉw,t)|γdtt.

    Notice that γκ2κ. So, Hölder's inequality leads to

    |h,tgj(ˉw,t)|γCΨ(γ/γ)L1(Sη1)hγκ(R+)μj+1μjSη1|Ψ(v)|×|gj(wrv,wη+1ϕ(r),t)|γdση(v)drr. (2.8)

    Again, we employ the duality, so we obtain a function φL(p/γ)(Rη+1),

    (Γ(gj))1/γγLp(Rη+1)=jZRη+1μj+1μj|h,tgj(ˉw,t)|γdttφ(ˉw)dˉw.

    Thus, by Hölder's inequality and the inequalities (2.2) and (2.8), we conclude

    (Γ(gj))1/γγLp(Rη+1)CΨ(γ/γ)L1(Sη1)|Ψ|,1(φ)L(p/γ)(Rη+1)hγκ(R+)×(jZμj+1μj|gj(ˉw,t)|γdtt)L(p/γ)(Rη+1)Cp(lnμ)Ψ(γ/γ)+1Lq(Sγ1)gγκ(R+)φL(p/γ)(Rη+1). (2.9)

    Therefore, by the last inequality and (2.7), we complete the proof of Lemma 2.3 for the case 1<p<γ with γκ<2.

    Lemma 2.4. Let Ψ, ϕ, and γ be given as in Theorem 1.1. Suppose that μ2 and hκ(R+) for some κ(1,2]. Then, a positive number Cp,Ψ,h exists such that, for any sequence of functions {Uj} on Rη+1, we have

    (a)    (jZμj+1μj|h,tUj|γdtt)1γLp(Rη+1)Cp,Ψ,h(lnμ)1/κ(jZ|Uj|γ)1/γLp(Rη+1), (2.10)

    for all p[γ,κγγκ],

    (b)    (jZμj+1μj|h,tUj|γdtt)1γLp(Rη+1)Cp,Ψ,h(lnμ)κγγ+κκγ(jZ|Uj|γ)1/γLp(Rη+1), (2.11)

    for all p(κγκγγ+κ,γ), and

    (c)    (jZμj+1μj|h,tUj|γdtt)1γLp(Rη+1)Cp,Ψ,h(lnμ)κγγ+1γκ(jZ|Uj|γ)1/γLp(Rη+1), (2.12)

    for all p(γκκγγ+1,γ).

    Proof. Let us first prove inequality (2.10). Notice that

    |h,tUj(ˉw)|γCh(γ/γ)κ(R+)Ψ(γ/γ)L1(Sη1)t12tSη1|Uj(wrv,wη+1ϕ(r))|γ×|Ψ(υ)|dση(v)|h(r)|γγκγdrr. (2.13)

    If p=γ, then by using Hölder's inequality, (2.1), and (2.13), we get

    (jZμj+1μj|h,tUj|γdtt)1γγLp(Rη+1)Ch(γ/γ)κ(R+)Ψ(γ/γ)L1(Sη1)×jZRη+1μj+1μjt12tSη1|Uj(wrv,wη+1ϕ(r))|γ|Ψ(v)||h(r)|γγκγdση(v)drrdttdˉwC(lnμ)h(γ/γ)+1κ(R+)Ψ(γ/γ)+1L1(Sη1)Rη+1(jZ|Uj(ˉw)|γ)pdˉw(Cp,Ψ,h)γ(lnμ)jZ|Uj|γγLp(Rη+1). (2.14)

    If p>γ, then by duality, there exists a function Z lies in the space L(p/γ)(Rη+1) with ZL(p/γ)(Rη+1)1 and

    (jZμj+1μj|h,tUj|γdtt)1/γγLp(Rη+1)=Rη+1jZμj+1μj|h,tUj(ˉw)|γdttZ(ˉw)dˉw. (2.15)

    Thus, the estimates in (2.13) and (2.15) along with Lemma 2.2 lead to

    (jZμj+1μj|h,tUj|γdtt)1/γγLp(Rη+1)Ch(γ/γ)κ(R+)Ψ(γ/γ)L1(Sη1)Rη+1(jZ|Uj(ˉw)|γ)M|Ψ|,|h|γγκγ,μZ(ˉw)dˉwCh(γ/γ)κ(R+)Ψ(γ/γ)L1(Sη1)jZ|Uj|γL(p/γ)(Rη+1)M|Ψ|,|h|γ(γκ)γ,μ(Z)L(p/γ)(Rη+1)C(lnμ)h(1+γ/γ)κ(R+)Ψ(1+γ/γ)Lq(Sη1)jZ|Uj|γL(p/γ)(Rη+1)ZL(p/γ)(Rη+1),

    where Z(ˉw)=Z(ˉw). Therefore, by the last inequality and (2.14), we obtain that (2.10) holds for all p[γ,κγγκ].

    Now, let us prove (2.11). As p<γ, we have γ<p, which by the duality gives that a set of functions {φj(ˉw,t)} defined on Rη+1×R+ exists and satisfies φjLγ([μj,μj+1],dtt)tγLp(Rη+1)1 and

    (jZμjμj|h,tUj|γdtt)1/γLp(Rη+1)=Rη+1jZμj+1μj(h,tUj(ˉw))φj(ˉw,t)dttdˉw. (2.16)

    Define the operator Υ:Rη+1×R+R by

    Υ(φj)(ˉw,t)=jZμjμj|h,tφj(ˉw,t)|γdtt.

    Thus, thanks to the duality, a function ΩL(p/γ)(Rη+1) with norm 1 exists such that

    (Υ(φj))1/γγLp(Rη+1)=jZRη+1μj+1μj|h,tφj(ˉw,t)|γdttΩ(ˉw)dˉwCh(γ/γ)κ(R+)Ψ(γ/γ)L1(Sη1)|Ψ|,|h|γ(γγ)γ(Ω)L(p/γ)(Rη+1)(jZμj+1μj|φj(ˉw,t)|γdtt)L(p/γ)(Rη+1)(Cp,Ψ,h)γ(lnμ)1/(γκγκ)ΩL(p/γ)(Rη+1), (2.17)

    for all (γκγκ)<p<γ, where Ω(ˉw)=Ω(ˉw). Therefore, by inequalities (2.16)–(2.17) and Hölder's inequality, we conclude

    (jZμj+1μj|h,tUj|γdtt)1/γLp(Rη+1)Cp,Ψ,h(lnμ)κγγ+κκγ(Υ(φj))1/γLp(Rη+1)(jZ|Uj|γ)1/γLp(Rη+1)Cp,Ψ,h(lnμ)κγγ+κκγ(jZ|Uj|γ)1/γLp(Rη+1), (2.18)

    holds for all p(κγκγγ+κ,γ). This finishes the proof of (2.11).

    To prove (2.12), we use the linear operator T that was defined in the proof of Lemma 2.3. Hence, we have

    U(A)L1(1,μ),dttl1(Z)L1(Rη+1)C(lnμ)(jZ|Uj|)L1(Rη+1), (2.19)

    which, when interpolated with (2.3), directly gives (2.11).

    Let us first prove Theorem 1.1. Similar technique found in [16] will be employed here. Assume that ϕHd and hκ(R+), ΨLq(Sη1) for some 1<κ,q2. It is easy to verify that Minkowski's inequality gives

    G(γ)Ψ,ϕ,h(ϝ)(ˉw)(j=0R+|1tn2j1t<|v|2jtϝ(wv,wη+1ϕ(|v|))KΨ,h(v)dv|γdtt)1/γ=2α2α1(R+|h,tϝ(ˉw)|γdtt)1/γ. (3.1)

    Set μ=2κq. So, ln(μ)1(κ1)(q1). For jZ, let {Θj} be the set of a partition of unity in the space C(0,) such that

    0Θj1, jZΘj(t)=1,supp Θj[μj1,μj+1]Ij,μ,and|dlΘj(t)dtl|Cltl.

    Define the multiplier operator ^Jjϝ(ˉζ)=Θj(|ζ|)ˆϝ(ˉζ). So, we deduce that for any ϝS(Rη+1),

    G(γ)Ψ,ϕ,h(ϝ)CjZG(γ)Ψ,ϕ,h,j(ϝ), (3.2)

    where

    G(γ)Ψ,ϕ,h,j(ϝ)(ˉw)=(R+|VΨ,ϕ,h,j,μ(ˉw,t)|γdtt)1/γ,
    VΨ,ϕ,h,j,μ(ˉw,t)=sZ(Θs+jh,tϝ)(ˉw)χ[μs,μs+1)(t).

    So, to prove Theorem 1.1, it suffices to show that a positive constant τ exists such that the following inequalities hold:

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h2τ|j|(1(q1)(κ1))1/γϝ.F0,γp(Rη+1), (3.3)

    for all p[γ,κγγκ],

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h2τ|j|(1(q1)(κ1))κγγ+κκγϝ.F0,γp(Rη+1), (3.4)

    for all p(κγκγγ+κ,γ), and

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h2τ|j|(1(q1)(κ1))κγγ+1κγϝ.F0,γp(Rη+1), (3.5)

    for all p(κγκγγ+1,γ).

    On one side, we prove the estimate (3.3) when p=γ=2. In this case, we have ϝ.F0,22(Rη+1)=ϝL2(Rη+1). So, Plancherel's theorem along with Lemma 2.1 produce

    G(2)Ψ,ϕ,h,j(ϝ)2L2(Rη+1)sZDs+j,μ(μs+1μs|ˆh,t(ζ,ζη+1)|2dtt)|ˆϝ(ζ,ζη+1)|2dζdζη+1C22,Ψ,h(lnμ)sZDs+j,μ(min{|μj1ζ|δlnμ,|μj+1ζ|δlnμ})|ˆϝ(ζ,ζη+1)|2dζdζη+1C22,Ψ,h(lnμ)22δ|j|sZDs+j,μ|ˆϝ(ζ,ζη+1)|2dζdζη+1C22,Ψ,h(lnμ)22δ|j|ϝ2L2(Rη+1),

    where Ds,μ={(ζ,ζη+1)Rη×R:|(ζ,ζη+1)|Is,μ}. Therefore, we have

    G(2)Ψ,ϕ,h,j(ϝ)2L2(Rη+1)C2,Ψ,h2δ|j|[(q1)(κ1)]1/2ϝ.F2,20(Rη+1). (3.6)

    On the other side, by invoking Lemma 2.1 in [16] and Lemma 2.4, we have

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h(1(q1)(κ1))1/γϝ.F0,γp(Rη+1), (3.7)

    for all p[γ,κγγκ],

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h(1(q1)(κ1))κγγ+κκγϝ.F0,γp(Rη+1), (3.8)

    for all p(κγκγγ+κ,γ), and

    G(γ)Ψ,ϕ,h,j(ϝ)Lp(Rη+1)Cp,Ψ,h(1(q1)(κ1))κγγ+1κγϝ.F0,γp(Rη+1), (3.9)

    for all p(κγκγγ+1,γ). Therefore, when we interpolate (3.6) with (3.7)–(3.9), we directly obtain (3.3)–(3.5), which in turn with (3.2) finishes the proof of Theorem 1.1.

    In the same manner employed in the proof of Theorem 1.1, except employing Lemma 2.3 instead of Lemma 2.4 and taking μ=2q instead of μ=2κq, we immediately prove Theorem 1.2.

    In this work, we obtained specific Lp bounds for the generalized Marcinkiewicz operator G(γ)Ψ,ϕ,h whenever the rough kernel Ψ lies in the space Lq(Sη1). These bounds allow us to utilize Yano's extrapolation technique to confirm the boundedness of G(γ)Ψ,ϕ,h under weaker conditions on Ψ; that is, Ψ belongs to either the space L(logL)s(Sη1) or to the space B(0,s1)q(Sη1). The results of this article generalize and improve many previously know results, as the results in [1,2,3,4,5,14,15,16,22].

    Mohammed Ali: Writing–original draft, commenting; Qutaibeh Katatbeh: Formal analysis, commenting; Oqlah Al-Refai: Writing–original draft, funding acquisition, commenting; Basma Al-Shatnawi: Writing–original draft, commenting. All authors have read and approved the final version of the manuscript for publication

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to express their gratitude to the referees for their valuable comments and suggestions in improving writing this paper. In addition, they are grateful to the editor for handling the full submission of the manuscript.

    The authors declare that they have no conflicts of interest in this paper.



    [1] E. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466. https://doi.org/10.1090/S0002-9947-1958-0112932-2 doi: 10.1090/S0002-9947-1958-0112932-2
    [2] T. Walsh, On the function of Marcinkiewicz, Stud. Math., 44 (1972), 203–217. https://doi.org/10.4064/sm-44-3-203-217 doi: 10.4064/sm-44-3-203-217
    [3] A. Al-Salman, H. Al-Qassem, L. Cheng, Y. Pan, Lp bounds for the function of Marcinkiewicz, Math. Res. Lett., 9 (2002), 697–700. http://dx.doi.org/10.4310/MRL.2002.v9.n5.a11 doi: 10.4310/MRL.2002.v9.n5.a11
    [4] H. M. Al-Qassem, A. J. Al-Salman, A note on Marcinkiewicz integral operators, J. Math. Anal. Appl., 282 (2003), 698–710. https://doi.org/10.1016/S0022-247X(03)00244-0 doi: 10.1016/S0022-247X(03)00244-0
    [5] H. Al-Qassem, A. Al-Salman, Rough Marcinkiewicz integrals related to surfaces of revolution, Asian J. Math., 7 (2003), 219–230. http://dx.doi.org/10.4310/AJM.2003.v7.n2.a4 doi: 10.4310/AJM.2003.v7.n2.a4
    [6] L. Hörmander, Estimates for translation invariant operators in Lp space, Acta Math., 104 (1960), 93–139. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
    [7] M. Sakamota, K. Yabuta, Boundedness of Marcinkiewicz functions, Stud. Math., 135 (1999), 103–142.
    [8] Y. Ding, S. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–21. https://doi.org/10.1017/S1446788700003542 doi: 10.1017/S1446788700003542
    [9] Y. Ding, D. Fan, Y. Pan, On the Lp boundedness of Marcinkiewicz integrals, Michigan Math. J., 50 (2002), 17–26. https://doi.org/10.1307/mmj/1022636747 doi: 10.1307/mmj/1022636747
    [10] H. Al-Qassem, Y. Pan, Lp estimates for singular integrals with kernels belonging to certain block spaces, Rev. Mat. Iberoam., 18 (2002), 701–730. http://dx.doi.org/10.4171/RMI/333 doi: 10.4171/RMI/333
    [11] A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60 (1990), 235–243. https://doi.org/10.4064/cm-60-61-1-235-243 doi: 10.4064/cm-60-61-1-235-243
    [12] M. Ali, A. Al-Senjlawi, Boundedness of Marcinkiewicz integrals on product spaces and extrapolation, Int. J. Pure Appl. Math., 97 (2014), 49–66. http://dx.doi.org/10.12732/ijpam.v97i1.6 doi: 10.12732/ijpam.v97i1.6
    [13] M. Ali, Lp Estimates for Marcinkiewicz integral operators and extrapolation, J. Inequal. Appl., 2014 (2014), 269. https://doi.org/10.1186/1029-242X-2014-269 doi: 10.1186/1029-242X-2014-269
    [14] J. Chen, D. Fan, Y. Ying, Singular integral operators on function spaces, J. Math. Anal. Appl., 276 (2002), 691–708. http://dx.doi.org/10.1016/S0022-247X(02)00419-5 doi: 10.1016/S0022-247X(02)00419-5
    [15] H. V. Le, Singular integrals with mixed homogeneity in Triebel-Lizorkin spaces, J. Math. Anal. Appl., 345 (2008), 903–916. https://doi.org/10.1016/j.jmaa.2008.05.018 doi: 10.1016/j.jmaa.2008.05.018
    [16] H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. Math. Inequal., 11 (2017), 763–780. http://dx.doi.org/10.7153/jmi-11-60 doi: 10.7153/jmi-11-60
    [17] H. Al-Qassem, L. Cheng, Y. Pan, On generalized Littlewood–Paley functions, Collec. Math., 69 (2018), 297–314. https://doi.org/10.1007/s13348-017-0208-4 doi: 10.1007/s13348-017-0208-4
    [18] D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Canad. Math. Bull., 54 (2011), 100–112. http://dx.doi.org/10.4153/CMB-2010-085-3 doi: 10.4153/CMB-2010-085-3
    [19] M. Ali, H. Al-Qassem, A note on a class of generalized parabolic Marcinkiewicz integrals along surfaces of revolution, Mathematics, 10 (2022), 3727. https://doi.org/10.3390/math10203727 doi: 10.3390/math10203727
    [20] F. Liu, Z. Fu, S. Jhang, Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Front. Math. China, 14 (2019), 95–122. https://doi.org/10.1007/s11464-019-0742-3 doi: 10.1007/s11464-019-0742-3
    [21] M. Ali, O. Al-Refai, Boundedness of generalized parametric Marcinkiewicz integrals associated to surfaces, Mathematics, 7 (2019), 886. https://doi.org/10.3390/math7100886 doi: 10.3390/math7100886
    [22] M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions, J. Inequal. Appl., 305 (2018), 1900. https://doi.org/10.1186/s13660-018-1900-y doi: 10.1186/s13660-018-1900-y
    [23] S. Yano, Notes on Fourier analysis. XXIX. An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296–305. https://doi.org/10.2969/jmsj/00320296
    [24] S. Sato, Estimates for singular integrals and extrapolation, Stud. Math., 192 (2009), 219–233. http://dx.doi.org/10.4064/sm192-3-2 doi: 10.4064/sm192-3-2
    [25] H. Al-Qassem, Y. Pan, On rough maximal operators and Marcinkiewicz integrals along submanifolds, Stud. Math., 190 (2009), 73–98. http://dx.doi.org/10.4064/sm190-1-3 doi: 10.4064/sm190-1-3
  • This article has been cited by:

    1. Mohammed Ali, Hussain Al-Qassem, On Rough Parametric Marcinkiewicz Integrals Along Certain Surfaces, 2025, 13, 2227-7390, 1287, 10.3390/math13081287
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(887) PDF downloads(31) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog