In this paper, we investigated the mapping properties of generalized Marcinkiewicz integral operators associated with twisted surfaces. Under certain conditions on these surfaces, we established suitable $ L^p $ estimates for these operators, assuming the kernel functions belong to $ L^{q}\left(\mathbb{U}^{{{j}}-1}\times \mathbb{U} ^{{{k}}-1}\right) $. By combining these estimates with Yano's extrapolation technique, we further established the boundedness of these operators from the homogeneous Triebel-Lizorkin space $ \overset{.}{F}_{p}^{0, \tau}(\mathbb{R}^j\times\mathbb{R}^k) $ to the space $ L^p(\mathbb{R}^j\times\mathbb{R}^k) $ under significantly weaker assumptions on the kernels. Our results extended and improved many previously known results.
Citation: Hussain Al-Qassem, Mohammed Ali. A class of rough generalized Marcinkiewicz integrals along twisted surfaces[J]. AIMS Mathematics, 2025, 10(6): 14459-14471. doi: 10.3934/math.2025650
In this paper, we investigated the mapping properties of generalized Marcinkiewicz integral operators associated with twisted surfaces. Under certain conditions on these surfaces, we established suitable $ L^p $ estimates for these operators, assuming the kernel functions belong to $ L^{q}\left(\mathbb{U}^{{{j}}-1}\times \mathbb{U} ^{{{k}}-1}\right) $. By combining these estimates with Yano's extrapolation technique, we further established the boundedness of these operators from the homogeneous Triebel-Lizorkin space $ \overset{.}{F}_{p}^{0, \tau}(\mathbb{R}^j\times\mathbb{R}^k) $ to the space $ L^p(\mathbb{R}^j\times\mathbb{R}^k) $ under significantly weaker assumptions on the kernels. Our results extended and improved many previously known results.
| [1] | Y. Ding, $L^2$-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J., 27 (1998), 105–115. |
| [2] | H. Al-Qassem, Rough Marcinkiewicz integral operators on product spaces, Collect. Math., 56 (2005), 275–297. |
| [3] |
Y. Jiang, S. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J., 25 (1995), 1–7. https://doi.org/10.14492/hokmj/1380892533 doi: 10.14492/hokmj/1380892533
|
| [4] | H. Al-Qassem, A. Al-Salman, L. Cheng, Y. Pan, Marcinkiewicz integrals on product spaces, Stud. Math., 167 (2005), 227–234. |
| [5] |
Y. Choi, Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains, J. Math. Anal. Appl., 261 (2001), 53–60. https://doi.org/10.1006/jmaa.2001.7465 doi: 10.1006/jmaa.2001.7465
|
| [6] | J. Chen, D. Fan, Y. Ying, The method of rotation and Marcinkiewicz integrals on product domains, Stud. Math., 153 (2002), 41–58. |
| [7] |
D. Fan, Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Am. J. Math., 119 (1997), 799–839. https://doi.org/10.1353/ajm.1997.0024 doi: 10.1353/ajm.1997.0024
|
| [8] |
F. Liu, H. Wu, On the $L^2$ boundedness for the multiple Littlewood Paley functions with rough kernels, J. Math. Anal. Appl., 410 (2014), 403–410. https://doi.org/10.1016/j.jmaa.2013.08.041 doi: 10.1016/j.jmaa.2013.08.041
|
| [9] |
H. Wu, Boundedness of multiple Marcinkiewicz integral operators with rough kernels, J. Korean Math. Soc., 43 (2006), 635–658. https://doi.org/10.4134/JKMS.2006.43.3.635 doi: 10.4134/JKMS.2006.43.3.635
|
| [10] | M. Ali, A. Al-Senjlawi, Boundedness of Marcinkiewicz integrals on product spaces and extrapolation, Inter. J. Pure Appl. Math., 97 (2014), 49–66. |
| [11] |
H. Al-Qassem, M. Ali, On the functions of Marcinkiewicz integrals along surfaces of revolution on product domains via extrapolation, Symmetry, 15 (2023), 1814. https://doi.org/10.3390/sym15101814 doi: 10.3390/sym15101814
|
| [12] |
F. Gürbüz, A note concerning Marcinkiewicz integral with rough kernel, Infin. Dimens. Anal. Qu., 24 (2021), 2150005. https://doi.org/10.1142/S0219025721500053 doi: 10.1142/S0219025721500053
|
| [13] | O. Khalil, S. Tao, A. Bechi, Boundedness of Marcinkiewicz integral with rough kernel and their commutator on weighted Herz space with variable exponent, Acta Math. Univ. Comen., 92 (2023), 145–163. |
| [14] |
H. Jia, D. Yang, W. Yuan, Y. Zhang, Estimates for Littlewood-Paley operators on ball Campanato-type function spaces, Results Math., 78 (2023), 37. https://doi.org/10.1007/s00025-022-01805-2 doi: 10.1007/s00025-022-01805-2
|
| [15] |
B. Al-Azriyah, A. Al-Salman, Singular and Marcinkiewicz integral operators on product domains, Commun. Korean Math. S., 38 (2023), 401–430. https://doi.org/10.4134/CKMS.c210421 doi: 10.4134/CKMS.c210421
|
| [16] |
H. Wu, J. Xu, Rough Marcinkiewicz integrals associated to surfaces of revolution on product domains, Acta Math. Sci., 29 (2009), 294–304. https://doi.org/10.1016/S0252-9602(09)60030-8 doi: 10.1016/S0252-9602(09)60030-8
|
| [17] |
F. Liu, H. Wu, Rough Marcinkiewicz integrals with mixed homogeneity on product spaces, Acta Math. Sin., 29 (2013), 1231–1244. https://doi.org/10.1007/s10114-013-1675-5 doi: 10.1007/s10114-013-1675-5
|
| [18] |
D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Can. Math. Bull., 54 (2011), 100–112. https://doi.org/10.4153/CMB-2010-085-3 doi: 10.4153/CMB-2010-085-3
|
| [19] |
H. Al-Qassem, L. Cheng, Y. Pan, Generalized Littlewood-Paley functions on product spaces, Turk. J. Math., 45 (2021), 319–345. https://doi.org/10.3906/mat-2008-92 doi: 10.3906/mat-2008-92
|
| [20] |
M. Ali, H. Al-Qassem, A class of rough generalized Marcinkiewicz integrals on product domains, Symmetry, 15 (2023), 823. https://doi.org/10.3390/sym15040823 doi: 10.3390/sym15040823
|
| [21] |
M. Ali, H. Al-Qassem, On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces, AIMS Mathematics, 9 (2024), 4816–4829. https://doi.org/10.3934/math.2024233 doi: 10.3934/math.2024233
|
| [22] | F. Liu, A note on generalized parametric Marcinkiewicz integrals, Bull. Korean Math. Soc., 56 (2019), 1099–1115. |
| [23] |
A. Al-Salman, Marcinkiewicz integral operators along twisted surfaces, Commun. Pur. Appl. Anal., 21 (2022), 159. https://doi.org/10.3934/cpaa.2021173 doi: 10.3934/cpaa.2021173
|
| [24] |
S. Yano, Notes on Fourier analysis (XXIX): an extrapolation theorem, J. Math. Soc. Jap., 3 (1951), 296–305. https://doi.org/10.2969/jmsj/00320296 doi: 10.2969/jmsj/00320296
|
| [25] | S. Sato, Estimates for singular integrals and extrapolation, Studia Math., 192 (2009), 219–233. |
| [26] |
A. Al-Salman, Singular integral operators on product domains along twisted surfaces, Front. Math. China, 16 (2021), 13–28. https://doi.org/10.1007/s11464-021-0911-z doi: 10.1007/s11464-021-0911-z
|
| [27] |
H. Al-Qassem, Y. Pan, On certain estimates for Marcinkiewicz integrals and extrapolation, Collect. Math., 60 (2009), 123–145. https://doi.org/10.1007/BF03191206 doi: 10.1007/BF03191206
|