In this paper, we introduce variable Gaussian Besov-Lipschitz Bαp(⋅),q(⋅)(γd) and Triebel-Lizorkin spaces Fαp(⋅),q(⋅)(γd), i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents p(⋅) and q(⋅), under certain regularity conditions on the functions p(⋅) and q(⋅). The condition on p(⋅) is associated with the Gaussian measure and was introduced in [
Citation: Ebner Pineda, Luz Rodriguez, Wilfredo Urbina. Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure[J]. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388
[1] | Ebner Pineda, Luz Rodriguez, Wilfredo Urbina . Boundedness of Gaussian Bessel potentials and fractional derivatives on variable Gaussian Besov$ - $Lipschitz spaces. AIMS Mathematics, 2025, 10(1): 1026-1042. doi: 10.3934/math.2025049 |
[2] | Xiaochun Sun, Yulian Wu, Gaoting Xu . Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385 |
[3] | Carlos F. Álvarez, Javier Henríquez-Amador, John Millán G., Eiver Rodríguez . On the composition operator with variable integrability. AIMS Mathematics, 2025, 10(2): 2021-2041. doi: 10.3934/math.2025095 |
[4] | Yanqi Yang, Shuangping Tao, Guanghui Lu . Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333 |
[5] | Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810 |
[6] | Huiming Zhang, Hengzhen Huang . Concentration for multiplier empirical processes with dependent weights. AIMS Mathematics, 2023, 8(12): 28738-28752. doi: 10.3934/math.20231471 |
[7] | Chenchen Lu, Lin Chen, Shaoyong Lai . Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059 |
[8] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[9] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[10] | Tao Ma, Jianzhong Lu, Xia Wu . Martingale transforms in martingale Hardy spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 22041-22056. doi: 10.3934/math.20241071 |
In this paper, we introduce variable Gaussian Besov-Lipschitz Bαp(⋅),q(⋅)(γd) and Triebel-Lizorkin spaces Fαp(⋅),q(⋅)(γd), i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents p(⋅) and q(⋅), under certain regularity conditions on the functions p(⋅) and q(⋅). The condition on p(⋅) is associated with the Gaussian measure and was introduced in [
Gaussian harmonic analysis is basically the study of the notions of classical harmonic analysis (such as semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, Spectral multipliers, fractional integral and derivatives, singular integrals, etc.), which are formulated in the Lebesgue measure space (Rd,B(Rd),dx), in the probability space (Rd,B(Rd),γd(dx)), where γd(dx)=e−‖x‖2πd/2dx,x∈Rd, is the Gaussian probability measure in Rd.
A second component of classical harmonic analysis is the Laplace operator, Δx=∑dk=1∂2∂x2k.
In Gaussian harmonic analysis is the Ornstein-Uhlenbeck second order differential operator, L=12△x−⟨x,∇x⟩, where ∇x=(∂∂x1,∂∂x2,⋯,∂∂xd).
A third component of Gaussian harmonic analysis are the Hermite polynomials that are orthogonal with respect to the Gaussian measure and are eigenfunctions of the Ornstein-Uhlenbeck operator L.
Some differences between classical and Gaussian harmonic analysis, are: Lebesgue measure is a doubling, translation invariant measure. Semigroups asociated to Lebesgue measure are convolution semigroups. Gaussian measure does not satisfy any of these properties, which makes many of the proofs are completely different from the classical case. For a detailed study, see [16].
The structure and properties of general Lipschitz spaces in the classical case (with respect to the Lebesgue measure in Rd) were studied in [12,14,15]. In analogous way, for α>0 and 1≤p,q≤∞, in [10,16], were introduced and studied the structure of Besov-Lipschitz Bαp,q(γd) and Triebel-Lizorkin Fαp,q(γd) spaces, with respect to the Gaussian measure γd in Rd, that is, for expansions on Hermite polynomials. In particular, for α=0,q=2, F0p,2(γd)=Lp(γd) (Gaussian Lebesgue spaces) and for p,q=∞, Bα∞,∞(γd)=Lipα(γd) (Gaussian Lipschitz spaces) [16], i.e., these spaces generalize known spaces. All of this, in the constant exponent setting.
Lebesgue spaces with variable exponents have been widely studied in the last three decades, see [2] or [4]. These spaces arose for a purely theoretical interest, although a short time later applications began to emerge, [23]. Also, recent research has been stimulated by applications in various problems, for example, elasticity theory and fluid mechanics, where electrorheological fluids are of special interest, see [1,11]. All of the above motivates us to define more general variable exponent spaces.
In this paper, following [10] or [16] and replacing the constants p and q by measurable functions p(⋅),q(⋅) taking values in [1,∞] and satisfying suitable regularity conditions, we define and study the structure of Besov-Lipschitz spaces Bαp(⋅),q(⋅)(γd) and Triebel-Lizorkin spaces Fαp(⋅),q(⋅)(γd) with variable exponents respect to the Gaussian measure, generalizing some of the results in [10,16] such as inclusion relations of those spaces and interpolation results for them. Therefore, for the study of variable exponent spaces, Bαp(⋅),q(⋅)(γd) and Fαp(⋅),q(⋅)(γd), we present four sections:
● In section 2, we give the preliminaries in the Gaussian setting and some background on variable spaces with respect to a Borel measure μ.
● In section 3, we obtain some technical results for the Haar measure on R+ that will be key in the proof of the main results.
● In section 4, we define and study the structure of the spaces Bαp(⋅),q(⋅)(γd) and Fαp(⋅),q(⋅)(γd).
● In section 5, we give some conclusions.
Finally, there are some important references on variable Besov and Triebel-Lizorkin spaces in the context of Lebesgue measure, for example, [6,13,17,18,19,20,21,22].
On the other hand, based on the results of this work, we can now study the boundedness of Riesz Potentials, Bessel Potentials and Bessel Fractional Derivatives on Bαp(⋅),q(⋅)(γd) and Fαp(⋅),q(⋅)(γd), in order to generalize the ones presented in [7].
Let us consider the Gaussian measure
γd(dx)=e−‖x‖2πd/2dx,x∈Rd | (2.1) |
on Rd and the Ornstein-Uhlenbeck differential operator
L=12△x−⟨x,∇x⟩. | (2.2) |
Let ν=(ν1,...,νd) be a multi-index such that νi≥0,i=1,⋯,d, let ν!=∏di=1νi!, |ν|=∑di=1νi, ∂i=∂∂xi, for each 1≤i≤d and ∂ν=∂ν11...∂νdd.
Consider the normalized Hermite polynomials of order ν in d variables,
hν(x)=1(2|ν|ν!)1/2d∏i=1(−1)νiex2i∂νii(e−x2i). | (2.3) |
The Ornstein-Uhlenbeck semigroup on Rd is defined by
Ttf(x)=1(1−e−2t)d/2∫Rde−e−2t(|x|2+|y|2)−2e−t⟨x,y⟩1−e−2tf(y)γd(dy). |
Using the Bochner subordination formula
e−λ=1√π∫∞0e−u√ue−λ2/4udu, | (2.4) |
we introduce the Poisson-Hermite semigroup by
Ptf(x)=1√π∫∞0e−u√uTt2/4uf(x)du. | (2.5) |
Now, taking the change of variables s=t24u, Ptf(x) can be written as
Ptf(x)=∫∞0Tsf(x)μ(1/2)t(ds), | (2.6) |
where μ(1/2)t(ds)=t2√πe−t2/4ss−3/2ds, is the one-sided stable measure on (0,∞) of order 1/2, it is easy to see that μ(1/2)t is a probability measure on (0,∞).
It is well known, that Hermite polynomials are eigenfunctions of the operator L,
Lhν(x)=−|ν|hν(x). | (2.7) |
In consequence
Tthν(x)=e−t|ν|hν(x), | (2.8) |
and
Pthν(x)=e−t√|ν|hν(x), | (2.9) |
i.e., Hermite polynomials are also eigenfunctions of Tt and Pt for any t≥0, for more details, see [16].
Next, we present some technical results for the measure μ(1/2)t needed in what follows.
As μ(1/2)t(ds)=t2√πe−t2/4ss3/2ds=g(t,s)ds, for any k∈N, we use the notation ∂k∂tkμ(1/2)t(ds) for
∂k∂tkμ(1/2)t(ds):=∂kg(t,s)∂tkds. | (2.10) |
Lemma 2.1. Given k∈N,
∂kμ(1/2)t∂tk(ds)=(∑i,jai,jtisj)μ(1/2)t(ds), | (2.11) |
where {ai,j} is a finite set of constants and the indexes i∈Z, j∈N verifies the equation 2j−i=k.
Lemma 2.2. Given k∈N and t>0,
∫+∞01skμ(1/2)t(ds)=Ckt2k,where Ck=22kΓ(k+12)π12. | (2.12) |
Corollary 2.1. Given k∈N and t>0,
∫+∞0|∂kμ(1/2)t∂tk|(ds)≤Cktk. | (2.13) |
On the other hand, by considering the maximal function of the Ornstein-Uhlenbeck semigroup
T∗f(x)=supt>0|Ttf(x)|, |
we obtain:
Lemma 2.3. Let f∈L1(γd),x∈Rd and k∈N
|∂kPtf(x)∂tk|≤CkT∗f(x)t−k,∀t>0. | (2.14) |
For the proofs of the previous technical results, see [10] or [16].
Now, for completeness, we need some background on variable Lebesgue spaces with respect to a Borel measure μ. A μ-measurable function p(⋅):Ω⊂Rd→[1,∞] is said to be an exponent function. The set of all the exponent functions will be denoted by P(Ω,μ). For E⊂Ω, we set p−(E)=essinfx∈Ep(x),p+(E)=esssupx∈Ep(x) and Ω∞={x∈Ω:p(x)=∞}.
Also, we use the abbreviations p+=p+(Ω) and p−=p−(Ω).
Definition 2.1. Let E⊂Rd and p(⋅):E→R a function. We say that:
i) p(⋅) is locally log-Hölder continuous, denote by p(⋅)∈LH0(E), if there exists a constant C1>0 such that
|p(x)−p(y)|≤C1log(e+1‖x−y‖) |
for all x,y∈E.
ii) p(⋅) is log-Hölder continuous at infinity with base point at x0∈Rd, and denote this by p(⋅)∈LH∞(E), if there exist constants p∞∈R and C2>0 such that
|p(x)−p∞|≤C2log(e+‖x−x0‖) |
for all x∈E.
iii) p(⋅) is log-Hölder continuous, and denote this by p(⋅)∈LH(E) if both conditions i) and ii) are satisfied.
The maximum, max{C1,C2} is called the log-Hölder constant of p(⋅).
Definition 2.2. Let E⊂Rd, p(⋅)∈Plogd(E), if 1p(⋅) is log-Hölder continuous and denote by Clog(p) or Clog the log-Hölder constant of 1p(⋅).
Definition 2.3. Let Ω⊂Rd and p(⋅)∈P(Ω,μ). For a μ-measurable function f:Ω→¯R, we define the modular ρp(⋅),μ as
ρp(⋅),μ(f)=∫Ω∖Ω∞|f(x)|p(x)μ(dx)+‖f‖L∞(Ω∞,μ), | (2.15) |
and the norm
‖f‖Lp(⋅)(Ω,μ)=inf{λ>0:ρp(⋅),μ(f/λ)≤1}. | (2.16) |
Definition 2.4. The variable exponent Lebesgue space on Ω⊂Rd, Lp(⋅)(Ω,μ) consists on those μ_measurable functions f for which there exists λ>0 such that ρp(⋅),μ(fλ)<∞, i.e.,
Lp(⋅)(Ω,μ)={f:Ω→¯R:fis measurable andρp(⋅),μ(fλ)<∞,for someλ>0}. |
Remark 2.1. When μ is the Lebesgue measure, we write ρp(⋅) and ‖f‖p(⋅) instead of ρp(⋅),μ and ‖f‖p(⋅),μ.
Theorem 2.1. (Norm conjugate formula) Let ν a complete, σ-finite measure on Ω and p(⋅)∈P(Ω,ν), then
12‖f‖p(⋅),ν≤‖f‖′p(⋅),ν≤2‖f‖p(⋅),ν, | (2.17) |
for all f ν-measurable on Ω, where
‖f‖′p(⋅),ν=sup{∫Ω|f||g|dν:g∈Lp′(⋅)(Ω,ν),‖g‖p′(⋅),ν≤1}.
Proof. See Corollary 3.2.14 in [4].
Theorem 2.2. (Hölder's inequality) Let ν a complete, σ-finite measure on Ω and r(⋅),q(⋅)∈P(Ω,ν). Define p(⋅)∈P(Ω,ν) by 1p(x)=1q(x)+1r(x),a.e.
Then for all f∈Lq(⋅)(Ω,ν) and g∈Lr(⋅)(Ω,ν), fg∈Lp(⋅)(Ω,ν) and
‖fg‖p(⋅),ν≤2‖f‖q(⋅),ν‖g‖r(⋅),ν. | (2.18) |
Proof. See Lemma 3.2.20 in [4].
Theorem 2.3. (Minkowski's integral inequality for variable Lebesgue spaces) Given μ and ν complete σ-finite measures on X and Y respectively, p∈P(X,μ). Let f:X×Y→¯R measurable with respect to the product measure on X×Y, such that for almost every y∈Y, f(⋅,y)∈Lp(⋅)(X,μ). Then
‖∫Yf(⋅,y)dν(y)‖p(⋅),μ≤4∫Y‖f(⋅,y)‖p(⋅),μdν(y). | (2.19) |
Proof. It is completely analogous to the proof of Corollary 2.38 in [2] by interchanging the Lebesgue measure for complete σ-finite measures μ and ν on X and Y respectively, and by using (2.18), Fubini's theorem and then (2.17).
In the rest of the paper μ represents the Haar measure μ(dt)=dtt on R+.
In this section we present some technical results regarding the Haar measure that will be key to the main results.
Remark 3.1. For a μ-measurable function f:R+→¯R, q(⋅)∈P(R+,μ), and any λ>0:
ρq(⋅),μ(fλ)=∫∞0|f(t)λ|q(t)μ(dt)=∫∞0|t−1/q(t)f(t)λ|q(t)dt=ρq(⋅)(t−1/q(⋅)fλ). |
Thus,
‖f‖q(⋅),μ=‖t−1/q(⋅)f‖q(⋅). | (3.1) |
Next, we present a technical result for the Haar measure μ.
Lemma 3.1. Let q(⋅)∈P(R+,μ) and α,β>0
i) If q+<∞, then ‖tαe−tβ‖q(⋅),μ<∞.
ii) ‖tαχ(0,1]‖q(⋅),μ<∞.
iii) ‖t−αχ(1,∞)‖q(⋅),μ<∞.
iv) For any t0>0,(ln2)1q−≤‖χ[t0/2,t0]‖q(⋅),μ≤1.
Proof. Let us prove i). Set f(t)=tαe−tβ,
ρq(⋅),μ(f)=∫∞0|f(t)|q(t)μ(dt)=∫10|tαe−tβ|q(t)dtt+∫∞1|tαe−tβ|q(t)dtt. |
Now,
∫10|tαe−tβ|q(t)dtt=∫10tαq(t)−1e−tβq(t)dt≤∫10tα−1dt<∞, |
since α,β>0 and 0≤t≤1. On the other hand, by making the change of variables u=tβq−
∫∞1|tαe−tβ|q(t)dtt=∫∞1tαq(t)e−tβq(t)dtt≤∫∞1tαq+e−tβq−dtt≤∫∞0tαq+e−tβq−dtt=∫∞0(uβq−)αq+e−uduu=1(βq−)αq+∫∞0uαq+−1e−udu=1(βq−)αq+Γ(αq+)<∞, since α,β>0 and q+<∞. |
Thus, ρq(⋅),μ(f)<∞, and therefore ‖tαe−tβ‖q(⋅),μ<∞. The proofs of ii) and iii) are immediate.
Now, in order to prove iv), set g=χ[t0/2,t0],
ρq(⋅),μ(g)=∫∞0|g(t)|q(t)μ(dt)=∫t0t0/2dtt=ln2<1. |
Then, λ≥1 implies ρq(⋅),μ(gλ)≤ρq(⋅),μ(g)≤1. Thus, ‖g‖q(⋅),μ≤1.
On the other hand, taking 0<λ<1
ρq(⋅),μ(gλ)=∫t0t0/2λ−q(t)dtt≥∫t0t0/2λ−q−dtt=λ−q−(ln2). |
So, λ<(ln2)1/q− implies ρq(⋅),μ(gλ)>1. Thus, ρq(⋅),μ(gλ)≤1 implies λ≥(ln2)1/q−.
Therefore, ‖g‖q(⋅),μ≥(ln2)1/q−.
In the case Ω=R+, we denote M0,∞ the set of all measurable functions p(⋅):R+→R+ which satisfy the following conditions:
i) 0≤p−≤p+<∞.
ii0) there exists p(0)=limx→0p(x) and |p(x)−p(0)|≤Aln(1/x),0<x≤1/2.
ii∞) there exists p(∞)=limx→∞p(x) and |p(x)−p(∞)|≤Aln(x),x>2.
We denote P0,∞ the subset of functions p(⋅) such that p−≥1.
Let α(⋅),β(⋅)∈LH(R+), bounded with
α(0)<1p′(0),α(∞)<1p′(∞) | (3.2) |
and
β(0)>−1p(0),β(∞)>−1p(∞). | (3.3) |
Theorem 3.1. Let p(⋅)∈P0,∞, α(⋅),β(⋅)∈LH(R+), bounded. Then Hardy-type inequalities
‖xα(x)−1∫x0f(y)yα(y)dy‖p(⋅)≤Cα(⋅),p(⋅)‖f‖p(⋅) | (3.4) |
and
‖xβ(x)∫∞xf(y)yβ(y)+1dy‖p(⋅)≤Cβ(⋅),p(⋅)‖f‖p(⋅) | (3.5) |
are valid, if and only if, α(⋅),β(⋅) satisfy conditions (3.2) and (3.3).
Proof. For the proof see Theorem 3.1 and Remark 3.2 in [5].
As a consequence, we obtain the Hardy's inequalities associated to the exponent function q(⋅)∈P0,∞ and the measure μ.
Corollary 3.1. Let q(⋅)∈P0,∞ and r>0, then
‖t−r∫t0g(y)dy‖q(⋅),μ≤Cr,q(⋅)‖y−r+1g‖q(⋅),μ,for all g such that y−r+1g∈Lq(⋅)(μ) | (3.6) |
and
‖tr∫∞tg(y)dy‖q(⋅),μ≤Cr,q(⋅)‖yr+1g‖q(⋅),μ,for all g such that yr+1g∈Lq(⋅)(μ). | (3.7) |
Proof. Let α(t)=−r+1q′(t)=−r+1−1q(t), for any t∈R+, f(y)=yα(y)g(y), for any y∈R+ then α(⋅)∈LH(R+) and bounded, α(0)=−r+1q′(0)<1q′(0) and α(∞)=−r+1q′(∞)<1q′(∞). Then, using (3.1) and (3.4)
‖t−r∫t0g(y)dy‖q(⋅),μ=‖t−r−1q(t)∫t0g(y)dy‖q(⋅)=‖tα(t)−1∫t0g(y)dy‖q(⋅)≤Cr,q(⋅)‖yα(y)g‖q(⋅)=Cr,q(⋅)‖y−r+1−1q(y)g‖q(⋅)=Cr,q(⋅)‖y−r+1g‖q(⋅),μ. |
On the other hand, by taking β(t)=r−1q(t),f(y)=yβ(y)+1g(y),t,y∈R+ then β(⋅)∈LH(R+) and the proof of (3.7) is completely analogous.
In this section we are going to introduce variable Gaussian Besov-Lipschitz spaces and variable Gaussian Triebel-Lizorkin spaces. In what follows we will consider only variable Lebesgue spaces with respect to the Gaussian measure γd. The next condition was introduced by E. Dalmasso and R. Scotto in [3].
Definition 4.1. Let p(⋅)∈P(Rd,γd), we say that p(⋅)∈P∞γd(Rd) if there exist constants Cγd>0 and p∞≥1 such that
|p(x)−p∞|≤Cγd‖x‖2, | (4.1) |
for x∈Rd∖{(0,0,…,0)}.
Example 4.1. Consider p(x)=p∞+A(e+‖x‖)q, x∈Rd, for any p∞≥1, A≥0 and q≥2. Then p(⋅)∈P∞γd(Rd).
Remark 4.1. It can be proved that if p(⋅)∈P∞γd(Rd), then p(⋅)∈LH∞(Rd).
In fact, by fixing x0∈Rd, such that ‖x0‖=1, we get log(e+‖x−x0‖)≤C‖x‖2, for all x∈Rd.
Lipschitz spaces can be generalized of the following way (see, for example [10,12,14,15]), using the Poisson-Hermite semigroup. We are ready to define variable Gaussian Besov-Lipschitz spaces Bαp(⋅),q(⋅)(γd), also called Gaussian Besov-Lipschitz spaces with variable exponents or variable Besov-Lipschitz spaces for expansions in Hermite polinomials.
Definition 4.2. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q(⋅)∈P0,∞. Let α≥0, k the smallest integer greater than α. The variable Gaussian Besov-Lipschitz space Bαp(⋅),q(⋅)(γd) is defined as the set of functions f∈Lp(⋅)(γd) such that
‖tk−α‖∂kPtf∂tk‖p(⋅),γd‖q(⋅),μ<∞. | (4.2) |
The norm of f∈Bαp(⋅),q(⋅)(γd) is defined as
‖f‖Bαp(⋅),q(⋅):=‖f‖p(⋅),γd+‖tk−α‖∂kPtf∂tk‖p(⋅),γd‖q(⋅),μ. | (4.3) |
The variable Gaussian Besov-Lipschitz space Bαp(⋅),∞(γd) is defined as the set of functions f∈Lp(⋅)(γd) for which there exists a constant A such that
‖∂kPtf∂tk‖p(⋅),γd≤At−k+α |
and then the norm of f∈Bαp(⋅),∞(γd) is defined as
‖f‖Bαp(⋅),∞:=‖f‖p(⋅),γd+Ak(f), | (4.4) |
where Ak(f) is the smallest constant A in the above inequality.
The following lemmas show that we could have replaced k with any other integer l greater than α and the resulting norms are equivalents. Next, we denote u(⋅,t)=Ptf.
Lemma 4.1. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd), f∈Lp(⋅)(γd),α≥0 and k,l integers greater than α, then
‖∂ku(⋅,t)∂tk‖p(⋅),γd≤Akt−k+αif and only if‖∂lu(⋅,t)∂tl‖p(⋅),γd≤Alt−l+α. |
Moreover, if Ak(f),Al(f) are the smallest constants in the inequalities above then there exist constants Ak,l,α,p(⋅) and Dk,l,α such that
Ak,l,α,p(⋅)Ak(f)≤Al(f)≤Dk,l,αAk(f), |
for all f∈Lp(⋅)(γd).
Proof. Let us suppose without loss of generality that k≥l. We start by proving the direct implication. For this we use the representation of the Poisson-Hermite semigroup (2.6), this is,
Ptf(x)=∫+∞0Tsf(x)μ(1/2)t(ds). |
Then, by differentiating k-times with respect to t and by using the dominated convergence theorem, we get
∂kPtf(x)∂tk=∫+∞0Tsf(x)∂kμ(1/2)t∂tk(ds). |
By using Lemma 2.3, it's easy to prove that for all m∈N
limt→+∞∂mPtf(x)∂tm=0,a.e.x∈Rd. |
Now, given n∈N, n>α
−∫+∞t∂n+1Psf(x)∂sn+1ds=−lims→+∞∂nPsf(x)∂sn+∂nPtf(x)∂tn=∂nPtf(x)∂tn,a.e.x∈Rd. |
Thus, for Minkowski's integral inequality (2.19)
‖∂nu(⋅,t)∂tn‖p(⋅),γd≤4∫+∞t‖∂n+1u(⋅,s)∂sn+1‖p(⋅),γdds≤4∫+∞tAn+1(f)s−(n+1)+αds=4An+1(f)n−αt−n+α. |
Therefore
An(f)≤4An+1(f)n−α, |
and since n>α is arbitrary, then, by using the above result k−l times, we obtain
Al(f)≤4Al+1(f)l−α≤42Al+2(f)(l−α)(l+1−α)≤...≤4k−lAk(f)(l−α)(l+1−α)...(k−1−α)=Dk,l,αAk(f). |
To prove the converse implication, we use again the representation (2.6) and we obtain that
u(x,t1+t2)=Pt1(Pt2f)(x)=∫+∞0Ts(Pt2f)(x)μ12t1(ds). |
Thus, taking t=t1+t2 and differentiating l times with respect to t2 and k−l times with respect to t1, we get
∂ku(x,t)∂tk=∫+∞0Ts(∂lPt2f(x)∂tl2)∂k−lμ12t1∂tk−l1(ds). | (4.5) |
Then, by Corollary 2.1, Minkowski's integral inequality (2.19) and the Lp(⋅)-boundedness of the Ornstein-Uhlenbeck semigroup (see [8]), we get
‖∂ku(⋅,t)∂tk‖p(⋅),γd≤4∫+∞0‖Ts(∂lPt2f∂tl2)‖p(⋅),γd|∂k−lμ12t1∂tk−l1(ds)|≤4Cp(⋅)‖∂lPt2f∂tl2‖p(⋅),γd∫+∞0|∂k−lμ12t1∂tk−l1(ds)|≤4Cp(⋅)‖∂l∂tl2Pt2f‖p(⋅),γdCk−ltl−k1≤4Cp(⋅)Al(f)Ck−lt−l+α2tl−k1. |
Therefore, taking t1=t2=t2,
‖∂ku(⋅,t)∂tk‖p(⋅),γd≤4Cp(⋅)Al(f)Ck−l(t2)−k+α. |
Thus, Ak(f)≤4Cp(⋅)Ck−l2−k+αAl(f).
Lemma 4.2. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q(⋅)∈P0,∞. Let α≥0 and k,l integers greater than α. Then
‖tk−α‖∂ku(⋅,t)∂tk‖p(⋅),γd‖q(⋅),μ<∞ |
if and only if
‖tl−α‖∂lu(⋅,t)∂tl‖p(⋅),γd‖q(⋅),μ<∞. |
Moreover, there exist constants Ak,l,α,p(⋅) and Dk,l,α,q(⋅) such that
Dk,l,α,q(⋅)‖tl−α‖∂lu(⋅,t)∂tl‖p(⋅),γd‖q(⋅),μ≤‖tk−α‖∂ku(⋅,t)∂tk‖p(⋅),γd‖q(⋅),μ≤Ak,l,α,p(⋅)‖tl−α‖∂lu(⋅,t)∂tl‖p(⋅),γd‖q(⋅),μ, |
for all f∈Lp(⋅)(γd).
Proof. Suppose without loss of generality that k≥l. We prove first the converse implication; by proceeding as in Lemma 4.1, taking t1=t2=t2, we have
‖∂ku(⋅,t)∂tk‖p(⋅),γd≤4Cp(⋅)‖∂lPt2f∂tl2‖p(⋅),γd⋅Ck−ltl−k1=4Cp(⋅)⋅Ck−l(t2)l−k‖∂lPt2f∂(t2)l‖p(⋅),γd. |
Thus
‖tk−α‖∂ku(⋅,t)∂tk‖p(⋅),γd‖q(⋅),μ≤4Cp(⋅)Ck−l2l−k‖tl−α‖∂lu(⋅,t2)∂(t2)l‖p(⋅),γd‖q(⋅),μ=Ak,l,α,p(⋅)‖sl−α‖∂lu(⋅,s)∂sl‖p(⋅),γd‖q(⋅),μ, |
with Ak,l,α,p(⋅)=4Cp(⋅)Ck−l2k−α.
For the direct implication, given n∈N, n>α, again, as in the above lemma
‖∂nu(⋅,t)∂tn‖p(⋅),γd≤4∫+∞t‖∂n+1u(⋅,s)∂sn+1‖p(⋅),γdds. |
Therefore, from this and by Hardy's inequality (3.7)
‖tn−α‖∂nu(⋅,t)∂tn‖p(⋅),γd‖q(⋅),μ≤4‖tn−α∫+∞t‖∂n+1u(⋅,s)∂sn+1‖p(⋅),γd‖q(⋅),μ≤4Cn,α,q(⋅)‖sn+1−α‖∂n+1u(⋅,s)∂sn+1‖p(⋅),γd‖q(⋅),μ. |
Now, since n>α is arbitrary, by using the previous result k−l times, we obtain
‖tl−α‖∂lu(⋅,t)∂tl‖p(⋅),γd‖q(⋅),μ≤4Cl,α,q(⋅)‖tl+1−α‖∂l+1u(⋅,t)∂tl+1‖p(⋅),γd‖q(⋅),μ≤42Cl,α,q(⋅)Cl+1,α,q(⋅)‖tl+2−α‖∂l+2u(⋅,t)∂tl+2‖p(⋅),γd‖q(⋅),μ⋮≤Dk,l,α,q(⋅)‖tk−α‖∂ku(⋅,t)∂tk‖p(⋅),γd‖q(⋅),μ, |
where Dk,l,α,q(⋅)=4k−lCl,α,q(⋅)⋯Ck−1,α,q(⋅).
Now, we define variable Gaussian Triebel-Lizorkin spaces Fαp(⋅),q(⋅)(γd), which represent another way to measure regularity of functions, proceeding as in [10,14,15].
Definition 4.3. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q(⋅)∈P0,∞. Let α≥0 and k the smallest integer greater than α. The variable Gaussian Triebel-Lizorkin space Fαp(⋅),q(⋅)(γd) is the set of functions f∈Lp(⋅)(γd) such that
‖‖tk−α∂kPtf∂tk‖q(⋅),μ‖p(⋅),γd<∞, | (4.6) |
the norm of f∈Fαp(⋅),q(⋅)(γd) is defined as
‖f‖Fαp(⋅),q(⋅):=‖f‖p(⋅),γd+‖‖tk−α∂kPtf∂tk‖q(⋅),μ‖p(⋅),γd. | (4.7) |
The following lemma shows that the definition of Fαp(⋅),q(⋅) is independent of the integer k>α chosen and the resulting norms are equivalents.
Lemma 4.3. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q(⋅)∈P0,∞. Let α≥0 and k,l integers greater than α. Then
‖‖tk−α|∂k∂tkPtf|‖q(⋅),μ‖p(⋅),γd<∞ |
if and only if
‖‖tl−α|∂l∂tlPtf|‖q(⋅),μ‖p(⋅),γd<∞. |
Moreover, there exist constants Ak,l,α,p(⋅),Dk,l,α,q(⋅) such that
Dk,l,α,q(⋅)‖‖tl−α|∂l∂tlPtf|‖q(⋅),μ‖p(⋅),γd≤‖‖tk−α|∂k∂tkPtf|‖q(⋅),μ‖p(⋅),γd≤Ak,l,α,p(⋅)‖‖tl−α|∂l∂tlPtf|‖q(⋅),μ‖p(⋅),γd, |
for all f∈Lp(⋅)(γd).
Proof. Suppose without loss of generality that k≥l. Let n∈N such that n>α, we can prove that
|∂n∂tnPtf(x)|≤∫+∞t|∂n+1∂sn+1Psf(x)|ds. |
Then, by the Hardy's inequality (3.7),
‖tn−α|∂n∂tnPtf(x)|‖q(⋅),μ≤‖tn−α∫+∞t|∂n+1∂sn+1Psf(x)|ds‖q(⋅),μ≤Cn,α,q(⋅)‖sn+1−α|∂n+1∂sn+1Psf(x)|‖q(⋅),μ. |
Now, since n>α is arbitrary, by iterating the previous argument k−l times, we obtain
‖tl−α|∂l∂tlPtf(x)|‖q(⋅),μ≤Cl,α,q(⋅)‖tl+1−α|∂l+1∂tl+1Ptf(x)|‖q(⋅),μ≤Cl,α,q(⋅)Cl+1,α,q(⋅)‖tl+2−α|∂l+2∂tl+2Ptf(x)|‖q(⋅),μ⋮≤Ck,l,α,q(⋅)‖tk−α|∂k∂tkPtf(x)|‖q(⋅),μ, |
where Ck,l,α,q(⋅)=Cl,α,q(⋅)Cl+1,α,q(⋅)⋯Ck−1,α,q(⋅). Thus, Dk,l,α,q(⋅)‖‖tl−α|∂l∂tlPtf|‖q(⋅),μ‖p(⋅),γd≤‖‖tk−α|∂k∂tkPtf|‖q(⋅),μ‖p(⋅),γd, with, Dk,l,α,q(⋅)=1/Ck,l,α,q(⋅). The other inequality is obtained from the case k=l+1 by an inductive argument. Let t1,t2>0 and take t=t1+t2, from (4.5) we get
∂ku(x,t)∂tk=∫+∞0Ts(∂lPt2f(x)∂tl2)∂k−l∂tk−l1μ(1/2)t1(ds), |
and since, ∂∂t1μ(1/2)t1(ds)=(t−11−t12s)μ(1/2)t1(ds), we obtain
|∂ku(x,t)∂tk|≤∫+∞0Ts(|∂lPt2f(x)∂tl2|)⋅|(t−11−t12s)|μ(1/2)t1(ds)≤t−11∫+∞0Ts(|∂lPt2f(x)∂tl2|)μ(1/2)t1(ds)+t12∫+∞0Ts(|∂lPt2f(x)∂tl2|)1sμ(1/2)t1(ds). |
Therefore
‖tk−α2|∂ku(x,t)∂tk|‖q(⋅),μ≤‖tk−α2t−11∫+∞0Ts(|∂lPt2f(x)∂tl2|)μ(1/2)t1(ds)‖q(⋅),μ+‖tk−α2t12∫+∞0Ts(|∂lPt2f(x)∂tl2|)1sμ(1/2)t1(ds)‖q(⋅),μ=(I)+(II). |
Now, by using Minkowski's integral inequality twice (2.19) (since Ts is an integral transformation with positive kernel) and the fact that μ(1/2)t1(ds) is a probability measure, we get
(I)=‖tk−α2t−11∫+∞0Ts(|∂lPt2f(x)∂tl2|)μ(1/2)t1(ds)‖q(⋅),μ≤4∫+∞0‖tk−α2t−11Ts(|∂lPt2f(x)∂tl2|)‖q(⋅),μμ(1/2)t1(ds)≤16∫+∞0Ts(‖tk−α2t−11|∂lPt2f(x)∂tl2|‖q(⋅),μ)μ(1/2)t1(ds)≤16T∗(‖tk−α2t−11|∂lPt2f(x)∂tl2|‖q(⋅),μ). |
For (II), we proceed in analogous way, and by using Lemma 2.2 we get
(II)≤162T∗(‖tk−α2t1|∂lPt2f(x)∂tl2|‖q(⋅),μ)∫+∞01sμ(1/2)t1(ds)=8T∗(‖tk−α2t1|∂lPt2f(x)∂tl2|‖q(⋅),μ)C11t21. |
Now, since T∗ is defined as a supremum, we get
(II)≤8C1T∗(‖tk−α2t−11|∂lPt2f(x)∂tl2|‖q(⋅),μ). |
Then, taking t1=t2=t2 and the change of variable s=t2, we have
(I)≤16T∗(‖sl−α|∂lPsf(x)∂sl|‖q(⋅),μ) |
and
(II)≤8C1T∗(‖sl−α|∂lPsf(x)∂sl|‖q(⋅),μ). |
Thus, by the Lp(⋅)(γd)-boundedness of T∗ (see [8]),
‖‖tk−α|∂ku(⋅,t)∂tk|‖q(⋅),μ‖p(⋅),γd≤2k−α16‖T∗(‖sl−α|∂lPsf∂sl|‖q(⋅),μ)‖p(⋅),γd+2k−α8C1‖T∗(‖sl−α|∂lPsf∂sl|‖q(⋅),μ)‖p(⋅),γd≤2k−αCp(⋅)(16+8C1)‖‖sl−α|∂lPsf∂sl|‖q(⋅),μ‖p(⋅),γd. |
Therefore,
‖‖tk−α|∂ku(⋅,t)∂tk|‖q(⋅),μ‖p(⋅),γd≤Cp(⋅),k,α‖‖sl−α|∂lPsf∂sl|‖q(⋅),μ‖p(⋅),γd. |
Next, we need a technical result for the Lp(⋅)(γd)-norms of the derivatives of the Poisson-Hermite semigroup:
Lemma 4.4. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd). Suppose that f∈Lp(⋅)(γd), then for any integer k, ‖∂k∂tkPtf‖p(⋅),γd≤Cp(⋅)‖∂k∂skPsf‖p(⋅),γd, for whatever 0<s≤t<+∞. Moreover,
‖∂k∂tkPtf‖p(⋅),γd≤Ck,p(⋅)tk‖f‖p(⋅),γd,t>0. | (4.8) |
Proof. First, let us consider the case k=0. Fixed t1,t2>0, by using the semigroup property of {Pt}, we get
Pt1+t2f(x)=Pt1(Pt2f(x)). |
Thus, by the Lp(⋅)-boundedness of {Pt} (see [8]),
‖Pt1+t2f‖p(⋅),γd≤Cp(⋅)‖Pt2f‖p(⋅),γd. |
In order to prove the general case, k>0, using the dominated convergence theorem and differentiating the identity u(x,t1+t2)=Pt1(u(x,t2)) k-times with respect to t2, we obtain
∂ku(x,t1+t2)∂(t1+t2)k=Pt1(∂ku(x,t2)∂tk2), |
and then we proceed as in the previous argument.
Finally, to prove (4.8), we use again the representation (2.6) of the Poisson-Hermite semigroup and differentiating k-times with respect to t, we get
∂k∂tku(x,t)=∫+∞0Tsf(x)∂k∂tkμ(1/2)t(ds). |
Thus, by the Minkowski's integral inequality, the Lp(⋅)-boundedness of the Ornstein-Uhlenbeck semigroup (see [8]) and the Corollary 2.1,
‖∂ku(⋅,t)∂tk‖p(⋅),γd≤4∫+∞0‖Tsf∂kμ(1/2)t∂tk(ds)‖p(⋅),γd=4∫+∞0‖Tsf‖p(⋅),γd|∂kμ(1/2)t∂tk(ds)|≤4Cp(⋅)‖f‖p(⋅),γd∫+∞0|∂kμ(1/2)t∂tk(ds)|≤Ck,p(⋅)tk‖f‖p(⋅),γd. |
Hence, ‖∂ku(⋅,t)∂tk‖p(⋅),γd≤Ck,p(⋅)tk‖f‖p(⋅),γd, t>0.
Now, let us study some inclusion relations between variable Gaussian Besov-Lipschitz spaces. The next result is analogous to Proposition 10, page 153 in [12] (see also [10] or Proposition 7.36 in [16]).
Proposition 4.1. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q1(⋅),q2(⋅)∈P0,∞. The inclusion Bα1p(⋅),q1(⋅)(γd)⊂Bα2p(⋅),q2(⋅)(γd) holds i.e. ‖f‖Bα2p(⋅),q2(⋅)(γd)≤C‖f‖Bα1p(⋅),q1(⋅)(γd) if:
i) α1>α2>0 (q1(⋅) and q2(⋅) not need to be related), or
ii) If α1=α2 and q1(t)≤q2(t)a.e.
Proof. To prove part ii), let us take α the common value of α1 and α2.
Let f∈Bαp(⋅),q1(⋅) and set A=‖tk−α‖∂kPtf∂tk‖p(⋅),γd‖q1(⋅),μ.
Fixed t0>0,
‖χ[t02,t0]tk−α‖∂kPtf∂tk‖p(⋅),γd‖q1(⋅),μ≤A. |
However, by Lemma 4.4,
‖∂kPt0f∂tk0‖p(⋅),γd≤Cp(⋅)‖∂kPtf∂tk‖p(⋅),γd,t∈[t02,t0]. |
Thus, we obtain
‖∂kPt0f∂tk0‖p(⋅),γd‖χ[t02,t0]tk−α‖q1(⋅),μ≤Cp(⋅)‖χ[t02,t0]tk−α‖∂kPtf∂tk‖p(⋅),γd‖q1(⋅),μ≤Cp(⋅)A. |
Therefore,
(t02)k−α‖∂kPt0f∂tk0‖p(⋅),γd‖χ[t02,t0]‖q1(⋅),μ≤‖∂kPt0f∂tk0‖p(⋅),γd‖χ[t02,t0]tk−α‖q1(⋅),μ≤Cp(⋅)A, |
and by Lemma 3.1
(t02)k−α‖∂kPt0f∂tk0‖p(⋅),γd(ln2)1/q−1≤(t02)k−α‖∂kPt0f∂tk0‖p(⋅),γd‖χ[t02,t0]‖q1(⋅),μ≤Cp(⋅)A. |
Then,
‖∂kPt0f∂tk0‖p(⋅),γd≤Cp(⋅)2k−α(ln2)1/q−1At−k+α0, |
and since t0 is arbitrary
‖∂kPtf∂tk‖p(⋅),γd≤Ck,α,p(⋅)q1(⋅)At−k+α, for all t>0. |
In other words, f∈Bαp(⋅),q1(⋅) implies that f∈Bαp(⋅),∞.
Now, let us take g(t)=tk−α‖∂kPtf∂tk‖p(⋅),γd, then ρq1(⋅),μ(g)<∞, since f∈Bαp(⋅),q1(⋅).
Thus, as q2(t)≥q1(t)a.e.,
ρq2(⋅),μ(g)=∫+∞0(tk−α‖∂kPtf∂tk‖p(⋅),γd)q2(t)dtt=∫+∞0(tk−α‖∂kPtf∂tk‖p(⋅),γd)q2(t)−q1(t)(tk−α‖∂kPtf∂tk‖p(⋅),γd)q1(t)dtt≤(Ck,α,p(⋅)q1(⋅)A)q+2−q−1∫+∞0(tk−α‖∂kPtf∂tk‖p(⋅),γd)q1(t)dtt=(Ck,α,p(⋅)q1(⋅)A)q+2−q−1ρq1(⋅),μ(g)<+∞. |
Hence, f∈Bαp(⋅),q2(⋅).
In order to prove part i), by Lemma 4.4, we obtain
‖∂kPtf∂tk‖p(⋅),γd≤Ck,p(⋅)‖f‖p(⋅),γdt−k,t>0. |
Now, given f∈Bα1p(⋅),q1(⋅), again by setting
A=‖tk−α1‖∂kPtf∂tk‖p(⋅),γd‖q1(⋅),μ, |
we obtain, as in part ii),
‖∂kPtf∂tk‖p(⋅),γd≤Ck,α1,p(⋅)q1(⋅)At−k+α1, for all t>0. |
Therefore,
‖tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ≤‖χ(0,1]tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ+‖χ(1,∞)tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ=(I)+(II). |
Now, again by Lemma 3.1 we get,
(I)=‖χ(0,1]tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ≤‖χ(0,1]tk−α2Ck,α1,p(⋅)q1(⋅)At−k+α1‖q2(⋅),μ=Ck,α1,p(⋅)q1(⋅)A‖χ(0,1]tα1−α2‖q2(⋅),μ<∞, |
and also by Lemma 3.1,
(II)=‖χ(1,∞)tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ≤‖χ(1,∞)tk−α2Ck,p(⋅)t−k‖q2(⋅),μ=Ck,p(⋅)‖χ(1,∞)t−α2‖q2(⋅),μ<∞. |
Hence, ‖tk−α2‖∂kPtf∂tk‖p(⋅),γd‖q2(⋅),μ<+∞, and then f∈Bα2p(⋅),q2(⋅).
Remark 4.2. Variable Gaussian Besov-Lipschitz and variable Gaussian Triebel-Lizorkin spaces are, by construction, subspaces of Lp(⋅)(γd). Moreover, since trivially ‖f‖p(⋅),γd≤‖f‖Bαp(⋅),q(⋅) and ‖f‖p(⋅),γd≤‖f‖Fαp(⋅),q(⋅), the inclusions are continuous.
On the other hand, from (2.9) it is clear that for all t>0 and k∈N,
∂k∂tkPthβ(x)=(−1)k|β|k/2e−t√|β|hβ(x), |
and again by Lemma 3.1,
‖tk−α‖∂k∂tkPthβ‖p(⋅),γd‖q(⋅),μ=‖tk−α‖(−|β|1/2)ke−t√|β|hβ‖p(⋅),γd‖q(⋅),μ=|β|k/2‖hβ‖p(⋅),γd‖tk−αe−t√|β|‖q(⋅),μ=Ck,α,β,q(⋅)‖hβ‖p(⋅),γd<∞. |
Thus, hβ∈Bαp(⋅),q(⋅)(γd) and
‖hβ‖Bαp(⋅),q(⋅)=(1+Ck,α,β,q(⋅))‖hβ‖p(⋅),γd. |
In a similar way, hβ∈Fαp(⋅),q(⋅)(γd) and
‖hβ‖Fαp(⋅),q(⋅)=‖hβ‖p(⋅),γd+‖‖tk−α|∂k∂tkPthβ|‖q(⋅),μ‖p(⋅),γd=‖hβ‖p(⋅),γd+|β|k/2‖tk−αe−t√|β|‖q(⋅),μ‖hβ‖p(⋅),γd=(1+Ck,α,β,q(⋅))‖hβ‖p(⋅),γd=‖hβ‖Bαp(⋅),q(⋅). |
Hence, the set of all polynomials P is contained in Bαp(⋅),q(⋅)(γd) and in Fαp(⋅),q(⋅)(γd).
Also, we have an inclusion result for variable Gaussian Triebel-Lizorkin spaces, which is analogous to Proposition 4.1, see also [10] or Proposition 7.40 in [16].
Proposition 4.2. Let p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q1(⋅),q2(⋅)∈P0,∞. The inclusion
Fα1p(⋅),q1(⋅)(γd)⊂Fα2p(⋅),q2(⋅)(γd) holds i.e., ‖f‖Fα2p(⋅),q2(⋅)(γd)≤C‖f‖Fα1p(⋅),q1(⋅)(γd),
for α1>α2>0 and q1(t)>q2(t)a.e.
Proof. Let us consider f∈Fα1p(⋅),q1(⋅), then
‖tk−α2|∂kPtf(x)∂tk|‖q2(⋅),μ≤‖tk−α2|∂kPtf(x)∂tk|χ(0,1]‖q2(⋅),μ+‖tk−α2|∂kPtf(x)∂tk|χ(1,∞)‖q2(⋅),μ=(I)+(II). |
Now, since q1(t)>q2(t)a.e., by taking r(t)=q1(t)q2(t)q1(t)−q2(t), we obtain that r(⋅)≥1a.e. and 1r(⋅)+1q1(⋅)=1q2(⋅). Thus, by Hölder's inequality (2.18) and Lemma 3.1
(I)=‖tα1−α2χ(0,1]tk−α1|∂kPtf(x)∂tk|‖q2(⋅),μ≤2‖tα1−α2χ(0,1]‖r(⋅),μ‖tk−α1|∂kPtf(x)∂tk|‖q1(⋅),μ=Cα1,α2,q1(⋅),q2(⋅)‖tk−α1|∂kPtf(x)∂tk|‖q1(⋅),μ. |
Now, for the second term (II), by using Lemmas 3.1 and 2.3, we get
(II)=‖tk−α2|∂kPtf(x)∂tk|χ(1,∞)‖q2(⋅),μ≤CkT∗f(x)‖χ(1,∞)tk−α2t−k‖q2(⋅),μ=CkT∗f(x)‖χ(1,∞)t−α2‖q2(⋅),μ=Ck,α2,q2(⋅)T∗f(x). |
Then, by using the Lp(⋅)(γd) boundedness of T∗ (see [8]),
‖‖tk−α2|∂kPtf∂tk|‖q2(⋅),μ‖p(⋅),γd≤Cα1,α2,q1(⋅),q2(⋅)‖‖tk−α1|∂kPtf∂tk|‖q1(⋅),μ‖p(⋅),γd+Ck,α2,q2(⋅)‖T∗f‖p(⋅),γd≤Cα1,α2,q1(⋅),q2(⋅)‖‖tk−α1|∂kPtf∂tk|‖q1(⋅),μ‖p(⋅),γd+Ck,α2,p(⋅),q2(⋅)‖f‖p(⋅),γd<+∞. |
Therefore, f∈Fα2p(⋅),q2(⋅).
Finally, we are going to consider some interpolation results for the Gaussian variable Besov-Lipschitz and the variable Triebel-Lizorkin spaces. We will use the following results for general variable Lebesgue spaces Lp(⋅)(X,ν).
Lemma 4.5. Let p(⋅)∈P(Ω,ν) and s>0 such that sp−≥1. Then
‖|f|s‖p(⋅),ν=‖f‖ssp(⋅),ν.
Proof. It is the same proof of Lemma 3.2.6 in [4].
Lemma 4.6. Let ν a complete σ-finite measure on X. rj(⋅)∈P(X,ν), 1<r−j,r+j<∞, j=0,1. For all 0<λ<1, if f∈Lrj(⋅)(X,ν), j=0,1 then f∈Lr(⋅)(X,ν) where 1r(y)=1−λr0(y)+λr1(y), a.e. y∈X and
‖f‖r(⋅),ν≤2‖f‖1−λr0(⋅),ν‖f‖λr1(⋅),ν. | (4.9) |
Proof. It is a consequence of Hölder's inequality (2.18) and Lemma 4.5.
Now, we present the interpolation result.
Theorem 4.1. Let pj(⋅)∈P(Rd,γd), qj∈P(R+,μ), with j=0,1. Suppose that 1<p−j,q−j, p+j,q+j<+∞ and αj≥0. For all 0<θ<1, let us take
α=α0(1−θ)+α1θ, |
1p(x)=1−θp0(x)+θp1(x),a.e.x∈Rd, |
and1q(t)=1−θq0(t)+θq1(t),a.e.t∈R+. |
i) if f∈Bαjpj(⋅),qj(⋅)(γd), j=0,1, then f∈Bαp(⋅),q(⋅)(γd).
ii) if f∈Fαjpj(⋅),qj(⋅)(γd), j=0,1, then f∈Fαp(⋅),q(⋅)(γd).
Proof. i) Let k be any integer greater than α0 and α1, by using Lemma 4.6, we obtain for α=α0(1−θ)+α1θ,
‖tk−α‖∂kPtf∂tk‖p(⋅),γd‖q(⋅),μ |
≤‖tk−(α0(1−θ)+α1θ)2‖∂kPtf∂tk‖1−θp0(⋅),γd‖∂kPtf∂tk‖θp1(⋅),γd‖q(⋅),μ=2‖t(1−θ)(k−α0)+θ(k−α1)‖∂kPtf∂tk‖1−θp0(⋅),γd‖∂kPtf∂tk‖θp1(⋅),γd‖q(⋅),μ=2‖(tk−α0‖∂kPtf∂tk‖p0(⋅),γd)1−θ(tk−α1‖∂kPtf∂tk‖p1(⋅),γd)θ‖q(⋅),μ. |
Thus, by Hölder's inequality (2.18) and Lemma 4.5,
‖tk−α‖∂kPtf∂tk‖p(⋅),γd‖q(⋅),μ≤4‖tk−α0‖∂kPtf∂tk‖p0(⋅),γd‖1−θq0(⋅),μ‖tk−α1‖∂kPtf∂tk‖p1(⋅),γd‖θq1(⋅),μ<+∞, |
that is, f∈Bαp(⋅),q(⋅)(γd).
ii) Analogously, by Hölder's inequality (2.18) and Lemma 4.5, we obtain for α=α0(1−θ)+α1θ,
‖tk−α|∂kPtf(x)∂tk|‖q(⋅),μ=‖(tk−α0|∂kPtf(x)∂tk|)1−θ(tk−α1|∂kPtf(x)∂tk|)θ‖q(⋅),μ≤2‖tk−α0|∂kPtf(x)∂tk|‖1−θq0(⋅),μ‖tk−α1|∂kPtf(x)∂tk|‖θq1(⋅),μ, a.e.\quad x\in \mathbb{R}^{d}. |
Therefore
‖‖tk−α|∂kPtf∂tk|‖q(⋅),μ‖p(⋅),γd≤2‖‖tk−α0|∂kPtf∂tk|‖1−θq0(⋅),μ‖tk−α1|∂kPtf∂tk|‖θq1(⋅),μ‖p(⋅),γd, |
and again by Hölder's inequality and Lemma 4.5,
‖‖tk−α|∂kPtf∂tk|‖q(⋅),μ‖p(⋅),γd≤4‖‖tk−α0|∂kPtf∂tk|‖q0(⋅),μ‖1−θp0(⋅),γd‖‖tk−α1|∂kPtf∂tk|‖q1(⋅),μ‖θp1(⋅),γd<+∞, |
that is, f∈Fαp(⋅),q(⋅)(γd).
In a forthcoming paper [9], we establish boundedness properties on Bαp(⋅),q(⋅)(γd) for some operators associated with the Gaussian measure, such as Riesz Potentials, Bessel Potentials and Bessel Fractional Derivatives.
i) Lemmas 4.1–4.3 showed that the definitions of Bαp(⋅),q(⋅)(γd) and Fαp(⋅),q(⋅)(γd) are independent of the integer k greater than α considered and the corresponding norms are equivalent.
ii) Lemma 3.1 was the key in the proof of Proposition 4.1.
iii) The boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup T∗ on Lp(⋅)(γd) (see [8]) was crucial in the proof of Lemma 4.4 and Proposition 4.2.
iv) The structure and properties of the Besov-Lipschitz and Triebel-Lizokin Gaussian spaces are preserved when we go from constant exponent to variable exponent setting if the exponent functions p(⋅), q(⋅) satisfy the regularity conditions p(⋅)∈P∞γd(Rd)∩LH0(Rd) and q(⋅)∈P0,∞.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors like to thank the referees for their useful remarks and corrections that improved the presentation of the paper.
Also we like to thank Professor Elvis Aponte for his carefully reading and corrections of the manuscript.
The authors declare no conflict of interest.
[1] |
R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017
![]() |
[2] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, Basel, 2013. |
[3] |
E. Dalmasso, R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integr. Transf. Spec. F., 28 (2017), 403–420. https://doi.org/10.1080/10652469.2017.1296835 doi: 10.1080/10652469.2017.1296835
![]() |
[4] | L. Diening, P. Harjulehto, P. Hästö, M. R˙užička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2017 (2011). |
[5] | L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 10 (2007). |
[6] | D. Drihem, Variable Triebel-Lizorkin-type spaces, B. Malays. Math. Sci. Soc. 43 (2020), 1817–1856. https://doi.org/10.1007/s40840-019-00776-y |
[7] | A. E. Gatto, E. Pineda, W. Urbina, Riesz potentials, Bessel potentials and fractional derivatives on Besov-Lipschitz spaces for the Gaussian measure, Recent Advances and Harmonic Analysis and Applications, Springer Proceedings in Mathematics and Statistics, Springer, New York, 25 (2013), 105–130. |
[8] |
J. Moreno, E. Pineda, W. Urbina, Boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences, Rev. Colomb. Mat., 55 (2021), 21–41. https://doi.org/10.15446/recolma.v55n1.99097 doi: 10.15446/recolma.v55n1.99097
![]() |
[9] | E. Pineda, L. Rodriguez, W. Urbina, Boundedness of Gaussian Bessel potentials and Bessel fractional derivatives on variable Gaussian Besov-Lipschitz spaces, arXiv: 2205.11752, 2022. https://doi.org/10.48550/arXiv.2205.11752 |
[10] |
E. Pineda, W. Urbina, Some results on Gaussian Besov-Lipschitz and Gaussian Triebel-Lizorkin spaces, J. Approx. Theor., 161 (2009), 529–564. https://doi.org/10.1016/j.jat.2008.11.010 doi: 10.1016/j.jat.2008.11.010
![]() |
[11] | M. R˙užička, Electrorheological fluids: Motheling and mathematical theory, Lecture Notes in Mathematics, Springer, Verlag, Berlin, 1748 (2011). |
[12] | E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. Princeton, New Jersey, 1970. |
[13] |
Q. Sun, C. Zhuo, Extension of variable Triebel-Lizorkin-type space on domains, B. Malay. Math. Sci. Soc., 45 (2022), 201–216. https://doi.org/10.1007/s40840-021-01177-w doi: 10.1007/s40840-021-01177-w
![]() |
[14] | H. Triebel, Theory of function spaces, Birkhäuser Verlag, Basel, 1983. |
[15] | H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel, 1992. |
[16] | W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer Verlag, Switzerland AG, 2019. |
[17] |
J. Xu, The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 19 (2008), 599–605. https://doi.org/10.1080/10652460802030631 doi: 10.1080/10652460802030631
![]() |
[18] | J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 511–522. |
[19] | J. Xu, X. Yang, The Buω type Morrey-Triebel-Lizorkin spaces with variable smoothness and integrability, Nonlinear Anal., 202 (2021), 112098. |
[20] |
J. Xu, X. Yang, Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 25 (2018), 135–148. https://doi.org/10.1515/gmj-2016-0087 doi: 10.1515/gmj-2016-0087
![]() |
[21] |
D. Yang, C. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840–1898. https://doi.org/10.1016/j.jfa.2015.05.016 doi: 10.1016/j.jfa.2015.05.016
![]() |
[22] |
D. Yang, C. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146–202. https://doi.org/10.15352/bjma/09-4-9 doi: 10.15352/bjma/09-4-9
![]() |
[23] | V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987). https://doi.org/10.1070/IM1987v029n01ABEH000958 |