Research article Special Issues

Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure

  • In this paper, we introduce variable Gaussian Besov-Lipschitz Bαp(),q()(γd) and Triebel-Lizorkin spaces Fαp(),q()(γd), i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents p() and q(), under certain regularity conditions on the functions p() and q(). The condition on p() is associated with the Gaussian measure and was introduced in [3]. Trivially, they include the Gaussian Besov-Lipschitz Bαp,q(γd) and Triebel-Lizorkin spaces Fαp,q(γd) for p,q constants, which were introduced and studied in [10]. We consider some inclusion relations of those spaces and finally prove some interpolation results for them.

    Citation: Ebner Pineda, Luz Rodriguez, Wilfredo Urbina. Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure[J]. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388

    Related Papers:

    [1] Ebner Pineda, Luz Rodriguez, Wilfredo Urbina . Boundedness of Gaussian Bessel potentials and fractional derivatives on variable Gaussian Besov$ - $Lipschitz spaces. AIMS Mathematics, 2025, 10(1): 1026-1042. doi: 10.3934/math.2025049
    [2] Xiaochun Sun, Yulian Wu, Gaoting Xu . Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385
    [3] Carlos F. Álvarez, Javier Henríquez-Amador, John Millán G., Eiver Rodríguez . On the composition operator with variable integrability. AIMS Mathematics, 2025, 10(2): 2021-2041. doi: 10.3934/math.2025095
    [4] Yanqi Yang, Shuangping Tao, Guanghui Lu . Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333
    [5] Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810
    [6] Huiming Zhang, Hengzhen Huang . Concentration for multiplier empirical processes with dependent weights. AIMS Mathematics, 2023, 8(12): 28738-28752. doi: 10.3934/math.20231471
    [7] Chenchen Lu, Lin Chen, Shaoyong Lai . Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059
    [8] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [9] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [10] Tao Ma, Jianzhong Lu, Xia Wu . Martingale transforms in martingale Hardy spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 22041-22056. doi: 10.3934/math.20241071
  • In this paper, we introduce variable Gaussian Besov-Lipschitz Bαp(),q()(γd) and Triebel-Lizorkin spaces Fαp(),q()(γd), i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents p() and q(), under certain regularity conditions on the functions p() and q(). The condition on p() is associated with the Gaussian measure and was introduced in [3]. Trivially, they include the Gaussian Besov-Lipschitz Bαp,q(γd) and Triebel-Lizorkin spaces Fαp,q(γd) for p,q constants, which were introduced and studied in [10]. We consider some inclusion relations of those spaces and finally prove some interpolation results for them.



    Gaussian harmonic analysis is basically the study of the notions of classical harmonic analysis (such as semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, Spectral multipliers, fractional integral and derivatives, singular integrals, etc.), which are formulated in the Lebesgue measure space (Rd,B(Rd),dx), in the probability space (Rd,B(Rd),γd(dx)), where γd(dx)=ex2πd/2dx,xRd, is the Gaussian probability measure in Rd.

    A second component of classical harmonic analysis is the Laplace operator, Δx=dk=12x2k.

    In Gaussian harmonic analysis is the Ornstein-Uhlenbeck second order differential operator, L=12xx,x, where x=(x1,x2,,xd).

    A third component of Gaussian harmonic analysis are the Hermite polynomials that are orthogonal with respect to the Gaussian measure and are eigenfunctions of the Ornstein-Uhlenbeck operator L.

    Some differences between classical and Gaussian harmonic analysis, are: Lebesgue measure is a doubling, translation invariant measure. Semigroups asociated to Lebesgue measure are convolution semigroups. Gaussian measure does not satisfy any of these properties, which makes many of the proofs are completely different from the classical case. For a detailed study, see [16].

    The structure and properties of general Lipschitz spaces in the classical case (with respect to the Lebesgue measure in Rd) were studied in [12,14,15]. In analogous way, for α>0 and 1p,q, in [10,16], were introduced and studied the structure of Besov-Lipschitz Bαp,q(γd) and Triebel-Lizorkin Fαp,q(γd) spaces, with respect to the Gaussian measure γd in Rd, that is, for expansions on Hermite polynomials. In particular, for α=0,q=2, F0p,2(γd)=Lp(γd) (Gaussian Lebesgue spaces) and for p,q=, Bα,(γd)=Lipα(γd) (Gaussian Lipschitz spaces) [16], i.e., these spaces generalize known spaces. All of this, in the constant exponent setting.

    Lebesgue spaces with variable exponents have been widely studied in the last three decades, see [2] or [4]. These spaces arose for a purely theoretical interest, although a short time later applications began to emerge, [23]. Also, recent research has been stimulated by applications in various problems, for example, elasticity theory and fluid mechanics, where electrorheological fluids are of special interest, see [1,11]. All of the above motivates us to define more general variable exponent spaces.

    In this paper, following [10] or [16] and replacing the constants p and q by measurable functions p(),q() taking values in [1,] and satisfying suitable regularity conditions, we define and study the structure of Besov-Lipschitz spaces Bαp(),q()(γd) and Triebel-Lizorkin spaces Fαp(),q()(γd) with variable exponents respect to the Gaussian measure, generalizing some of the results in [10,16] such as inclusion relations of those spaces and interpolation results for them. Therefore, for the study of variable exponent spaces, Bαp(),q()(γd) and Fαp(),q()(γd), we present four sections:

    ● In section 2, we give the preliminaries in the Gaussian setting and some background on variable spaces with respect to a Borel measure μ.

    ● In section 3, we obtain some technical results for the Haar measure on R+ that will be key in the proof of the main results.

    ● In section 4, we define and study the structure of the spaces Bαp(),q()(γd) and Fαp(),q()(γd).

    ● In section 5, we give some conclusions.

    Finally, there are some important references on variable Besov and Triebel-Lizorkin spaces in the context of Lebesgue measure, for example, [6,13,17,18,19,20,21,22].

    On the other hand, based on the results of this work, we can now study the boundedness of Riesz Potentials, Bessel Potentials and Bessel Fractional Derivatives on Bαp(),q()(γd) and Fαp(),q()(γd), in order to generalize the ones presented in [7].

    Let us consider the Gaussian measure

    γd(dx)=ex2πd/2dx,xRd (2.1)

    on Rd and the Ornstein-Uhlenbeck differential operator

    L=12xx,x. (2.2)

    Let ν=(ν1,...,νd) be a multi-index such that νi0,i=1,,d, let ν!=di=1νi!, |ν|=di=1νi, i=xi, for each 1id and ν=ν11...νdd.

    Consider the normalized Hermite polynomials of order ν in d variables,

    hν(x)=1(2|ν|ν!)1/2di=1(1)νiex2iνii(ex2i). (2.3)

    The Ornstein-Uhlenbeck semigroup on Rd is defined by

    Ttf(x)=1(1e2t)d/2Rdee2t(|x|2+|y|2)2etx,y1e2tf(y)γd(dy).

    Using the Bochner subordination formula

    eλ=1π0euueλ2/4udu, (2.4)

    we introduce the Poisson-Hermite semigroup by

    Ptf(x)=1π0euuTt2/4uf(x)du. (2.5)

    Now, taking the change of variables s=t24u, Ptf(x) can be written as

    Ptf(x)=0Tsf(x)μ(1/2)t(ds), (2.6)

    where μ(1/2)t(ds)=t2πet2/4ss3/2ds, is the one-sided stable measure on (0,) of order 1/2, it is easy to see that μ(1/2)t is a probability measure on (0,).

    It is well known, that Hermite polynomials are eigenfunctions of the operator L,

    Lhν(x)=|ν|hν(x). (2.7)

    In consequence

    Tthν(x)=et|ν|hν(x), (2.8)

    and

    Pthν(x)=et|ν|hν(x), (2.9)

    i.e., Hermite polynomials are also eigenfunctions of Tt and Pt for any t0, for more details, see [16].

    Next, we present some technical results for the measure μ(1/2)t needed in what follows.

    As μ(1/2)t(ds)=t2πet2/4ss3/2ds=g(t,s)ds, for any kN, we use the notation ktkμ(1/2)t(ds) for

    ktkμ(1/2)t(ds):=kg(t,s)tkds. (2.10)

    Lemma 2.1. Given kN,

    kμ(1/2)ttk(ds)=(i,jai,jtisj)μ(1/2)t(ds), (2.11)

    where {ai,j} is a finite set of constants and the indexes iZ, jN verifies the equation 2ji=k.

    Lemma 2.2. Given kN and t>0,

    +01skμ(1/2)t(ds)=Ckt2k,where  Ck=22kΓ(k+12)π12. (2.12)

    Corollary 2.1. Given kN and t>0,

    +0|kμ(1/2)ttk|(ds)Cktk. (2.13)

    On the other hand, by considering the maximal function of the Ornstein-Uhlenbeck semigroup

    Tf(x)=supt>0|Ttf(x)|,

    we obtain:

    Lemma 2.3. Let fL1(γd),xRd and kN

    |kPtf(x)tk|CkTf(x)tk,t>0. (2.14)

    For the proofs of the previous technical results, see [10] or [16].

    Now, for completeness, we need some background on variable Lebesgue spaces with respect to a Borel measure μ. A μ-measurable function p():ΩRd[1,] is said to be an exponent function. The set of all the exponent functions will be denoted by P(Ω,μ). For EΩ, we set p(E)=essinfxEp(x),p+(E)=esssupxEp(x) and Ω={xΩ:p(x)=}.

    Also, we use the abbreviations p+=p+(Ω) and p=p(Ω).

    Definition 2.1. Let ERd and p():ER a function. We say that:

    i) p() is locally log-Hölder continuous, denote by p()LH0(E), if there exists a constant C1>0 such that

    |p(x)p(y)|C1log(e+1xy)

    for all x,yE.

    ii) p() is log-Hölder continuous at infinity with base point at x0Rd, and denote this by p()LH(E), if there exist constants pR and C2>0 such that

    |p(x)p|C2log(e+xx0)

    for all xE.

    iii) p() is log-Hölder continuous, and denote this by p()LH(E) if both conditions i) and ii) are satisfied.

    The maximum, max{C1,C2} is called the log-Hölder constant of p().

    Definition 2.2. Let ERd, p()Plogd(E), if 1p() is log-Hölder continuous and denote by Clog(p) or Clog the log-Hölder constant of 1p().

    Definition 2.3. Let ΩRd and p()P(Ω,μ). For a μ-measurable function f:Ω¯R, we define the modular ρp(),μ as

    ρp(),μ(f)=ΩΩ|f(x)|p(x)μ(dx)+fL(Ω,μ), (2.15)

    and the norm

    fLp()(Ω,μ)=inf{λ>0:ρp(),μ(f/λ)1}. (2.16)

    Definition 2.4. The variable exponent Lebesgue space on ΩRd, Lp()(Ω,μ) consists on those μ_measurable functions f for which there exists λ>0 such that ρp(),μ(fλ)<, i.e.,

    Lp()(Ω,μ)={f:Ω¯R:fis  measurable  andρp(),μ(fλ)<,for  someλ>0}.

    Remark 2.1. When μ is the Lebesgue measure, we write ρp() and fp() instead of ρp(),μ and fp(),μ.

    Theorem 2.1. (Norm conjugate formula) Let ν a complete, σ-finite measure on Ω and p()P(Ω,ν), then

    12fp(),νfp(),ν2fp(),ν, (2.17)

    for all f ν-measurable on Ω, where

    fp(),ν=sup{Ω|f||g|dν:gLp()(Ω,ν),gp(),ν1}.

    Proof. See Corollary 3.2.14 in [4].

    Theorem 2.2. (Hölder's inequality) Let ν a complete, σ-finite measure on Ω and r(),q()P(Ω,ν). Define p()P(Ω,ν) by 1p(x)=1q(x)+1r(x),a.e.

    Then for all fLq()(Ω,ν) and gLr()(Ω,ν), fgLp()(Ω,ν) and

    fgp(),ν2fq(),νgr(),ν. (2.18)

    Proof. See Lemma 3.2.20 in [4].

    Theorem 2.3. (Minkowski's integral inequality for variable Lebesgue spaces) Given μ and ν complete σ-finite measures on X and Y respectively, pP(X,μ). Let f:X×Y¯R measurable with respect to the product measure on X×Y, such that for almost every yY, f(,y)Lp()(X,μ). Then

    Yf(,y)dν(y)p(),μ4Yf(,y)p(),μdν(y). (2.19)

    Proof. It is completely analogous to the proof of Corollary 2.38 in [2] by interchanging the Lebesgue measure for complete σ-finite measures μ and ν on X and Y respectively, and by using (2.18), Fubini's theorem and then (2.17).

    In the rest of the paper μ represents the Haar measure μ(dt)=dtt on R+.

    In this section we present some technical results regarding the Haar measure that will be key to the main results.

    Remark 3.1. For a μ-measurable function f:R+¯R, q()P(R+,μ), and any λ>0:

    ρq(),μ(fλ)=0|f(t)λ|q(t)μ(dt)=0|t1/q(t)f(t)λ|q(t)dt=ρq()(t1/q()fλ).

    Thus,

    fq(),μ=t1/q()fq(). (3.1)

    Next, we present a technical result for the Haar measure μ.

    Lemma 3.1. Let q()P(R+,μ) and α,β>0

    i) If q+<, then tαetβq(),μ<.

    ii) tαχ(0,1]q(),μ<.

    iii) tαχ(1,)q(),μ<.

    iv) For any t0>0,(ln2)1qχ[t0/2,t0]q(),μ1.

    Proof. Let us prove i). Set f(t)=tαetβ,

    ρq(),μ(f)=0|f(t)|q(t)μ(dt)=10|tαetβ|q(t)dtt+1|tαetβ|q(t)dtt.

    Now,

    10|tαetβ|q(t)dtt=10tαq(t)1etβq(t)dt10tα1dt<,

    since α,β>0 and 0t1. On the other hand, by making the change of variables u=tβq

    1|tαetβ|q(t)dtt=1tαq(t)etβq(t)dtt1tαq+etβqdtt0tαq+etβqdtt=0(uβq)αq+euduu=1(βq)αq+0uαq+1eudu=1(βq)αq+Γ(αq+)<, since α,β>0 and q+<.

    Thus, ρq(),μ(f)<, and therefore tαetβq(),μ<. The proofs of ii) and iii) are immediate.

    Now, in order to prove iv), set g=χ[t0/2,t0],

    ρq(),μ(g)=0|g(t)|q(t)μ(dt)=t0t0/2dtt=ln2<1.

    Then, λ1 implies ρq(),μ(gλ)ρq(),μ(g)1. Thus, gq(),μ1.

    On the other hand, taking 0<λ<1

    ρq(),μ(gλ)=t0t0/2λq(t)dttt0t0/2λqdtt=λq(ln2).

    So, λ<(ln2)1/q implies ρq(),μ(gλ)>1. Thus, ρq(),μ(gλ)1 implies λ(ln2)1/q.

    Therefore, gq(),μ(ln2)1/q.

    In the case Ω=R+, we denote M0, the set of all measurable functions p():R+R+ which satisfy the following conditions:

    i) 0pp+<.

    ii0) there exists p(0)=limx0p(x) and |p(x)p(0)|Aln(1/x),0<x1/2.

    ii) there exists p()=limxp(x) and |p(x)p()|Aln(x),x>2.

    We denote P0, the subset of functions p() such that p1.

    Let α(),β()LH(R+), bounded with

    α(0)<1p(0),α()<1p() (3.2)

    and

    β(0)>1p(0),β()>1p(). (3.3)

    Theorem 3.1. Let p()P0,, α(),β()LH(R+), bounded. Then Hardy-type inequalities

    xα(x)1x0f(y)yα(y)dyp()Cα(),p()fp() (3.4)

    and

    xβ(x)xf(y)yβ(y)+1dyp()Cβ(),p()fp() (3.5)

    are valid, if and only if, α(),β() satisfy conditions (3.2) and (3.3).

    Proof. For the proof see Theorem 3.1 and Remark 3.2 in [5].

    As a consequence, we obtain the Hardy's inequalities associated to the exponent function q()P0, and the measure μ.

    Corollary 3.1. Let q()P0, and r>0, then

    trt0g(y)dyq(),μCr,q()yr+1gq(),μ,for all   g  such  that  yr+1gLq()(μ) (3.6)

    and

    trtg(y)dyq(),μCr,q()yr+1gq(),μ,for all  g  such  that  yr+1gLq()(μ). (3.7)

    Proof. Let α(t)=r+1q(t)=r+11q(t), for any tR+, f(y)=yα(y)g(y), for any yR+ then α()LH(R+) and bounded, α(0)=r+1q(0)<1q(0) and α()=r+1q()<1q(). Then, using (3.1) and (3.4)

    trt0g(y)dyq(),μ=tr1q(t)t0g(y)dyq()=tα(t)1t0g(y)dyq()Cr,q()yα(y)gq()=Cr,q()yr+11q(y)gq()=Cr,q()yr+1gq(),μ.

    On the other hand, by taking β(t)=r1q(t),f(y)=yβ(y)+1g(y),t,yR+ then β()LH(R+) and the proof of (3.7) is completely analogous.

    In this section we are going to introduce variable Gaussian Besov-Lipschitz spaces and variable Gaussian Triebel-Lizorkin spaces. In what follows we will consider only variable Lebesgue spaces with respect to the Gaussian measure γd. The next condition was introduced by E. Dalmasso and R. Scotto in [3].

    Definition 4.1. Let p()P(Rd,γd), we say that p()Pγd(Rd) if there exist constants Cγd>0 and p1 such that

    |p(x)p|Cγdx2, (4.1)

    for xRd{(0,0,,0)}.

    Example 4.1. Consider p(x)=p+A(e+x)q, xRd, for any p1, A0 and q2. Then p()Pγd(Rd).

    Remark 4.1. It can be proved that if p()Pγd(Rd), then p()LH(Rd).

    In fact, by fixing x0Rd, such that x0=1, we get log(e+xx0)Cx2, for all xRd.

    Lipschitz spaces can be generalized of the following way (see, for example [10,12,14,15]), using the Poisson-Hermite semigroup. We are ready to define variable Gaussian Besov-Lipschitz spaces Bαp(),q()(γd), also called Gaussian Besov-Lipschitz spaces with variable exponents or variable Besov-Lipschitz spaces for expansions in Hermite polinomials.

    Definition 4.2. Let p()Pγd(Rd)LH0(Rd) and q()P0,. Let α0, k the smallest integer greater than α. The variable Gaussian Besov-Lipschitz space Bαp(),q()(γd) is defined as the set of functions fLp()(γd) such that

    tkαkPtftkp(),γdq(),μ<. (4.2)

    The norm of fBαp(),q()(γd) is defined as

    fBαp(),q():=fp(),γd+tkαkPtftkp(),γdq(),μ. (4.3)

    The variable Gaussian Besov-Lipschitz space Bαp(),(γd) is defined as the set of functions fLp()(γd) for which there exists a constant A such that

    kPtftkp(),γdAtk+α

    and then the norm of fBαp(),(γd) is defined as

    fBαp(),:=fp(),γd+Ak(f), (4.4)

    where Ak(f) is the smallest constant A in the above inequality.

    The following lemmas show that we could have replaced k with any other integer l greater than α and the resulting norms are equivalents. Next, we denote u(,t)=Ptf.

    Lemma 4.1. Let p()Pγd(Rd)LH0(Rd), fLp()(γd),α0 and k,l integers greater than α, then

    ku(,t)tkp(),γdAktk+αif and only iflu(,t)tlp(),γdAltl+α.

    Moreover, if Ak(f),Al(f) are the smallest constants in the inequalities above then there exist constants Ak,l,α,p() and Dk,l,α such that

    Ak,l,α,p()Ak(f)Al(f)Dk,l,αAk(f),

    for all fLp()(γd).

    Proof. Let us suppose without loss of generality that kl. We start by proving the direct implication. For this we use the representation of the Poisson-Hermite semigroup (2.6), this is,

    Ptf(x)=+0Tsf(x)μ(1/2)t(ds).

    Then, by differentiating k-times with respect to t and by using the dominated convergence theorem, we get

    kPtf(x)tk=+0Tsf(x)kμ(1/2)ttk(ds).

    By using Lemma 2.3, it's easy to prove that for all mN

    limt+mPtf(x)tm=0,a.e.xRd.

    Now, given nN, n>α

    +tn+1Psf(x)sn+1ds=lims+nPsf(x)sn+nPtf(x)tn=nPtf(x)tn,a.e.xRd.

    Thus, for Minkowski's integral inequality (2.19)

    nu(,t)tnp(),γd4+tn+1u(,s)sn+1p(),γdds4+tAn+1(f)s(n+1)+αds=4An+1(f)nαtn+α.

    Therefore

    An(f)4An+1(f)nα,

    and since n>α is arbitrary, then, by using the above result kl times, we obtain

    Al(f)4Al+1(f)lα42Al+2(f)(lα)(l+1α)...4klAk(f)(lα)(l+1α)...(k1α)=Dk,l,αAk(f).

    To prove the converse implication, we use again the representation (2.6) and we obtain that

    u(x,t1+t2)=Pt1(Pt2f)(x)=+0Ts(Pt2f)(x)μ12t1(ds).

    Thus, taking t=t1+t2 and differentiating l times with respect to t2 and kl times with respect to t1, we get

    ku(x,t)tk=+0Ts(lPt2f(x)tl2)klμ12t1tkl1(ds). (4.5)

    Then, by Corollary 2.1, Minkowski's integral inequality (2.19) and the Lp()-boundedness of the Ornstein-Uhlenbeck semigroup (see [8]), we get

    ku(,t)tkp(),γd4+0Ts(lPt2ftl2)p(),γd|klμ12t1tkl1(ds)|4Cp()lPt2ftl2p(),γd+0|klμ12t1tkl1(ds)|4Cp()ltl2Pt2fp(),γdCkltlk14Cp()Al(f)Ckltl+α2tlk1.

    Therefore, taking t1=t2=t2,

    ku(,t)tkp(),γd4Cp()Al(f)Ckl(t2)k+α.

    Thus, Ak(f)4Cp()Ckl2k+αAl(f).

    Lemma 4.2. Let p()Pγd(Rd)LH0(Rd) and q()P0,. Let α0 and k,l integers greater than α. Then

    tkαku(,t)tkp(),γdq(),μ<

    if and only if

    tlαlu(,t)tlp(),γdq(),μ<.

    Moreover, there exist constants Ak,l,α,p() and Dk,l,α,q() such that

    Dk,l,α,q()tlαlu(,t)tlp(),γdq(),μtkαku(,t)tkp(),γdq(),μAk,l,α,p()tlαlu(,t)tlp(),γdq(),μ,

    for all fLp()(γd).

    Proof. Suppose without loss of generality that kl. We prove first the converse implication; by proceeding as in Lemma 4.1, taking t1=t2=t2, we have

    ku(,t)tkp(),γd4Cp()lPt2ftl2p(),γdCkltlk1=4Cp()Ckl(t2)lklPt2f(t2)lp(),γd.

    Thus

    tkαku(,t)tkp(),γdq(),μ4Cp()Ckl2lktlαlu(,t2)(t2)lp(),γdq(),μ=Ak,l,α,p()slαlu(,s)slp(),γdq(),μ,

    with Ak,l,α,p()=4Cp()Ckl2kα.

    For the direct implication, given nN, n>α, again, as in the above lemma

    nu(,t)tnp(),γd4+tn+1u(,s)sn+1p(),γdds.

    Therefore, from this and by Hardy's inequality (3.7)

    tnαnu(,t)tnp(),γdq(),μ4tnα+tn+1u(,s)sn+1p(),γdq(),μ4Cn,α,q()sn+1αn+1u(,s)sn+1p(),γdq(),μ.

    Now, since n>α is arbitrary, by using the previous result kl times, we obtain

    tlαlu(,t)tlp(),γdq(),μ4Cl,α,q()tl+1αl+1u(,t)tl+1p(),γdq(),μ42Cl,α,q()Cl+1,α,q()tl+2αl+2u(,t)tl+2p(),γdq(),μDk,l,α,q()tkαku(,t)tkp(),γdq(),μ,

    where Dk,l,α,q()=4klCl,α,q()Ck1,α,q().

    Now, we define variable Gaussian Triebel-Lizorkin spaces Fαp(),q()(γd), which represent another way to measure regularity of functions, proceeding as in [10,14,15].

    Definition 4.3. Let p()Pγd(Rd)LH0(Rd) and q()P0,. Let α0 and k the smallest integer greater than α. The variable Gaussian Triebel-Lizorkin space Fαp(),q()(γd) is the set of functions fLp()(γd) such that

    tkαkPtftkq(),μp(),γd<, (4.6)

    the norm of fFαp(),q()(γd) is defined as

    fFαp(),q():=fp(),γd+tkαkPtftkq(),μp(),γd. (4.7)

    The following lemma shows that the definition of Fαp(),q() is independent of the integer k>α chosen and the resulting norms are equivalents.

    Lemma 4.3. Let p()Pγd(Rd)LH0(Rd) and q()P0,. Let α0 and k,l integers greater than α. Then

    tkα|ktkPtf|q(),μp(),γd<

    if and only if

    tlα|ltlPtf|q(),μp(),γd<.

    Moreover, there exist constants Ak,l,α,p(),Dk,l,α,q() such that

    Dk,l,α,q()tlα|ltlPtf|q(),μp(),γdtkα|ktkPtf|q(),μp(),γdAk,l,α,p()tlα|ltlPtf|q(),μp(),γd,

    for all fLp()(γd).

    Proof. Suppose without loss of generality that kl. Let nN such that n>α, we can prove that

    |ntnPtf(x)|+t|n+1sn+1Psf(x)|ds.

    Then, by the Hardy's inequality (3.7),

    tnα|ntnPtf(x)|q(),μtnα+t|n+1sn+1Psf(x)|dsq(),μCn,α,q()sn+1α|n+1sn+1Psf(x)|q(),μ.

    Now, since n>α is arbitrary, by iterating the previous argument kl times, we obtain

    tlα|ltlPtf(x)|q(),μCl,α,q()tl+1α|l+1tl+1Ptf(x)|q(),μCl,α,q()Cl+1,α,q()tl+2α|l+2tl+2Ptf(x)|q(),μCk,l,α,q()tkα|ktkPtf(x)|q(),μ,

    where Ck,l,α,q()=Cl,α,q()Cl+1,α,q()Ck1,α,q(). Thus, Dk,l,α,q()tlα|ltlPtf|q(),μp(),γdtkα|ktkPtf|q(),μp(),γd, with, Dk,l,α,q()=1/Ck,l,α,q(). The other inequality is obtained from the case k=l+1 by an inductive argument. Let t1,t2>0 and take t=t1+t2, from (4.5) we get

    ku(x,t)tk=+0Ts(lPt2f(x)tl2)kltkl1μ(1/2)t1(ds),

    and since, t1μ(1/2)t1(ds)=(t11t12s)μ(1/2)t1(ds), we obtain

    |ku(x,t)tk|+0Ts(|lPt2f(x)tl2|)|(t11t12s)|μ(1/2)t1(ds)t11+0Ts(|lPt2f(x)tl2|)μ(1/2)t1(ds)+t12+0Ts(|lPt2f(x)tl2|)1sμ(1/2)t1(ds).

    Therefore

    tkα2|ku(x,t)tk|q(),μtkα2t11+0Ts(|lPt2f(x)tl2|)μ(1/2)t1(ds)q(),μ+tkα2t12+0Ts(|lPt2f(x)tl2|)1sμ(1/2)t1(ds)q(),μ=(I)+(II).

    Now, by using Minkowski's integral inequality twice (2.19) (since Ts is an integral transformation with positive kernel) and the fact that μ(1/2)t1(ds) is a probability measure, we get

    (I)=tkα2t11+0Ts(|lPt2f(x)tl2|)μ(1/2)t1(ds)q(),μ4+0tkα2t11Ts(|lPt2f(x)tl2|)q(),μμ(1/2)t1(ds)16+0Ts(tkα2t11|lPt2f(x)tl2|q(),μ)μ(1/2)t1(ds)16T(tkα2t11|lPt2f(x)tl2|q(),μ).

    For (II), we proceed in analogous way, and by using Lemma 2.2 we get

    (II)162T(tkα2t1|lPt2f(x)tl2|q(),μ)+01sμ(1/2)t1(ds)=8T(tkα2t1|lPt2f(x)tl2|q(),μ)C11t21.

    Now, since T is defined as a supremum, we get

    (II)8C1T(tkα2t11|lPt2f(x)tl2|q(),μ).

    Then, taking t1=t2=t2 and the change of variable s=t2, we have

    (I)16T(slα|lPsf(x)sl|q(),μ)

    and

    (II)8C1T(slα|lPsf(x)sl|q(),μ).

    Thus, by the Lp()(γd)-boundedness of T (see [8]),

    tkα|ku(,t)tk|q(),μp(),γd2kα16T(slα|lPsfsl|q(),μ)p(),γd+2kα8C1T(slα|lPsfsl|q(),μ)p(),γd2kαCp()(16+8C1)slα|lPsfsl|q(),μp(),γd.

    Therefore,

    tkα|ku(,t)tk|q(),μp(),γdCp(),k,αslα|lPsfsl|q(),μp(),γd.

    Next, we need a technical result for the Lp()(γd)-norms of the derivatives of the Poisson-Hermite semigroup:

    Lemma 4.4. Let p()Pγd(Rd)LH0(Rd). Suppose that fLp()(γd), then for any integer k, ktkPtfp(),γdCp()kskPsfp(),γd, for whatever 0<st<+. Moreover,

    ktkPtfp(),γdCk,p()tkfp(),γd,t>0. (4.8)

    Proof. First, let us consider the case k=0. Fixed t1,t2>0, by using the semigroup property of {Pt}, we get

    Pt1+t2f(x)=Pt1(Pt2f(x)).

    Thus, by the Lp()-boundedness of {Pt} (see [8]),

    Pt1+t2fp(),γdCp()Pt2fp(),γd.

    In order to prove the general case, k>0, using the dominated convergence theorem and differentiating the identity u(x,t1+t2)=Pt1(u(x,t2)) k-times with respect to t2, we obtain

    ku(x,t1+t2)(t1+t2)k=Pt1(ku(x,t2)tk2),

    and then we proceed as in the previous argument.

    Finally, to prove (4.8), we use again the representation (2.6) of the Poisson-Hermite semigroup and differentiating k-times with respect to t, we get

    ktku(x,t)=+0Tsf(x)ktkμ(1/2)t(ds).

    Thus, by the Minkowski's integral inequality, the Lp()-boundedness of the Ornstein-Uhlenbeck semigroup (see [8]) and the Corollary 2.1,

    ku(,t)tkp(),γd4+0Tsfkμ(1/2)ttk(ds)p(),γd=4+0Tsfp(),γd|kμ(1/2)ttk(ds)|4Cp()fp(),γd+0|kμ(1/2)ttk(ds)|Ck,p()tkfp(),γd.

    Hence, ku(,t)tkp(),γdCk,p()tkfp(),γd, t>0.

    Now, let us study some inclusion relations between variable Gaussian Besov-Lipschitz spaces. The next result is analogous to Proposition 10, page 153 in [12] (see also [10] or Proposition 7.36 in [16]).

    Proposition 4.1. Let p()Pγd(Rd)LH0(Rd) and q1(),q2()P0,. The inclusion Bα1p(),q1()(γd)Bα2p(),q2()(γd) holds i.e. fBα2p(),q2()(γd)CfBα1p(),q1()(γd) if:

    i) α1>α2>0 (q1() and q2() not need to be related), or

    ii) If α1=α2 and q1(t)q2(t)a.e.

    Proof. To prove part ii), let us take α the common value of α1 and α2.

    Let fBαp(),q1() and set A=tkαkPtftkp(),γdq1(),μ.

    Fixed t0>0,

    χ[t02,t0]tkαkPtftkp(),γdq1(),μA.

    However, by Lemma 4.4,

    kPt0ftk0p(),γdCp()kPtftkp(),γd,t[t02,t0].

    Thus, we obtain

    kPt0ftk0p(),γdχ[t02,t0]tkαq1(),μCp()χ[t02,t0]tkαkPtftkp(),γdq1(),μCp()A.

    Therefore,

    (t02)kαkPt0ftk0p(),γdχ[t02,t0]q1(),μkPt0ftk0p(),γdχ[t02,t0]tkαq1(),μCp()A,

    and by Lemma 3.1

    (t02)kαkPt0ftk0p(),γd(ln2)1/q1(t02)kαkPt0ftk0p(),γdχ[t02,t0]q1(),μCp()A.

    Then,

    kPt0ftk0p(),γdCp()2kα(ln2)1/q1Atk+α0,

    and since t0 is arbitrary

    kPtftkp(),γdCk,α,p()q1()Atk+α, for all   t>0.

    In other words, fBαp(),q1() implies that fBαp(),.

    Now, let us take g(t)=tkαkPtftkp(),γd, then ρq1(),μ(g)<, since fBαp(),q1().

    Thus, as q2(t)q1(t)a.e.,

    ρq2(),μ(g)=+0(tkαkPtftkp(),γd)q2(t)dtt=+0(tkαkPtftkp(),γd)q2(t)q1(t)(tkαkPtftkp(),γd)q1(t)dtt(Ck,α,p()q1()A)q+2q1+0(tkαkPtftkp(),γd)q1(t)dtt=(Ck,α,p()q1()A)q+2q1ρq1(),μ(g)<+.

    Hence, fBαp(),q2().

    In order to prove part i), by Lemma 4.4, we obtain

    kPtftkp(),γdCk,p()fp(),γdtk,t>0.

    Now, given fBα1p(),q1(), again by setting

    A=tkα1kPtftkp(),γdq1(),μ,

    we obtain, as in part ii),

    kPtftkp(),γdCk,α1,p()q1()Atk+α1, for all t>0.

    Therefore,

    tkα2kPtftkp(),γdq2(),μχ(0,1]tkα2kPtftkp(),γdq2(),μ+χ(1,)tkα2kPtftkp(),γdq2(),μ=(I)+(II).

    Now, again by Lemma 3.1 we get,

    (I)=χ(0,1]tkα2kPtftkp(),γdq2(),μχ(0,1]tkα2Ck,α1,p()q1()Atk+α1q2(),μ=Ck,α1,p()q1()Aχ(0,1]tα1α2q2(),μ<,

    and also by Lemma 3.1,

    (II)=χ(1,)tkα2kPtftkp(),γdq2(),μχ(1,)tkα2Ck,p()tkq2(),μ=Ck,p()χ(1,)tα2q2(),μ<.

    Hence, tkα2kPtftkp(),γdq2(),μ<+, and then fBα2p(),q2().

    Remark 4.2. Variable Gaussian Besov-Lipschitz and variable Gaussian Triebel-Lizorkin spaces are, by construction, subspaces of Lp()(γd). Moreover, since trivially fp(),γdfBαp(),q() and fp(),γdfFαp(),q(), the inclusions are continuous.

    On the other hand, from (2.9) it is clear that for all t>0 and kN,

    ktkPthβ(x)=(1)k|β|k/2et|β|hβ(x),

    and again by Lemma 3.1,

    tkαktkPthβp(),γdq(),μ=tkα(|β|1/2)ket|β|hβp(),γdq(),μ=|β|k/2hβp(),γdtkαet|β|q(),μ=Ck,α,β,q()hβp(),γd<.

    Thus, hβBαp(),q()(γd) and

    hβBαp(),q()=(1+Ck,α,β,q())hβp(),γd.

    In a similar way, hβFαp(),q()(γd) and

    hβFαp(),q()=hβp(),γd+tkα|ktkPthβ|q(),μp(),γd=hβp(),γd+|β|k/2tkαet|β|q(),μhβp(),γd=(1+Ck,α,β,q())hβp(),γd=hβBαp(),q().

    Hence, the set of all polynomials P is contained in Bαp(),q()(γd) and in Fαp(),q()(γd).

    Also, we have an inclusion result for variable Gaussian Triebel-Lizorkin spaces, which is analogous to Proposition 4.1, see also [10] or Proposition 7.40 in [16].

    Proposition 4.2. Let p()Pγd(Rd)LH0(Rd) and q1(),q2()P0,. The inclusion

    Fα1p(),q1()(γd)Fα2p(),q2()(γd) holds i.e., fFα2p(),q2()(γd)CfFα1p(),q1()(γd),

    for α1>α2>0 and q1(t)>q2(t)a.e.

    Proof. Let us consider fFα1p(),q1(), then

    tkα2|kPtf(x)tk|q2(),μtkα2|kPtf(x)tk|χ(0,1]q2(),μ+tkα2|kPtf(x)tk|χ(1,)q2(),μ=(I)+(II).

    Now, since q1(t)>q2(t)a.e., by taking r(t)=q1(t)q2(t)q1(t)q2(t), we obtain that r()1a.e. and 1r()+1q1()=1q2(). Thus, by Hölder's inequality (2.18) and Lemma 3.1

    (I)=tα1α2χ(0,1]tkα1|kPtf(x)tk|q2(),μ2tα1α2χ(0,1]r(),μtkα1|kPtf(x)tk|q1(),μ=Cα1,α2,q1(),q2()tkα1|kPtf(x)tk|q1(),μ.

    Now, for the second term (II), by using Lemmas 3.1 and 2.3, we get

    (II)=tkα2|kPtf(x)tk|χ(1,)q2(),μCkTf(x)χ(1,)tkα2tkq2(),μ=CkTf(x)χ(1,)tα2q2(),μ=Ck,α2,q2()Tf(x).

    Then, by using the Lp()(γd) boundedness of T (see [8]),

    tkα2|kPtftk|q2(),μp(),γdCα1,α2,q1(),q2()tkα1|kPtftk|q1(),μp(),γd+Ck,α2,q2()Tfp(),γdCα1,α2,q1(),q2()tkα1|kPtftk|q1(),μp(),γd+Ck,α2,p(),q2()fp(),γd<+.

    Therefore, fFα2p(),q2().

    Finally, we are going to consider some interpolation results for the Gaussian variable Besov-Lipschitz and the variable Triebel-Lizorkin spaces. We will use the following results for general variable Lebesgue spaces Lp()(X,ν).

    Lemma 4.5. Let p()P(Ω,ν) and s>0 such that sp1. Then

    |f|sp(),ν=fssp(),ν.

    Proof. It is the same proof of Lemma 3.2.6 in [4].

    Lemma 4.6. Let ν a complete σ-finite measure on X. rj()P(X,ν), 1<rj,r+j<, j=0,1. For all 0<λ<1, if fLrj()(X,ν), j=0,1 then fLr()(X,ν) where 1r(y)=1λr0(y)+λr1(y), a.e. yX and

    fr(),ν2f1λr0(),νfλr1(),ν. (4.9)

    Proof. It is a consequence of Hölder's inequality (2.18) and Lemma 4.5.

    Now, we present the interpolation result.

    Theorem 4.1. Let pj()P(Rd,γd), qjP(R+,μ), with j=0,1. Suppose that 1<pj,qj, p+j,q+j<+ and αj0. For all 0<θ<1, let us take

    α=α0(1θ)+α1θ,
    1p(x)=1θp0(x)+θp1(x),a.e.xRd,
    and1q(t)=1θq0(t)+θq1(t),a.e.tR+.

    i) if fBαjpj(),qj()(γd), j=0,1, then fBαp(),q()(γd).

    ii) if fFαjpj(),qj()(γd), j=0,1, then fFαp(),q()(γd).

    Proof. i) Let k be any integer greater than α0 and α1, by using Lemma 4.6, we obtain for α=α0(1θ)+α1θ,

    tkαkPtftkp(),γdq(),μ
    tk(α0(1θ)+α1θ)2kPtftk1θp0(),γdkPtftkθp1(),γdq(),μ=2t(1θ)(kα0)+θ(kα1)kPtftk1θp0(),γdkPtftkθp1(),γdq(),μ=2(tkα0kPtftkp0(),γd)1θ(tkα1kPtftkp1(),γd)θq(),μ.

    Thus, by Hölder's inequality (2.18) and Lemma 4.5,

    tkαkPtftkp(),γdq(),μ4tkα0kPtftkp0(),γd1θq0(),μtkα1kPtftkp1(),γdθq1(),μ<+,

    that is, fBαp(),q()(γd).

    ii) Analogously, by Hölder's inequality (2.18) and Lemma 4.5, we obtain for α=α0(1θ)+α1θ,

    tkα|kPtf(x)tk|q(),μ=(tkα0|kPtf(x)tk|)1θ(tkα1|kPtf(x)tk|)θq(),μ2tkα0|kPtf(x)tk|1θq0(),μtkα1|kPtf(x)tk|θq1(),μ, a.e.\quad x\in \mathbb{R}^{d}. 

    Therefore

    tkα|kPtftk|q(),μp(),γd2tkα0|kPtftk|1θq0(),μtkα1|kPtftk|θq1(),μp(),γd,

    and again by Hölder's inequality and Lemma 4.5,

    tkα|kPtftk|q(),μp(),γd4tkα0|kPtftk|q0(),μ1θp0(),γdtkα1|kPtftk|q1(),μθp1(),γd<+,

    that is, fFαp(),q()(γd).

    In a forthcoming paper [9], we establish boundedness properties on Bαp(),q()(γd) for some operators associated with the Gaussian measure, such as Riesz Potentials, Bessel Potentials and Bessel Fractional Derivatives.

    i) Lemmas 4.1–4.3 showed that the definitions of Bαp(),q()(γd) and Fαp(),q()(γd) are independent of the integer k greater than α considered and the corresponding norms are equivalent.

    ii) Lemma 3.1 was the key in the proof of Proposition 4.1.

    iii) The boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup T on Lp()(γd) (see [8]) was crucial in the proof of Lemma 4.4 and Proposition 4.2.

    iv) The structure and properties of the Besov-Lipschitz and Triebel-Lizokin Gaussian spaces are preserved when we go from constant exponent to variable exponent setting if the exponent functions p(), q() satisfy the regularity conditions p()Pγd(Rd)LH0(Rd) and q()P0,.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors like to thank the referees for their useful remarks and corrections that improved the presentation of the paper.

    Also we like to thank Professor Elvis Aponte for his carefully reading and corrections of the manuscript.

    The authors declare no conflict of interest.



    [1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017
    [2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, Basel, 2013.
    [3] E. Dalmasso, R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integr. Transf. Spec. F., 28 (2017), 403–420. https://doi.org/10.1080/10652469.2017.1296835 doi: 10.1080/10652469.2017.1296835
    [4] L. Diening, P. Harjulehto, P. Hästö, M. R˙užička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2017 (2011).
    [5] L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 10 (2007).
    [6] D. Drihem, Variable Triebel-Lizorkin-type spaces, B. Malays. Math. Sci. Soc. 43 (2020), 1817–1856. https://doi.org/10.1007/s40840-019-00776-y
    [7] A. E. Gatto, E. Pineda, W. Urbina, Riesz potentials, Bessel potentials and fractional derivatives on Besov-Lipschitz spaces for the Gaussian measure, Recent Advances and Harmonic Analysis and Applications, Springer Proceedings in Mathematics and Statistics, Springer, New York, 25 (2013), 105–130.
    [8] J. Moreno, E. Pineda, W. Urbina, Boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences, Rev. Colomb. Mat., 55 (2021), 21–41. https://doi.org/10.15446/recolma.v55n1.99097 doi: 10.15446/recolma.v55n1.99097
    [9] E. Pineda, L. Rodriguez, W. Urbina, Boundedness of Gaussian Bessel potentials and Bessel fractional derivatives on variable Gaussian Besov-Lipschitz spaces, arXiv: 2205.11752, 2022. https://doi.org/10.48550/arXiv.2205.11752
    [10] E. Pineda, W. Urbina, Some results on Gaussian Besov-Lipschitz and Gaussian Triebel-Lizorkin spaces, J. Approx. Theor., 161 (2009), 529–564. https://doi.org/10.1016/j.jat.2008.11.010 doi: 10.1016/j.jat.2008.11.010
    [11] M. R˙užička, Electrorheological fluids: Motheling and mathematical theory, Lecture Notes in Mathematics, Springer, Verlag, Berlin, 1748 (2011).
    [12] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. Princeton, New Jersey, 1970.
    [13] Q. Sun, C. Zhuo, Extension of variable Triebel-Lizorkin-type space on domains, B. Malay. Math. Sci. Soc., 45 (2022), 201–216. https://doi.org/10.1007/s40840-021-01177-w doi: 10.1007/s40840-021-01177-w
    [14] H. Triebel, Theory of function spaces, Birkhäuser Verlag, Basel, 1983.
    [15] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel, 1992.
    [16] W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer Verlag, Switzerland AG, 2019.
    [17] J. Xu, The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 19 (2008), 599–605. https://doi.org/10.1080/10652460802030631 doi: 10.1080/10652460802030631
    [18] J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 511–522.
    [19] J. Xu, X. Yang, The Buω type Morrey-Triebel-Lizorkin spaces with variable smoothness and integrability, Nonlinear Anal., 202 (2021), 112098.
    [20] J. Xu, X. Yang, Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 25 (2018), 135–148. https://doi.org/10.1515/gmj-2016-0087 doi: 10.1515/gmj-2016-0087
    [21] D. Yang, C. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840–1898. https://doi.org/10.1016/j.jfa.2015.05.016 doi: 10.1016/j.jfa.2015.05.016
    [22] D. Yang, C. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146–202. https://doi.org/10.15352/bjma/09-4-9 doi: 10.15352/bjma/09-4-9
    [23] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987). https://doi.org/10.1070/IM1987v029n01ABEH000958
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1410) PDF downloads(62) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog