Research article Topical Sections

A class of rough generalized Marcinkiewicz integrals along twisted surfaces

  • Received: 26 April 2025 Revised: 16 June 2025 Accepted: 18 June 2025 Published: 23 June 2025
  • MSC : 42B20, 42B25

  • In this paper, we investigated the mapping properties of generalized Marcinkiewicz integral operators associated with twisted surfaces. Under certain conditions on these surfaces, we established suitable $ L^p $ estimates for these operators, assuming the kernel functions belong to $ L^{q}\left(\mathbb{U}^{{{j}}-1}\times \mathbb{U} ^{{{k}}-1}\right) $. By combining these estimates with Yano's extrapolation technique, we further established the boundedness of these operators from the homogeneous Triebel-Lizorkin space $ \overset{.}{F}_{p}^{0, \tau}(\mathbb{R}^j\times\mathbb{R}^k) $ to the space $ L^p(\mathbb{R}^j\times\mathbb{R}^k) $ under significantly weaker assumptions on the kernels. Our results extended and improved many previously known results.

    Citation: Hussain Al-Qassem, Mohammed Ali. A class of rough generalized Marcinkiewicz integrals along twisted surfaces[J]. AIMS Mathematics, 2025, 10(6): 14459-14471. doi: 10.3934/math.2025650

    Related Papers:

  • In this paper, we investigated the mapping properties of generalized Marcinkiewicz integral operators associated with twisted surfaces. Under certain conditions on these surfaces, we established suitable $ L^p $ estimates for these operators, assuming the kernel functions belong to $ L^{q}\left(\mathbb{U}^{{{j}}-1}\times \mathbb{U} ^{{{k}}-1}\right) $. By combining these estimates with Yano's extrapolation technique, we further established the boundedness of these operators from the homogeneous Triebel-Lizorkin space $ \overset{.}{F}_{p}^{0, \tau}(\mathbb{R}^j\times\mathbb{R}^k) $ to the space $ L^p(\mathbb{R}^j\times\mathbb{R}^k) $ under significantly weaker assumptions on the kernels. Our results extended and improved many previously known results.



    加载中


    [1] Y. Ding, $L^2$-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J., 27 (1998), 105–115.
    [2] H. Al-Qassem, Rough Marcinkiewicz integral operators on product spaces, Collect. Math., 56 (2005), 275–297.
    [3] Y. Jiang, S. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J., 25 (1995), 1–7. https://doi.org/10.14492/hokmj/1380892533 doi: 10.14492/hokmj/1380892533
    [4] H. Al-Qassem, A. Al-Salman, L. Cheng, Y. Pan, Marcinkiewicz integrals on product spaces, Stud. Math., 167 (2005), 227–234.
    [5] Y. Choi, Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains, J. Math. Anal. Appl., 261 (2001), 53–60. https://doi.org/10.1006/jmaa.2001.7465 doi: 10.1006/jmaa.2001.7465
    [6] J. Chen, D. Fan, Y. Ying, The method of rotation and Marcinkiewicz integrals on product domains, Stud. Math., 153 (2002), 41–58.
    [7] D. Fan, Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Am. J. Math., 119 (1997), 799–839. https://doi.org/10.1353/ajm.1997.0024 doi: 10.1353/ajm.1997.0024
    [8] F. Liu, H. Wu, On the $L^2$ boundedness for the multiple Littlewood Paley functions with rough kernels, J. Math. Anal. Appl., 410 (2014), 403–410. https://doi.org/10.1016/j.jmaa.2013.08.041 doi: 10.1016/j.jmaa.2013.08.041
    [9] H. Wu, Boundedness of multiple Marcinkiewicz integral operators with rough kernels, J. Korean Math. Soc., 43 (2006), 635–658. https://doi.org/10.4134/JKMS.2006.43.3.635 doi: 10.4134/JKMS.2006.43.3.635
    [10] M. Ali, A. Al-Senjlawi, Boundedness of Marcinkiewicz integrals on product spaces and extrapolation, Inter. J. Pure Appl. Math., 97 (2014), 49–66.
    [11] H. Al-Qassem, M. Ali, On the functions of Marcinkiewicz integrals along surfaces of revolution on product domains via extrapolation, Symmetry, 15 (2023), 1814. https://doi.org/10.3390/sym15101814 doi: 10.3390/sym15101814
    [12] F. Gürbüz, A note concerning Marcinkiewicz integral with rough kernel, Infin. Dimens. Anal. Qu., 24 (2021), 2150005. https://doi.org/10.1142/S0219025721500053 doi: 10.1142/S0219025721500053
    [13] O. Khalil, S. Tao, A. Bechi, Boundedness of Marcinkiewicz integral with rough kernel and their commutator on weighted Herz space with variable exponent, Acta Math. Univ. Comen., 92 (2023), 145–163.
    [14] H. Jia, D. Yang, W. Yuan, Y. Zhang, Estimates for Littlewood-Paley operators on ball Campanato-type function spaces, Results Math., 78 (2023), 37. https://doi.org/10.1007/s00025-022-01805-2 doi: 10.1007/s00025-022-01805-2
    [15] B. Al-Azriyah, A. Al-Salman, Singular and Marcinkiewicz integral operators on product domains, Commun. Korean Math. S., 38 (2023), 401–430. https://doi.org/10.4134/CKMS.c210421 doi: 10.4134/CKMS.c210421
    [16] H. Wu, J. Xu, Rough Marcinkiewicz integrals associated to surfaces of revolution on product domains, Acta Math. Sci., 29 (2009), 294–304. https://doi.org/10.1016/S0252-9602(09)60030-8 doi: 10.1016/S0252-9602(09)60030-8
    [17] F. Liu, H. Wu, Rough Marcinkiewicz integrals with mixed homogeneity on product spaces, Acta Math. Sin., 29 (2013), 1231–1244. https://doi.org/10.1007/s10114-013-1675-5 doi: 10.1007/s10114-013-1675-5
    [18] D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Can. Math. Bull., 54 (2011), 100–112. https://doi.org/10.4153/CMB-2010-085-3 doi: 10.4153/CMB-2010-085-3
    [19] H. Al-Qassem, L. Cheng, Y. Pan, Generalized Littlewood-Paley functions on product spaces, Turk. J. Math., 45 (2021), 319–345. https://doi.org/10.3906/mat-2008-92 doi: 10.3906/mat-2008-92
    [20] M. Ali, H. Al-Qassem, A class of rough generalized Marcinkiewicz integrals on product domains, Symmetry, 15 (2023), 823. https://doi.org/10.3390/sym15040823 doi: 10.3390/sym15040823
    [21] M. Ali, H. Al-Qassem, On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces, AIMS Mathematics, 9 (2024), 4816–4829. https://doi.org/10.3934/math.2024233 doi: 10.3934/math.2024233
    [22] F. Liu, A note on generalized parametric Marcinkiewicz integrals, Bull. Korean Math. Soc., 56 (2019), 1099–1115.
    [23] A. Al-Salman, Marcinkiewicz integral operators along twisted surfaces, Commun. Pur. Appl. Anal., 21 (2022), 159. https://doi.org/10.3934/cpaa.2021173 doi: 10.3934/cpaa.2021173
    [24] S. Yano, Notes on Fourier analysis (XXIX): an extrapolation theorem, J. Math. Soc. Jap., 3 (1951), 296–305. https://doi.org/10.2969/jmsj/00320296 doi: 10.2969/jmsj/00320296
    [25] S. Sato, Estimates for singular integrals and extrapolation, Studia Math., 192 (2009), 219–233.
    [26] A. Al-Salman, Singular integral operators on product domains along twisted surfaces, Front. Math. China, 16 (2021), 13–28. https://doi.org/10.1007/s11464-021-0911-z doi: 10.1007/s11464-021-0911-z
    [27] H. Al-Qassem, Y. Pan, On certain estimates for Marcinkiewicz integrals and extrapolation, Collect. Math., 60 (2009), 123–145. https://doi.org/10.1007/BF03191206 doi: 10.1007/BF03191206
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(486) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog