Research article Special Issues

A high-order convergence analysis for semi-Lagrangian scheme of the Burgers' equation

  • Received: 03 January 2023 Revised: 23 February 2023 Accepted: 01 March 2023 Published: 13 March 2023
  • MSC : 65M06, 65M12

  • In this article, we provide a comprehensive convergence and stability analysis of a semi-Lagrangian scheme for solving nonlinear Burgers' equations with a high-order spatial discretization. The analysis is for the iteration-free semi-Lagrangian scheme comprising the second-order backward finite difference formula (BDF2) for total derivative and the fourth-order central finite difference for diffusion term along the trajectory. The main highlight of the study is to thoroughly analyze the order of convergence of the discrete $ \ell_2 $-norm error $ \mathcal{O}(h^2+\triangle x^4+ \triangle x^{p+1}/h) $ by managing the relationship between the local truncation errors from each discretization procedure and the interpolation properties with a symmetric high-order discretization of the diffusion term. Furthermore, stability is established by the uniform boundedness of the numerical solution using the discrete Grönwall's Lemma. We provide numerical examples to support the validity of the theoretical convergence and stability analysis for the propounded backward semi-Lagrangian scheme.

    Citation: Philsu Kim, Seongook Heo, Dojin Kim. A high-order convergence analysis for semi-Lagrangian scheme of the Burgers' equation[J]. AIMS Mathematics, 2023, 8(5): 11270-11296. doi: 10.3934/math.2023571

    Related Papers:

  • In this article, we provide a comprehensive convergence and stability analysis of a semi-Lagrangian scheme for solving nonlinear Burgers' equations with a high-order spatial discretization. The analysis is for the iteration-free semi-Lagrangian scheme comprising the second-order backward finite difference formula (BDF2) for total derivative and the fourth-order central finite difference for diffusion term along the trajectory. The main highlight of the study is to thoroughly analyze the order of convergence of the discrete $ \ell_2 $-norm error $ \mathcal{O}(h^2+\triangle x^4+ \triangle x^{p+1}/h) $ by managing the relationship between the local truncation errors from each discretization procedure and the interpolation properties with a symmetric high-order discretization of the diffusion term. Furthermore, stability is established by the uniform boundedness of the numerical solution using the discrete Grönwall's Lemma. We provide numerical examples to support the validity of the theoretical convergence and stability analysis for the propounded backward semi-Lagrangian scheme.



    加载中


    [1] A. Allievi, R. Bermejo, Finite element modified method of characteristics for the Navier–Stokes equations, Int. J. Numer. Methods Fluids, 32 (2000), 439–463.
    [2] K. E. Atkinson, An introduction to numerical analysis, 2 Eds., Canada: Wiley, 1989.
    [3] A. Bermúdez, M. R. Nogueiras, C. Vázquez, Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part I: time discretization, SIAM J. Numer. Anal., 44 (2006), 1829–1853. https://doi.org/10.1137/04061201 doi: 10.1137/04061201
    [4] A. Bermúdez, M. R. Nogueiras, C. Vázquez, Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part II: fully discretized scheme and quadrature formulas, SIAM J. Numer. Anal., 44 (2006), 1854–1876. https://doi.org/10.1137/040615109 doi: 10.1137/040615109
    [5] K. Boukir, Y. Maday, B. Métivet, A high order characteristics method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 116 (1994), 211–218. https://doi.org/10.1016/S0045-7825(94)80025-1 doi: 10.1016/S0045-7825(94)80025-1
    [6] K. Boukir, Y. Maday, B. Métivet, E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids, 25 (1998), 1421–1454.
    [7] H. P. Bhatt, A. Q. M. Khaliq, Fourth-order compact schemes for the numerical simulation of coupled Burgers' equation, Comput. Phys. Commun., 200 (2016), 117–138. https://doi.org/10.1016/j.cpc.2015.11.007 doi: 10.1016/j.cpc.2015.11.007
    [8] R. Bermejo, P. del Sastre, L. Saavedra, A second order in time modified Lagrange–Galerkin finite element method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084–3109. https://doi.org/10.1137/11085548X doi: 10.1137/11085548X
    [9] R. Bermejo, L. Saavedra, Modified Lagrange–Galerkin methods to integrate time dependent incompressible Navier–Stokes equations, SIAM J. Sci. Comput., 37 (2015), B779–B803. https://doi.org/10.1137/140973967 doi: 10.1137/140973967
    [10] S. Bak, P. Kim, S. Park, Development of a parallel CUDA algorithm for solving 3D guiding center problems, Comput. Phys. Commun., 276 (2022), 108331. https://doi.org/10.1016/j.cpc.2022.108331 doi: 10.1016/j.cpc.2022.108331
    [11] W. Boscheri, M. Tavelli, L. Pareschi, On the construction of conservative semi-Lagrangian IMEX advection schemes for multiscale time dependent PDEs, J. Sci. Comput., 90 (2022), 97. https://doi.org/10.1007/s10915-022-01768-0 doi: 10.1007/s10915-022-01768-0
    [12] S. Y. Cho, S. Boscarino, G. Russo, S. B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part I: Reconstruction, J. Comput. Phys., 432 (2021), 110159. https://doi.org/10.1016/j.jcp.2021.110159 doi: 10.1016/j.jcp.2021.110159
    [13] S. Y. Cho, S. Boscarino, G. Russo, S. B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part II: applications, J. Comput. Phys., 436 (2021), 110281. https://doi.org/10.1016/j.jcp.2021.110281 doi: 10.1016/j.jcp.2021.110281
    [14] J. Douglas, T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871–885. https://doi.org/10.1137/0719063 doi: 10.1137/0719063
    [15] R. E. Ewing, T. F. Russell, Multistep Galerkin method along characteristics for convection-diffusion problems, Adv. Comput. Methods Partial Differ. Equ. IV, 4 (1981), 28–36.
    [16] G. Fourestey, S. Piperno, A second-order time-accurate ALE Lagrange–Galerkin method applied to wind engineering and control of bridge profiles, Comput. Methods Appl. Mech. Eng., 193 (2004), 4117–4137. https://doi.org/10.1016/j.cma.2003.12.060 doi: 10.1016/j.cma.2003.12.060
    [17] M. Falcone, R. Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM J. Numer. Anal., 35 (1998), 909–940. https://doi.org/10.1137/S0036142994273513 doi: 10.1137/S0036142994273513
    [18] J. Grétarsson, R. Fedkiw, Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids, J. Sci. Comput., 245 (2013), 160–204. https://doi.org/10.1016/j.jcp.2013.02.017 doi: 10.1016/j.jcp.2013.02.017
    [19] P. Galán del Sastre, R. Bermejo, Error analysis for hp-FEM semi-Lagrangian second order BDF method for convection-dominated diffusion problems, J. Sci. Comput., 49 (2011), 211–237. https://doi.org/10.1007/s10915-010-9454-2 doi: 10.1007/s10915-010-9454-2
    [20] R. M. Gray, Toeplitz and circulant matrices: a review, Found. Trends Commun. Inf. Theory, 2 (2006), 155–239. http://dx.doi.org/10.1561/0100000006 doi: 10.1561/0100000006
    [21] P. Kim, S. Bak, Algorithm for a cost-reducing time-integration scheme for solving incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng., 373 (2021), 113546. https://doi.org/10.1016/j.cma.2020.113546 doi: 10.1016/j.cma.2020.113546
    [22] P. Kim, D. Kim, Convergence and stability of a BSLM for advection–diffusion models with Dirichlet boundary conditions, Appl. Math. Comput., 366 (2020), 124744. https://doi.org/10.1016/j.amc.2019.124744 doi: 10.1016/j.amc.2019.124744
    [23] H. Notsu, M. Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier–Stokes equations, J. Sci. Comput., 38 (2009), 1–14. https://doi.org/10.1007/s10915-008-9217-5 doi: 10.1007/s10915-008-9217-5
    [24] S. Park, P. Kim, Y. Jeon, S. Bak, An economical robust algorithm for solving 1D coupled Burgers' equations in a semi-Lagrangian framework, Appl. Math. Comput., 428 (2022), 127185. https://doi.org/10.1016/j.amc.2022.127185 doi: 10.1016/j.amc.2022.127185
    [25] X. Piao, S. Kim, P. Kim, D. Kim, A new time stepping method for solving one dimensional Burgers' equations, Kyungpook Math. J., 52 (2012), 327–346. http://dx.doi.org/10.5666/KMJ.2012.52.3.327 doi: 10.5666/KMJ.2012.52.3.327
    [26] X. Piao, S. Bu, S. Bak, P. Kim, An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations, J. Comput. Phys., 283 (2015), 189–204. https://doi.org/10.1016/j.jcp.2014.11.040 doi: 10.1016/j.jcp.2014.11.040
    [27] X. Piao, S. Kim, P. Kim, J. Kwon, D. Yi, An iteration free backward semi-Lagrangian scheme for guiding center problems, SIAM J. Numer. Anal., 53 (2015), 619–643. https://doi.org/10.1137/130942218 doi: 10.1137/130942218
    [28] X. Piao, P. Kim, D. Kim, One-step L ($\alpha$)-stable temporal integration for the backward semi-Lagrangian scheme and its application in guiding center problems, J. Comput. Phys., 366 (2018), 327–340. https://doi.org/10.1016/j.jcp.2018.04.019 doi: 10.1016/j.jcp.2018.04.019
    [29] A. Robert, A stable numerical integration scheme for the primitive meteorological equations, Atmos. Ocean, 19 (1981), 35–46. https://doi.org/10.1080/07055900.1981.9649098 doi: 10.1080/07055900.1981.9649098
    [30] H. Rui, M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math., 92 (2002), 161–177. https://doi.org/10.1007/s002110100364 doi: 10.1007/s002110100364
    [31] A. Staniforth, J. Côté, Semi-Lagrangian integration schemes for atmospheric models—a review, Mon. Weather Rev., 119 (1991), 2206–2223.
    [32] P. K. Smolarkiewicz, J. A. Pudykiewicz, A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci., 49 (1992), 2082–2096.
    [33] C. Temperton, M. Hortal, A. Simmons, A two-time-level semi-Lagrangian global spectral model, Quart. J. Roy. Meteor. Soc., 127 (1991), 111–127. https://doi.org/10.1002/qj.49712757107 doi: 10.1002/qj.49712757107
    [34] C. Temperton, A. Staniforth, An efficient two-time-level semi-Lagrangian semi-implicit integration scheme, Quart. J. Roy. Meteor. Soc., 113 (1987), 1025–1039. https://doi.org/10.1002/qj.49711347714 doi: 10.1002/qj.49711347714
    [35] D. Vít, On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations, Int. J. Numer. Methods Fluids, 45 (2004), 1083–1106. https://doi.org/10.1002/fld.730 doi: 10.1002/fld.730
    [36] D. Xiu, G. E. Karniadakis, A semi-Lagrangian high-order method for Navier–Stokes equations, J. Comput. Phys., 172 (2001), 658–684. https://doi.org/10.1006/jcph.2001.6847 doi: 10.1006/jcph.2001.6847
    [37] D. Xiu, S. J. Sherwin, S. Dong, G. E. Karniadakis, Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows, J. Sci. Comput., 25 (2005), 323–346. https://doi.org/10.1007/s10915-004-4647-1 doi: 10.1007/s10915-004-4647-1
    [38] J. R. Yearsley, A semi-Lagrangian water temperature model for advection-dominated river systems, Water Resour. Res., 45 (2009), W12405. https://doi.org/10.1029/2008WR007629 doi: 10.1029/2008WR007629
    [39] G. B. Whitham, Linear and nonlinear waves, Wiley and Sons, 2011.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1024) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog