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Abstract: In this article, we provide a comprehensive convergence and stability analysis of a semi-
Lagrangian scheme for solving nonlinear Burgers’ equations with a high-order spatial discretization.
The analysis is for the iteration-free semi-Lagrangian scheme comprising the second-order backward
finite difference formula (BDF2) for total derivative and the fourth-order central finite difference for
diffusion term along the trajectory. The main highlight of the study is to thoroughly analyze the order of
convergence of the discrete ℓ2-norm error O(h2+△x4+△xp+1/h) by managing the relationship between
the local truncation errors from each discretization procedure and the interpolation properties with a
symmetric high-order discretization of the diffusion term. Furthermore, stability is established by the
uniform boundedness of the numerical solution using the discrete Grönwall’s Lemma. We provide
numerical examples to support the validity of the theoretical convergence and stability analysis for the
propounded backward semi-Lagrangian scheme.
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1. Introduction

One of the most popular techniques for solving advection-type equations is the backward semi-
Lagrangian method (BSLM), which has the advantage over conventional Eulerian approaches of using
a larger temporal step size while avoiding the mesh deformation of pure Lagrangian methods. Due to
these attributes, BSLMs have been much studied in a vast range of models since their introduction in the
early 1980s [29] such as weather forecasting [31,33], oceanography [29,38], engineering control [16],
and various important fluid dynamics applications ( [3–6, 15, 23, 30, 32, 36, 37] and the references
therein). In addition, numerous research efforts have been recently made to develop more efficient
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BSLM algorithms in computational aspects [10, 21, 24] as well as in mass conservation and multi-
dimension [11–13].

Their convergence analyses have been conducted in various problems including a second-order
BSLM in linear advection–diffusion equations [19] and nonlinear advection-type equations [27] using
the conservation property; second-order finite element BSLMs in the Navier–Stokes equations given a
priori estimates [8,9], and second-order finite difference BSLMs in advection–diffusion equations with
the Dirichlet boundary condition [22]. Despite these convergence analysis studies, there remained
unaddressed nonlinear advection-type problems of finite difference BSLMs with a high-order spatial
discretization due to the complexity and difficulties of understanding the structure for the Cauchy
problem represented by a characteristic curve.

The BSLM offers a way of dealing with the nonlinear advection term by splitting the model equation
into a Cauchy problem and a total differential equation along characteristic curves. Even though
this nonlinearity appears to vanish in the Lagrangian procedure, it is expressed as the velocity of the
characteristic curve, which creates the uncertainty of its departure points. This uncertainty makes the
convergence analysis more challenging because the truncation error of the departure points of Cauchy
problem contains the errors of the solution from the previous temporal steps in the time discretization
(see (2.16) and (2.17) for example). Analyzing the error arising from the diffusion term along the
characteristic curves is another difficulty in high-order spatial discretizations. The second-order spatial
discretization gives a positive-definite matrix for the diffusion term satisfying the Dirichlet boundary
condition [22], which allows the Cholesky decomposition to split the errors into consecutive temporal
steps. The other issue of the convergence analysis is in the temporal evolution of the truncation errors
and bounds of the error from each time step. For the Dirichlet problem with the second-order spatial
discretization, the discrete Poincaré inequality allows to evaluate the error at the final step using the
spatial finite difference of the error. However, the mentioned techniques are no longer possible to
analyze the BSLM with high-order spatial discretizations in the Dirichlet problem, which is the concern
of this paper.

This work is a part of the sequential research project on the convergence analysis of various
proposed finite difference BSLMs due to [25–28] as well as a subsequent result of [22]. The periodic
problem is permitted to discretize a diffusion term with a symmetric high-order spatial approximation.
From this symmetry, as the second-order analysis, the Cholesky decomposition allows that the errors
related the diffusion term can be split into the ones at two consecutive temporal steps, (see Lemma 3.4).
For the analysis of the finite difference BSLM with a high-order spatial discretization, we apply the
Cholesky decomposition of the positive definite matrix for a discretization of the Laplacian in the
periodic problem. Instead of using the discrete Poincaré inequality which is no longer allowed in the
periodic problem, we apply the telescoping summation technique in order to obtain the bound of the
error at the final step using the finite difference of error in time. This not only allows a high-order
approximation analysis for spatial discretization but also provides the general convergence analysis
without boundary restriction for nonlinear advection–diffusion-type equations. More precisely, we
consider Burgers’ equation with the periodic boundary condition, which is a prototype of nonlinear
advection-diffusion equations, as follows: ut + uux = νuxx, a < x < b, 0 < t ≤ T,

u(0, x) = u0(x), x ∈ I := [a, b],
(1.1)
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where u(t, x) represents the particle velocity, ν stands for the kinematic viscosity, and u0(x) is a given
smooth function. To illustrate the BSLM for the model problem (1.1), we assume that the temporal
steps are uniformly distributed throughout the domain [0,T ]; that is, the grid points are formed by
calculating

tn := nh, 0 ≤ n ≤ N

with the temporal step size h = T/N. For each temporal step tn, let χ(x, tn+1; t) be the characteristic
curve arriving the spatial point x at time tn+1 that satisfies the nonlinear Cauchy problem described as

d
dt
χ(x, tn+1; t) = u(t, χ(x, tn+1; t)), t < tn+1,

χ(x, tn+1; tn+1) = x.
(1.2)

Combining (1.1) and (1.2), the total derivative of u(t, χ(x, tn+1; t)) along the characteristic curve
χ(x, tn+1; t) provides the following diffusion equation given by

d
dt

u (t, χ(x, tn+1; t)) = νuxx (t, χ(x, tn+1; t)) , 0 < t < tn+1, x ∈ I. (1.3)

Notice that the characteristic curve χ(x, tn+1; t) satisfying the Cauchy problem (1.2) is used to evolve
the solution u of (1.3) along the characteristic curve, while the solution u is used as a velocity for
the characteristic curves with a given initial value at the fixed grid points. This self-consistency
requirement of the system generates the main aforementioned hindrance to analyzing the constructed
method. The nonlinear Cauchy problem can be solved by several approaches, including iteration
methods [1, 34, 36], iteration-free methods [26, 27], and so on. The solution of (1.3) is usually
obtained by combining three procedures: a backward finite difference method for the total derivative,
an interpolation technique for the solution at off-grid departure points, and a solver for the diffusion
term, for instance, a finite difference method [14], a finite element method [3, 4, 14], a spectral finite
element method [36], or a discontinuous Galerkin finite element method [35].

In this paper, we present a concrete convergence analysis of the finite difference BSLM that adopts
an iteration-free error correction method (ECM) [26, 27] to solve the Cauchy problem (1.2), the
second-order backward difference formula (BDF2) for the total derivative, and the fourth-order central
finite difference scheme for the diffusion term in the discretization of the Eq (1.3). The substantial
contribution of this study is to provide not only the comprehensive analysis of convergence and stability
of a high-order spatial discretization BSLM but also the experiments to support the theoretical results.
For the prerequisite process, we review the BSLM, which is modified from [26, 27], to determine
the numerical solution of the model problem while providing analysis of the local truncation errors of
departure points obtained by the ECM, the temporal and spatial discretizations from the finite difference
methods, BDF2 and the fourth-order central difference formula. Using the relations between these
truncation errors and the boundedness properties of the interpolation, we provide the error equation of
the proposed scheme at each time step with the help of the symmetric discretization for the diffusion
term. Finally, after taking the telescoping summation of the error equations through all the temporal
steps, we obtain the error of the numerical solution at the final time (see Theorem 3.6). The resulting
order of convergence O(h2 +△x4 +△xp+1/h) with respect to the discrete ℓ2-norm supports convergence
analyses for linear advection-type equations [19] and finite element BSLMs [8, 9], where p represents
the degree of the interpolation. The result also validates the claim shown by the numerical results,
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including the non-monotonic property [17] of O(△xp+1/h). We further investigate the stability of
the proposed scheme by presenting that the discrete norm of the numerical solution is uniformly
bounded without any restriction of the temporal step size h, which means that the proposed BSLM
is unconditionally stable (see Theorem 3.8).

The paper is organized as follows. The BSLM, comprising the ECM and finite difference schemes
for the discretization of Eqs (1.2) and (1.3), is reviewed and local truncation errors are analyzed
in Section 2. Based on the error equation, the main result of the paper, the convergence and
stability analysis of the BSLM for Burgers’ equation, are presented in Section 3. In Section 4,
numerical experiments are presented to support the theoretical analysis. Finally, Section 5 presents our
conclusions and further discussion. Additionally, in Appendix, we review the Lagrange interpolation
formula and its properties.

2. Calculation of departure points and discretization of BSLM

For the derivation of the BSLM, we review the ECM for solving the Cauchy problem in
Subsection 2.1 and the fourth-order spatial discretization for the Helmholtz equation in Subsection 2.3.
Especially, Subsection 2.2 is devoted to the estimation of a concrete bound for the truncation errors of
its departure points.

2.1. Review of ECM

We start this subsection with a concise review of the ECM for solving the nonlinear self-consistent
Cauchy problem given by 

dχ j(t)
dt
= u(t, χ j(t)), t ∈ [tn−1, tn+1),

χ j(tn+1) = x j,
(2.1)

where χ j(t) := χ j(x j, tn+1; t) is the characteristic curve that arrives at the grid point x j (1 ≤ j ≤ J) at a
fixed temporal time step tn+1 and u is the solution of the problem (1.1). Here, we assume that spatial
grids x j (1 ≤ j ≤ J) are uniformly spaced in the domain I := [a, b] as follows:

x j := a + j△x, △x :=
b − a

J
. (2.2)

The ECM then focuses on finding the departure points χ j(tn−k) = χ(x j, tn+1; tn−k), k = 0, 1, which
will be used for the BSLM. For notational simplicity, we denote um(x) := u(tm, x), um

j := um(x j),

and um :=
[
um

1 , . . . , u
m
J

]T
. Furthermore, we assume that approximations Um :=

[
Um

1 , . . . ,U
m
J

]T
for the

solutions um (m ≤ n) are already calculated at all spatial grids x j (1 ≤ j ≤ J) in the domain I.
Let ϕ(t) be a perturbed characteristic curve given by an Euler polygon y(t) such that

ϕ(t) := χ j(t) − y(t), y(t) := x j + (t − tn+1)un
j , t ∈ [tn−1, tn+1]. (2.3)

Then, by the Taylor expansion of χ j(t) about t = tn+1 one can see that

ϕ(t) =
(
un+1

j − un
j

)
(t − tn+1) +

1
2
χ′′j (ξ1)(t − tn+1)2
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for some ξ1 ∈ (t, tn+1). Again, the Taylor expansion of un+1
j about t = tn implies that

|ϕ(t)| ≤h
∣∣∣ut(ξ2, x j)

∣∣∣ |t − tn+1| +
1
2

∣∣∣χ′′j (ξ1)
∣∣∣ (t − tn+1)2

≤Ch2,
(2.4)

where ξ2 belongs to the interval between tn and tn+1 and a constant C depends only on the bounds of u,
ut and ux. Also, by (2.1)–(2.4), the derivative ϕ′(t) satisfies

ϕ′(t) = un
x (y(tn)) ϕ(t) + u(t, y(t)) − un

j + T1, t ≤ tn+1, (2.5)

where T1 is bounded by
|T1| ≤ Ch3 (2.6)

for a constant C depending only on u, ut, ux, uxx, and uxt. We now use the bound (2.6) and the mid-point
quadrature rule for integrating (2.5) over [tn−1, tn+1] to obtain

ϕ(tn+1) − ϕ(tn−1) = 2h
(
un

x(y(tn))ϕ(tn) + un(y(tn)) − un
j

)
+ O(h3).

The property that ϕ(tn) = 1
2 (ϕ(tn+1) + ϕ(tn−1)) + h2ϕ′′(ξ3) for some ξ3 ∈ (tn−1, tn+1) with ϕ(tn+1) = 0

yields (
1 + hun

x(y(tn))
)
ϕ(tn−1) = 2h

(
un

j − un(y(tn))
)
+ O(h3). (2.7)

Since y(tn) is not a grid point in the usual sense, after truncating the asymptotic term of (2.7) the ECM
uses the Lagrange interpolation to evaluate un

x (y(tn)) and un (y(tn)). We then define the approximation
ϕn−1 of ϕ(tn−1) by

ϕ n−1 := 2h
(
1 + hD̃xLUn(yn)

)−1 (
Un

j − LUn(yn)
)
, yn := x j − hUn

j , (2.8)

where L and D̃xL represent the Lagrangian interpolation polynomial of degree p and its piecewise
average derivative at the grid points, respectively (see (A.1) for details). Here, the approximation yn of
the Euler polygon y(t) at t = tn satisfies

y(tn) − yn = −hen
j , (2.9)

where en
j is the error of un at x j such as

en
j := un

j − Un
j , en :=

[
en

1, . . . , e
n
j , . . . , e

n
J

]T
. (2.10)

Instead of solving (2.1) directly, the iteration-free ECM uses the approximation ϕn−1 of (2.8) and the
relation (2.3) to obtain an approximation χn−1

j of χ j(tn−1) defined by

χn−1
j := yn−1 + ϕn−1 = x j − 2hUn

j + ϕ
n−1. (2.11)

In addition, to find an approximation χn
j for χ j(tn) we use the Taylor expansion of χ j(t) at tn−1, given by

χ j(tn) =
1
4

(
x j + 3χ j(tn−1) + 2hu n−1

(
χ j (tn−1)

))
+ O(h3). (2.12)

By using χn−1
j and LUn−1(χn−1

j ) and (2.12), we finally define χn
j by

χn
j :=

1
4

(
x j + 3χn−1

j + 2hLUn−1(χn−1
j )

)
. (2.13)
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2.2. Estimation of truncation errors for departure points

In this subsection, we focus on estimating the truncation errors τn−k
j of the approximations χn−k

j for
two departure points χ j(tn−k) defined by

τn−k
j := χ j(tn−k) − χn−k

j , k = 0, 1. (2.14)

From (2.7) and (2.8), the approximation error of the perturbed characteristic curve ϕ(t) given by (2.4)
satisfies (

1 + hD̃xLUn(yn)
)
(ϕ(tn−1) − ϕn−1) =h

(
D̃xLUn(yn) − un

x(y(tn))
)
ϕ(tn−1)

+ 2h
(
en

j + LUn(yn) − un(y(tn))
)
+ O(h3).

(2.15)

Therefore, Eqs (2.3), (2.9), (2.11), and (2.15) make up the truncation error for the departure points

τn−1
j :=

(
1 + hD̃xLUn(yn)

)−1
ϵτ − 2hen

j , (2.16)

where ϵτ is given by

ϵτ :=h
(
D̃xLUn(yn) − un

x(y(tn))
)
ϕ(tn−1) + 2h

(
en

j + LUn(yn) − un(y(tn))
)
+ O(h3). (2.17)

Moreover, Eqs (2.12) and (2.13) imply that the truncation error at t = tn satisfies

τn
j :=

3
4
τn−1

j +
h
2

(
un−1(χ j(tn−1)) − LUn−1(χn−1

j )
)
+ O(h3). (2.18)

To estimate the truncation errors of τn−k
j , we introduce δx that is a first-order backward spatial finite

difference operator given by

δxv j :=
1
△x

(
v j − v j−1

)
, j = 1, · · · , J. (2.19)

Lemma 2.1. Assume that the Euler polygon and its approximation yn and y(tn) belong to the same
subinterval I j at t = tn for each j. Then we have∣∣∣LUn(yn) − un(y(tn))

∣∣∣ ≤ C
( ∑

jℓ∈Λ j

∣∣∣en
jℓ

∣∣∣ + h|en
j | + △xp+1

)
,

∣∣∣D̃xLUn(yn) − un
x(y(tn))

∣∣∣ ≤ C′
( ∑

jℓ∈Λ′j

∣∣∣δxen
jℓ

∣∣∣ + h|en
j | + △xp

)
,

where C and C′ depend only on the degree p of the interpolation and the bounds of the first and second
partial derivatives of u.

Proof. Using en in (2.10), we split the quantity |LUn(yn) − un(y(tn))| into three terms such as

I1 := |Len(yn)|, I2 := |Lun(yn) − un(yn)|, and I3 := |un(yn) − un(y(tn))|.

The definition (A.1) of interpolation and its associated property (A.3), respectively, provide that

I1 ≤ C
∑
jℓ∈Λ j

∣∣∣en
jℓ

∣∣∣ and I2 ≤ C△xp+1,
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where C is independent of the indices jℓ and j. Also, the mean value theorem and the property (2.9)
give I3 ≤ Ch|en

j | for some constant C that depends only on the bounds of the partial derivatives of u,
which implies that the first inequality holds. To estimate D̃xLUn(yn)−un

x (y(tn)), we assume that yn is in
the interior of I j and split it into three terms. By virtue of Lemma A.1, (2.9), the mean value theorem,
and the interpolation error (A.5), we have∣∣∣DxLUn(yn) − un

x(y(tn))
∣∣∣ ≤ ∣∣∣DxLen(yn)

∣∣∣ + ∣∣∣DxLun(yn) − un
x(y

n)
∣∣∣ + ∣∣∣un

x(y
n) − un

x(y(tn))
∣∣∣

≤ C

∑
jℓ∈Λ′j

∣∣∣δxen
jℓ

∣∣∣ + h|en
j | + △xp

 ,
where C depends only on the bounds of the partial derivatives of u. This establishes the second
inequality. □

The estimates of the previous lemma give the invertibility of 1 + hD̃x(LUn)(yn) as follows.

Corollary 2.2. Assume that for n < N, en and δxen are sufficiently small. Then, there exists a temporal
step size h < 1 such that 1 + hD̃xLUn(yn) is invertible and∣∣∣∣ (1 + hD̃xLUn(yn)

)−1 ∣∣∣∣ < 1 + ϵ, ϵ ≪ 1.

Proof. To show the invertibility of
∣∣∣D̃xLUn(yn)

∣∣∣ for a small h < 1, it is enough to show that it is
uniformly bounded. This follows easily from the second result in Lemma 2.1 by considering∣∣∣D̃xLUn(yn)

∣∣∣ ≤ ∣∣∣un
x(y(tn))

∣∣∣ + ∣∣∣D̃xLUn(yn) − un
x(y(tn))

∣∣∣.
□

Combining the outcomes of Lemma 2.1 and Corollary 2.2 yields the estimates for the truncation
errors of the departure points at the previous two steps:

Corollary 2.3. Assume that both y(tn−k) and yn−k, the Euler polygon and its approximation as defined
by (2.3), (2.8), and (2.11), belong to the same jth subinterval I j for k = 0, 1. Then the truncation error
τn−k

j (k = 0, 1) of the departure points in (2.14) can be estimated as follows:

∣∣∣τn−k
j

∣∣∣ ≤ C

h3
( ∑

jℓ∈Λ′j

∣∣∣δxen
jℓ

∣∣∣ + h|en
j | + △xp

)
+ h

( ∑
jℓ∈Λ j

(∣∣∣en
jℓ

∣∣∣ + ∣∣∣en−1
jℓ

∣∣∣) + △xp+1
) , ∀ n < N

for some constant C depending on p and on the bounds of u, ut and ux.

Proof. Note that the quantity ϵτ defined in (2.17) can be estimated from the bounds of (2.4) and
Lemma 2.1. Thus, using the uniform bound of Corollary 2.2 yields the desired order of the estimate
for τn−1

j . By applying the result for τn−1
j in (2.18) and Lemma 2.1, we can also have the bound of τn

j
from the estimation∣∣∣un−1(χ j(tn−1)) − LUn−1(χn−1

j )
∣∣∣ ≤ C

( ∑
jℓ∈Λ j

∣∣∣en−1
jℓ

∣∣∣ + △xp+1 +
∣∣∣τn−1

j

∣∣∣),
which can be obtained by splitting into three terms as performed in the proof of Lemma 2.1. □
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2.3. Fourth-order spatial discretization of the Helmholtz equation

In this subsection, we review the BSLM [25–27] for solving (1.3). To do this, the fourth-order
central finite difference method is chosen to discretize the diffusion term in space and the second-
order BDF (BDF2) is used to discretize the total derivative using the departure points obtained in
Subsection 2.1 with the interpolation L which is reviewed in Appendix.

To this end, we first evaluate the diffusion equation (1.3) at time t = tn+1 with the setting s = tn+1 and
then apply BDF2 to the total derivative, resulting the asymptotic one-dimensional Helmholtz equation

3
2h

un+1(x) − νun+1
xx (x) =

1
2h

(
4un (χ(x, tn+1; tn)) − un−1 (χ(x, tn+1; tn−1))

)
+ O

(
h2

)
. (2.20)

For the discretization of the diffusion term un
xx, we employ the finite difference operator δ4

x with the
fourth-order accuracy defined by

δ4
xu

n
j :=
−un

j−2 + 16un
j−1 − 30un

j + 16un
j+1 − un

j+2

12△x2 . (2.21)

Using the difference operator δ4
x and the approximations χn−k

j (k = 0, 1) for the departure points
χ j(tn−k) := χ(x j, tn+1; tn−k) developed in the previous subsection, the Eq (2.20) can be discretized at
each grid point x j, as follows:

3
2h

un+1
j − νδ

4
xu

n+1
j =

1
2h

(
4un

(
χ j(tn)

)
− un−1

(
χ j(tn−1)

))
+ O

(
h2 + △x4

)
=

1
2h

(
4un(χn

j) − un−1(χn−1
j )

)
+ Tn+1

j ,

T
n+1
j :=

1
2h

(
4un

x(ξ
0
j )τ

n
j − un−1

x (ξ1
j )τ

n−1
j

)
+ O

(
h2 + △x4

) (2.22)

for some ξk
j (k = 0, 1) between χ j(tn−k) and χn−k

j . Using the interpolation polynomials LUn−k(χn−k
j )

for un−k(χn−k
j ) (k = 0, 1) and truncating the asymptotic term Tn+1

j in (2.22), which is bounded by the
result of Corollary 2.3, we introduce a discrete system for the approximation Un+1

j of the solution un+1
j

given by
3

2h
Un+1

j − νδ4
xU

n+1
j =

1
2h

(
4LUn(χn

j) − LUn−1(χn−1
j )

)
, 1 ≤ j ≤ J. (2.23)

For convenience, let us define a vector LUn−k(χn−k) by

LUn−k(χn−k) :=
[
LUn−k(χn−k

1 ), · · · ,LUn−k(χn−k
J )

]T
∈ RJ, k = 0, 1

and a symmetric circulant matrixA for the periodic model problem by

A :=
(
ai, j

)
J×J
, ai, j =

1
12△x2


−30 if i = j,

16 if |i − j| = 1 or |i − j| = J − 1,
−1 if |i − j| = 2 or |i − j| = J − 2,
0 otherwise.

(2.24)

Using these vectors and the matrixA, the system of Eq (2.23) can be simplified as(
3
2h
I − νA

)
Un+1 =

1
2h

(
4LUn(χn) − LUn−1(χn−1)

)
, n = 1, · · · ,N − 1, (2.25)

where I denotes the identity matrix of size J × J.
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Remark 2.4. The eigenvalue computations in [20, Theorem 3.1] forA involving the periodic boundary
condition can be used as an efficient solver for the system (2.25). Since the matrixA defined by (2.24)
is symmetric circulant its eigenvalue decomposition is given by

A = QΛQT, Λ := diag(λ1, . . . , λ j, . . . , λJ), Q :=
(
q1, . . . ,q j, . . . ,qJ

)
,

λ j =
−1

6△x2

(
cos

(
4( j − 1)π

J

)
− 16 cos

(
2( j − 1)π

J

)
+ 15

)
,

q j =
1
√

J

[
1, cos

(
2π j

J

)
, · · · , cos

(
2π j(J − 1)

J

)]T
,

(2.26)

where q j is the eigenvector corresponding to the eigenvalue λ j. With the decomposition in (2.26), the
system (2.25) can be solved by the following procedure:

ṽn+1 =
1

2h
QT

(
4LUn(χn) − LUn−1(χn−1)

)
,(

3
2h
I − νΛ

)
vn+1 = ṽn+1,

Un+1 = Qvn+1.

(2.27)

Remark 2.5. Note that since cos(2θ) − 16 cos(θ) + 15 ≥ 0 for 0 ≤ θ ≤ 2π, all eigenvalues λ j in (2.26)
are non-positive real values. Thus, the entries of the diagonal matrix 3

2hI − νΛ in (2.27) are strictly
positive. Therefore, the matrix 3

2hI−νΛ is invertible and hence the discretized system (2.27) is uniquely
solvable.

3. Convergence and stability analysis of BSLM

This section mainly aims to present the convergence analysis of the BSLM by manipulating the
bounds of the truncation errors along the discrete time evolution. To do this, we first introduce several
definitions and hypotheses to be used in the subsequent analysis. Let δt be the first-order backward
temporal finite difference operator for the vector vn+1 := [vn+1

1 , . . . , v
n+1
J ]T ∈ RJ defined by

δtvn+1 :=
1
h

(
vn+1 − vn

)
. (3.1)

Furthermore, let ⟨f, g⟩ be the discrete ℓ2-inner product defined by

⟨f, g⟩ := △x
∑

1≤ j≤J

f jg j, f :=
[
f1, · · · , fJ

]T , g :=
[
g1, · · · , gJ

]T
and let ∥g∥2 be the corresponding discrete ℓ2-norm for the vector g defined by

∥g∥22 = ⟨g, g⟩ = △x
∑

1≤ j≤J

g2
j . (3.2)

The convergence analysis for the BSLM presented here is based on an induction technique under
mesh restriction (see [8, 9, 22]); we assume the induction hypothesis for errors at each temporal step
and mesh size restriction as follows:

AIMS Mathematics Volume 8, Issue 5, 11270–11296.



11279

(A1) For N ≥ 2, there exists a constant CA1 > 0 independent of h and △x satisfying

max
0≤n≤N−1

∥∥∥en
∥∥∥

2
≤ CA1h

2 and max
0≤n≤N−1

∥∥∥δxen
∥∥∥

2
≤ CA1h

2

for efficiently small △x ≪ 1.
(A2) We assume that the ratio between the spatial mesh size and temporal mesh size is satisfied by

h2

△x
= CA2

for some constant CA2 > 0.

Remark 3.1. Applying the previous hypotheses to the result of Corollary 2.3, we have

∣∣∣τn−k
j

∣∣∣ ≤ C1h

h3 +
∑
jℓ∈Λ j

(∣∣∣en
jℓ

∣∣∣ + ∣∣∣en−1
jℓ

∣∣∣) + △xp+1

 , k = 0, 1 (3.3)

for C1 depending only on p, CA1 and CA2 , since

∑
jℓ∈Λ′j

∣∣∣δxen
jℓ

∣∣∣ ≤ √p

∑
jℓ∈Λ′j

∣∣∣δxen
jℓ

∣∣∣2
1/2

≤
1
√
△x

√
p ∥δxen∥2 ≤ Ch, C =

√
pCA1

√
CA2 .

3.1. Convergence analysis

We first derive an error equation for the proposed method using (2.22) and (2.23) as follows. From
(2.22) and the fact that um(x) − Lum(x) = O(△xp+1) for a sufficiently smooth solution u, subtracting
(2.23) from (2.22) and multiplying the resulting equation by 2

3 lead to an equation for the error en+1:(
1
h
I −

2
3
νA

)
en+1 =

1
3h

(
4Len(χn) − Len−1(χn−1)

)
+ rn+1, (3.4)

where
Len−k(χn−k) :=

[
Len−k(χn−k

1 ), · · · ,Len−k(χn−k
J )

]T
, k = 0, 1, n ≥ 1

and
rn+1 :=

[
rn+1

1 , · · · , r
n+1
j , · · · , r

n+1
J

]T
, rn+1

j :=
1

3h

(
4un

x(ξ
0
j )τ

n
j − un−1

x (ξ1
j )τ

n−1
j

)
+ OΓ,

OΓ := O
(
h2 + △x4 +

△xp+1

h

)
. (3.5)

Note that from Remark 3.1, each component rn+1
j can be estimated by∣∣∣rn+1

j

∣∣∣ ≤ C2
∑
jℓ∈Λ j

(∣∣∣en
jℓ

∣∣∣ + ∣∣∣en−1
jℓ

∣∣∣) + OΓ, (3.6)

where C2 := max
{

4
3C1∥un

x∥∞,
1
3C1∥un−1

x ∥∞

}
. Taking the discrete ℓ2-inner product with δten+1 after some

manipulation of (3.4), one can obtain∥∥∥δten+1
∥∥∥2

2
−

2ν
3

〈
Aen+1, δten+1

〉
=

1
3

〈
δten, δten+1

〉
+

4
3h

〈
Len(χn+1,n) − en, δten+1

〉
−

1
3h

〈
Len−1(χn+1,n−1) − en−1, δten+1

〉
+

〈
rn+1, δten+1

〉
.

(3.7)
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The basic idea for estimating ∥en+1∥2 is to use an induction hypothesis with a bound of
∥∥∥δxen+1

∥∥∥
2

obtained by estimating each term of the Eq (3.7). We begin with an estimation of the last term〈
rn+1, δten+1

〉
of (3.7) in the following lemma.

Lemma 3.2. Suppose that all assumptions in Lemma 2.1 are satisfied. Then
〈
rn+1, δten+1

〉
can be

estimated by ∣∣∣∣〈rn+1, δten+1
〉∣∣∣∣ ≤ C3

∑
k=0,1

∥en−k∥22 +
1
6

∥∥∥δten+1
∥∥∥2

2
+ O2

Γ

for a constant C3 := 6C2
2(p + 1)2, where OΓ is defined by (3.5).

Proof. Applying the triangle inequality to (3.6) shows that∣∣∣rn+1
j

∣∣∣2 ≤ 4C2
2(p + 1)

∑
jℓ∈Λ j

(∣∣∣en
jℓ

∣∣∣2 + ∣∣∣en−1
jℓ

∣∣∣2) + 2O2
Γ.

By the periodicity of en−k
j and the definition of discrete ℓ2-norm, we have

∥rn+1∥22 ≤4C2
2(p + 1)2

(
∥en∥22 + ∥e

n−1∥22

)
+ 2O2

Γ.

Using Young’s inequality for the inner product
〈
rn+1, δten+1

〉
completes the proof. □

Next, for the estimation of
〈
Len−k(χn−k) − en−k, δten+1

〉
(k = 0, 1) in (3.7), let us define χ̃ j(t) to be an

arbitrary approximation of the characteristic curve χ j(t) over [tn−1, tn+1] satisfying

χ̃ j(tn−k) = χn−k
j , k = −1, 0, 1,

sup
tn−k≤t≤tn+1

∣∣∣∣∣ d
dt
χ̃ j(t)

∣∣∣∣∣ ≤ M < ∞ ∀ j,
(3.8)

where χn+1
j = x j and χn−k

j (k = 0, 1) are the approximations of the departure points χ j(tn−k) and M is a
fixed constant. Then the property (3.8) and the fundamental theorem for a given vector en−k imply that∣∣∣Len−k(χn−k

j ) − en−k
j

∣∣∣ = ∣∣∣∣Len−k
(
χ̃ j(tn−k)

)
− Len−k

(
χ̃ j(tn+1)

)∣∣∣∣
≤

∫ tn+1

tn−k

∣∣∣∣ d
dx
Len−k(χ̃ j(t))

∣∣∣∣∣∣∣∣dχ̃ j

dt
(t)

∣∣∣∣dt

≤M
∫ tn+1

tn−k

∣∣∣∣ d
dx
Len−k

(
χ̃ j(t)

)∣∣∣∣dt.

(3.9)

Thus, if we assume χ̃ j(t) ∈ I j for all t ∈ [tn−1, tn+1], then by applying Hölder’s inequality and using the
results of Lemma A.1 on the right-hand side of (3.9), we obtain

∫ tn+1

tn−k

∣∣∣∣ d
dx
Len−k

(
χ̃ j(t)

)∣∣∣∣dt ≤ d1(k + 1)h

∑
jℓ∈Λ′j

∣∣∣δxen−k
jℓ

∣∣∣2
1
2

, (3.10)

where d1 is a constant defined in Lemma A.1. Using this bound, we estimate the middle two terms of
the right-hand side in (3.7) in the following lemma.
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Lemma 3.3. Suppose that the approximation χ̃ j(t) is included in the subinterval I j for 1 ≤ j ≤ J
and the derivatives dχ̃ j

dt (t) satisfy the conditions of (3.8). Then there exist constants Ck
4 > 0, k = 1, 2

depending on p and M for vectors δxen−k :=
[
δxen−k

1 , δxen−k
2 , . . . , δxen−k

J

]T
(k = 0, 1) such that∣∣∣∣∣ bk

3h

〈
Len−k(χn−k) − en−k, δten+1

〉∣∣∣∣∣ ≤ 3
2

Ck
4

∥∥∥δxen−k
∥∥∥2

2
+

1
6

∥∥∥δten+1
∥∥∥2

2
, b0 = 4, b1 = 1. (3.11)

Proof. By the definition of the discrete ℓ2-norm and the periodicity of δxen−k
j , the inequality (3.10)

shows
∥Len−k(χn−k) − en−k∥22 ≤ pd2

1 M2(k + 1)2h2∥δxen−k∥22, k = 0, 1.

Thus, applying Young’s inequality and choosing Ck
4 := 1

9 pd2
1 M2b2

k(k + 1)2 complete the proof. □

We now estimate the term
〈
Aen+1, δten+1

〉
in (3.7). For this, let δ2

x be the second-order central
difference operator given by

δ2
xe

n
j :=

en
j−1 − 2en

j + en
j+1

△x2 .

Then the finite difference operator δ4
xen+1

j defined by (2.21) can be written in terms of the operators δx

and δ2
x as follows

δ4
xe

n+1
j =

1
12
δxE

n+1
j+1 , E

n+1
j := −△x

(
δ2

xe
n+1
j − δ

2
xe

n+1
j−1

)
+ 12δxen+1

j . (3.12)

Using the expression in (3.12), we have the following result.

Lemma 3.4. For n ≥ 0, the symmetric circulant matrixA defined in (2.24) satisfies〈
Aen+1, δten+1

〉
≤

1
2h

(
∥δxen∥

2
2 −

∥∥∥δxen+1
∥∥∥2

2

)
+
△x2

24h

(∥∥∥δ2
xe

n
∥∥∥2

2
−

∥∥∥δ2
xe

n+1
∥∥∥2

2

)
.

Proof. From discrete summation by parts with the periodicity of en+1, the term
〈
Aen+1, δten+1

〉
can be

expressed as 〈
Aen+1, δten+1

〉
= △x

∑
1≤ j≤J

(
δ4

xe
n+1
j

) (
δten+1

j

)
=
△x
12

∑
1≤ j≤J

(
δxE

n+1
j+1

) (
δten+1

j

)
= −
△x
12

∑
1≤ j≤J

En+1
j+1

(
δxδten+1

j+1

)
+

1
12

(
En+1

J+1δten+1
J+1 − E

n+1
1 δten+1

1

)
= −
△x
12

∑
1≤ j≤J

En+1
j+1

(
δxδten+1

j+1

)
.

(3.13)

Also, from the definition of En+1
j and the property δxδten+1 = δtδxen+1, the term

〈
Aen+1, δten+1

〉
in (3.13)

can be split into two terms as follows:〈
Aen+1, δten+1

〉
:= A1 +A2, (3.14)
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A1 :=
△x2

12

∑
1≤ j≤J

(
δ2

xe
n+1
j+1 − δ

2
xe

n+1
j

) (
δtδxen+1

j+1

)
, A2 := −△x

∑
1≤ j≤J

(
δxen+1

j+1

) (
δtδxen+1

j+1

)
.

Using the periodicity of en+1 and discrete summation by parts again, the term A1 can be estimated as
follows:

A1 = −
△x2

12

[ ∑
1≤ j≤J

(
δ2

xe
n+1
j+1

) (
δtδxen+1

j+2 − δtδxen+1
j+1

)
−

(
δ2

xe
n+1
J+1

) (
δtδxen+1

J+1

)
+

(
δ2

xe
n+1
1

) (
δtδxen+1

1

)]
= −
△x3

12h

∑
1≤ j≤J

δ2
xe

n+1
j+1(δ2

xe
n+1
j+1 − δ

2
xe

n
j+1)

= −
△x2

12h
∥δ2

xe
n+1∥22 +

△x2

12h

〈
δ2

xe
n+1, δ2

xe
n
〉
.

(3.15)

Similarly, from the definition of the operator δt, the termA2 can be estimated as

A2 = −
△x
h

∑
1≤ j≤J

δxen+1
j+1

(
δxen+1

j+1 − δxen
j+1

)
= −

1
h
∥δxen+1∥22 +

1
h

〈
δxen+1, δxen

〉
.

(3.16)

Finally, combining (3.15) and (3.16), the term
〈
Aen+1, δten+1

〉
can be bounded as follows:

h
〈
Aen+1, δten+1

〉
= −

(∥∥∥δxen+1
∥∥∥2

2
−

〈
δxen+1, δxen

〉)
−
△x2

12

(∥∥∥δ2
xe

n+1
∥∥∥2

2
−

〈
δ2

xe
n+1, δ2

xe
n
〉)

≤
1
2

(
∥δxen∥

2
2 −

∥∥∥δxen+1
∥∥∥2

2

)
+
△x2

24

(∥∥∥δ2
xe

n
∥∥∥2

2
−

∥∥∥δ2
xe

n+1
∥∥∥2

2

) (3.17)

with the help of Young’s inequality. This completes the proof. □

Remark 3.5. The negative ofA is positive-definite, which allows the Choleksy decomposition to split
the errors as shown in the first equation of (3.17). This is the discrete version of a common integration
by parts for the Laplacian with the periodic boundary condition.

Combining the results of Lemmas 3.2–3.4, we can establish our main theorem, namely the following
convergence theorem for the proposed scheme.

Theorem 3.6. Suppose that δte1, δxe1, and δ2
xe1 are bounded and the hypotheses in Lemmas 3.2 and

3.3 are satisfied. Then there exists constant C5∗ such that

∥eN∥2 ≤ C5∗
(
√

h
∥∥∥δte1

∥∥∥
2
+
√
ν
∥∥∥δxe1

∥∥∥
2
+
√
ν△x

∥∥∥δ2
xe

1
∥∥∥

2
+ h2 + △x4 +

△xp+1

h

)
,

where C5∗ depends only on C3,Ck
4,CA1 ,CA2 , p, ν,M, and T .

Proof. We apply Young’s inequality on the first term of (3.7), i.e.,
∣∣∣∣〈δten, δten+1

〉∣∣∣∣ ≤ 1
2 ∥δten∥

2
2 +

1
2

∥∥∥δten+1
∥∥∥2

2
and combine the results of Lemmas 3.2–3.4 into (3.7) to obtain

1
3

∥∥∥δten+1
∥∥∥2

2
+
ν

3h

(∥∥∥δxen+1
∥∥∥2

2
+
△x2

12

∥∥∥δ2
xe

n+1
∥∥∥2

2

)
≤

1
6
∥δten∥

2
2 +
ν

3h

(
∥δxen∥

2
2 +
△x2

12

∥∥∥δ2
xe

n
∥∥∥2

2

)
+C5

∑
k=0,1

∥∥∥δxen−k
∥∥∥2

2
+ O2

Γ,
(3.18)
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where C5 := max
{
C3, 3

2Ck
4, k = 0, 1

}
. By adding 1

6

∥∥∥δte1
∥∥∥2

2
on both sides after summing from n = 0 to

N − 1 in (3.18) under the induction hypothesis (A1) on the term ∥δxem∥2 for m < N, we have

1
6

N∑
n=1

∥δten∥
2
2 +
ν

3h

(∥∥∥δxeN
∥∥∥2

2
+
△x2

12

∥∥∥δ2
xe

N
∥∥∥2

2

)
≤

1
3

∥∥∥δte1
∥∥∥2

2
+
ν

3h

(∥∥∥δxe1
∥∥∥2

2
+
△x2

12

∥∥∥δ2
xe

1
∥∥∥2

2

)

+ 2C5
N−1∑
n=1

∥δxen∥
2
2 + NO2

Γ,

(3.19)

in which the asymptotic order h2 from the induction hypothesis is incorporated in O2
Γ
. Since

1
hT

∥∥∥eN
∥∥∥2

2
= 1

h2N

∥∥∥eN − e0
∥∥∥2

2
= 1

N

∥∥∥∥∥∥ N∑
n=1
δten

∥∥∥∥∥∥2

2

≤
N∑

n=1
∥δten∥

2
2 from the telescoping summation, we can obtain

that multiplying by 6hT∥∥∥eN
∥∥∥2

2
+ 2νT

(∥∥∥δxeN
∥∥∥2

2
+
△x2

12

∥∥∥δ2
xe

N
∥∥∥2

2

)
≤ 2T

(
h
∥∥∥δte1

∥∥∥2

2
+ ν

∥∥∥δxe1
∥∥∥2

2
+ ν
△x2

12

∥∥∥δ2
xe

1
∥∥∥2

2
+ 3TO2

Γ

)
, (3.20)

which yields the desired estimate of ∥eN∥2 with the generic constant C5∗ from T and OΓ. □

Remark 3.7. (1) In (3.19), the estimations of ∥δxem∥2 for m < N from the induction hypothesis are
applied to obtain the bound of ∥eN∥2. Equations (3.19) and (3.20) show that the bound of ∥δxeN∥2

increases when either T → ∞ or ν→ 0, and so does ∥eN∥2, cognate to a result shown in [1,5,22].
(2) Note that for the Dirichlet problem [22, Lemma 2], it satisfies eN(x j) = 0 for all x j ∈ ∂I = {a, b},

so that ∥eN∥2 ≤ C∥δxeN∥2 for constant C = 1
2 (b − a)2, which is the discrete Poincaré inequality.

But, the analysis of the model problem with the periodic boundary condition is no longer allowed
to use this inequality as mentioned in the introduction. To overcome this structural drawback,
we have instead investigated the error δten using the temporal finite difference operator in each
time step. By applying the property of the telescoping summation of δten for n ≤ N, the error
eN at the final step can be estimated without the use of the bound ∥δxeN∥2. This approach gives
more general convergence analysis of the BSLMs for solving advection-type equations without
restrictions of boundary conditions compared to the strategy in [22].

(3) The error expansion presented here is similar to the result for cases of linear advection
problems [17] and also nonlinear problems [22] with Dirichlet boundary condition. In particular,
the non-monotonic dependence of the temporal step size O

(
△xp+1/h

)
is a well-known result, and

indicates that the superior accuracy of semi-Lagrangian schemes with smaller temporal step size
may not always be achieved. As expected, the other two terms in O(h2 + △x4) are derived from
global truncation errors in the ECM strategy equipped with BDF2 for the Cauchy problem and
fourth-order central finite difference for the diffusion term. Therefore, the precise convergence
error of BSLM depends on the scheme of backward integration for solving the Cauchy problem
as well as the interpolation formula for estimating the solution at departure points.

(4) The above convergence analysis can be naturally extended in higher-dimensional problems:
For example, the truncation errors of the characteristic curves on departure points in the two-
dimensional problem satisfy consistent results with Lemma 2.1, Corollaries 2.2 and 2.3, (see [22]
for details). With the help of induction hypotheses, one can show that the error equation
corresponding to (3.4) satisfies the same asymptotic behavior in (3.5). Furthermore, the positive
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definite matrix, the negative of A for diffusion term (2.24) in a higher-dimensional problem can
be expressed as a sum of the tensor product of the identity matrix and a positive definite matrix,
so that the result of Lemma 3.4 can be easily extended. The rest of the process to obtain the error
at the final step is achieved by the temporal evolution as Theorem 3.6 in a similar way. Due to
space limitations, we only provide numerical results, (see Example 4.2 in Section 4).

3.2. Stability analysis

In this subsection, we analyze the numerical stability of the proposed semi-Lagrangian scheme by
showing the boundedness of the numerical solution for the model problem (1.1) with respect to the
discrete ℓ2-norm without any restriction of temporal step size h and spatial step size △x. As mentioned
in the Introduction, the stability analysis of the Dirichlet Problem can be obtained by using the discrete
Poincaré inequality from the boundary condition, which is not permissible for the periodic problem.
For the stability of the BSLM with periodic boundary, we instead begin by applying the discrete
Grönwall’s lemma to achieve the bound of δxUm for each m < N and then obtain the bound of UN

by summation of ∥δxUm∥2 from m = 0 to N − 1.

Theorem 3.8. Assume that the trajectories of the characteristic curves satisfy that χn−k
j ∈ I j, (k = 0, 1)

and the condition (3.8) for all j = 1, · · · , J. If U0 is bounded, so that δxU0 and δ2
xU0 are also bounded,

then the discrete solution UN of the proposed BSLM is unconditionally stable in the following sense:

∥UN∥2 ≤ Cs
(∥∥∥U0

∥∥∥
2
+

∥∥∥δxU0
∥∥∥

2
+ △x

∥∥∥δ2
xU

0
∥∥∥

2

)
, N ≥ 2,

where Cs depends only on ν, p, M and T and is independent of h and △x.

Proof. We multiply the numerical system (2.25) by 2/3 and add −Un/h to obtain that

δtUn+1 −
2ν
3
AUn+1 =

1
3
δtUn −

4
3h

(
Un − LUn(χn)

)
+

1
3h

(
Un−1 − LUn−1(χn−1)

)
. (3.21)

Applying the inner product with δtUn+1 in (3.21) yields

∥δtUn+1∥22 −
2ν
3

〈
AUn+1, δtUn+1

〉
=

1
3

〈
δtUn, δtUn+1

〉
−

4
3h

〈
Un − LUn(χn), δtUn+1

〉
+

1
3h

〈
Un−1 − LUn−1(χn−1), δtUn+1

〉
.

(3.22)

We apply Un instead of using en as done in Lemma 3.3 and (3.17) respectively, using similar techniques
to obtain∣∣∣∣∣ bk

3h

〈
LUn−k(χn+1,n−k) − Un−k, δtUn+1

〉∣∣∣∣∣ ≤ 3
2

Ck
4∥δxUn−k∥22 +

1
6

∥∥∥δtUn+1
∥∥∥2

2
, b0 = 4, b1 = 1 (3.23)

and

h
〈
AUn+1, δtUn+1

〉
= −

(∥∥∥δxUn+1
∥∥∥2

2
−

〈
δxUn+1, δxUn

〉)
−
△x2

12

(∥∥∥δ2
xU

n+1
∥∥∥2

2
−

〈
δ2

xU
n+1, δ2

xU
n
〉)

≤
1
2
∥δxUn∥

2
2∗ −

1
2

∥∥∥δxUn+1
∥∥∥2

2∗
,

(3.24)

AIMS Mathematics Volume 8, Issue 5, 11270–11296.



11285

where ∥δxUm∥
2
2∗ := ∥δxUm∥

2
2 +

△x2

12

∥∥∥δ2
xUm

∥∥∥2

2
and Ck

4(k = 0, 1) are the constants in Lemma 3.3. Young’s
inequality applying on the first term of the right-hand side of (3.22) provides〈

δtUn, δtUn+1
〉
≤

1
2
∥δtUn∥22 +

1
2
∥δtUn+1∥22, (3.25)

one can rearrange Eq (3.22) using the bounds of (3.23) and (3.24), so that

1
2

∥∥∥δtUn+1
∥∥∥2

2
+
ν

3h

∥∥∥δxUn+1
∥∥∥2

2∗
≤

1
6
∥δtUn∥

2
2 +
ν

3h
∥δxUn∥

2
2∗ +C4

∑
k=0,1

∥∥∥δxUn−k
∥∥∥2

2
, (3.26)

where C4 := 3
2 max

{
C0
4,C

1
4

}
. Summing on both sides of (3.26) from n = 1 to N − 1 yields

1
3

N∑
n=1

∥δtUn∥
2
2 +
ν

3h

∥∥∥δxUN
∥∥∥2

2∗
≤
ν

3h

∥∥∥δxU0
∥∥∥2

2∗
+ 2C4

N−1∑
n=0

∥δxUn∥
2
2 . (3.27)

Note that
∥∥∥UN

∥∥∥
2
≤

∥∥∥U0
∥∥∥

2
+ h

N∑
n=1
∥δtUn∥2, so that

∥∥∥UN
∥∥∥2

2
≤ 2

∥∥∥U0
∥∥∥2

2
+ 2Nh2 ∑N

n=1 ∥δtUn∥
2
2. Multiplying by

6hT in (3.27) and applying the previous lower bound for
∑N

n=1 ∥δtUn∥
2
2, we obtain

∥∥∥UN
∥∥∥2

2
+ 2νT

∥∥∥δxUN
∥∥∥2

2∗
≤2

∥∥∥U0
∥∥∥2

2
+ 2νT

∥∥∥δxU0
∥∥∥2

2∗
+ 12C4hT

N−1∑
n=0

∥δxUn∥
2
2 . (3.28)

Dividing (3.28) by 2νT induces that

∥∥∥δxUN
∥∥∥2

2
≤

1
νT

∥∥∥U0
∥∥∥2

2
+

∥∥∥δxU0
∥∥∥2

2∗
+ 6C4

h
ν

N−1∑
n=0

∥δxUn∥
2
2 .

Hence, from the discrete Grönwall’s lemma we conclude that∥∥∥δxUN
∥∥∥2

2
≤ e6C4hN/ν

(
1
νT

∥∥∥U0
∥∥∥2

2
+

∥∥∥δxU0
∥∥∥2

2∗

)
,

which implies
N−1∑
n=0

∥δxUn∥
2
2 ≤ C4∗

(
1
νT

∥∥∥U0
∥∥∥2

2
+

∥∥∥δxU0
∥∥∥2

2∗

)
, (3.29)

where C4∗ satisfies

C4∗ :=
N−1∑
n=0

exp
(
6C4hn
ν

)
≤ N exp

(
6C4T
ν

)
.

Again, applying (3.29) to (3.28), we have∥∥∥UN
∥∥∥2

2
≤2

∥∥∥U0
∥∥∥2

2
+ 2νT

∥∥∥δxU0
∥∥∥2

2∗
+ 12C4T 2e

6C4T
ν

(
1
νT

∥∥∥U0
∥∥∥2

2
+

∥∥∥δxU0
∥∥∥2

2∗

)
.

We finally complete the proof by choosing C2
s = max

{
2 + 12

νT C4T 2e
6C4T
ν , 2νT + 12C4T 2e

6C4T
ν

}
. □
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Remark 3.9. (1) The stability analysis is performed to obtain the generic constant Cs, which is
independent of △x and h, using neither the induction hypothesis nor mesh restrictions. Therefore,
the result says that the numerical algorithm is unconditionally stable, which is often numerically
asserted. We will present numerical experiments to support this stability analysis.

(2) This proof procedure offers a more general approach to achieving the stability of the BSLM than
the previous stability presentation in [22], so that the obtained results can be applied to the BSLM
in Dirichlet problems.

4. Numerical experiments

This section provides several experiments with two simple problems to support the theoretical
convergence result and the numerical stability in Theorems 3.6 and 3.8, respectively. To verify the
order of convergence of the proposed scheme, we exhibit rate-varying spatial mesh sizes and temporal
step sizes for varying viscosity ν: the temporal convergence order, the spatial convergence order, and
the reciprocal term. For the second-order temporal convergence, we perform numerical tests with
different sizes of h for a fixed sufficiently small size of △x, so that the error is not much affected by the
terms △x2 and △xp+1/h, and calculate the rate of temporal convergence (RTC) via the formula

log2

(
∥eN(h)∥2/∥eN(h/2)∥2

)
.

Here, ∥eN(h)∥2 denotes the discrete ℓ2-norm error corresponding to the temporal grid size h at the end
time tN . To investigate the order of spatial convergence from the two terms △x4 and △xp+1/h, we restrict
the relation between two step sizes such as h = △x2 using the quintic Lagrange interpolation, p = 5, in
order that

O

(
h2 + △x4 +

△x6

h

)
= O(△x4). (4.1)

Reducing spatial and temporal step sizes by half under the restricted relation, we compute the rate of
spatial convergence (RSC) via the formula

log2

(
∥eN(△x)∥2/∥eN(△x/2)∥2

)
,

where eN(△x) represents the error corresponding to the spatial grid size △x at the end time tN . Finally, to
investigate the non-monotonic property of the term △xp+1/h, we apply three different orders p = 1, 2, 3
of Lagrangian interpolation. For each interpolation order, we demonstrate the error and its ratio by
decreasing the temporal step sizes by half for a fixed spatial step size to determine the behavior of the
fractional term involving temporal step size h based on the analytical results already obtained.

Example 4.1. As the first experiment, we consider the Burgers’ equation of form

ut + uux = νuxx, x ∈ (−1, 1), t ∈ (0, 1]

with the initial condition given by
u0(x) = − sin(πx).
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With the help of a Cole–Hopf transform, the periodic analytic solution [39] is given by

u(x, t) = −

∞∫
−∞

sin
(
π(x −

√
4νts)

)
exp

(
− cos(π(x−

√
4νts))

2νπ

)
exp(−s2)ds

∞∫
−∞

exp
(
− cos(π(x−

√
4νts))

2νπ

)
exp(−s2)ds

.

We have numerically integrated to estimate the analytic solution using Gauss–Hermite quadrature with
200 nodes for the integral form. For the first test, we experiment with the errors and the ratio of the
changes while varying temporal step sizes h = 1/2k, k = 6, 7, · · · , 10 with a fixed small spatial step size
△x = 1/211 ≤ h in the different viscosity coefficients ν = 0.01, 0.1, 1.0. It is easily noted that h2 is the
dominant term of the error, since h2 > △x4/h > △x4 for △x < h ≪ 1, so the error ∥eN∥2 is dominated
by O(h2). Thus, we can check the temporal order of convergence for the method by halving temporal
step sizes under the condition △x < h ≪ 1. The numerical results for the errors and their ratios are
displayed for the different viscosities in Table 1. The figures for RTC in the table guarantee that the
method has the required second-order temporal convergence rate.

Table 1. Errors and RTC with cubic Lagrangian interpolation and △x = 1/211.

h ν = 0.01 ν = 0.1 ν = 1.0

∥eN∥2 RTC ∥eN∥2 RTC ∥eN∥2 RTC

1/26 2.52 × 10−3 - 5.55 × 10−5 - 4.32 × 10−6 -

1/27 7.58 × 10−4 1.73 1.36 × 10−5 2.03 1.04 × 10−6 2.05

1/28 2.06 × 10−4 1.88 3.35 × 10−6 2.02 2.56 × 10−7 2.05

1/29 5.38 × 10−5 1.94 8.32 × 10−7 2.01 6.37 × 10−8 2.01

1/210 1.37 × 10−5 1.97 2.07 × 10−7 2.00 1.71 × 10−8 1.90

To check the order of the spatial convergence we perform a test problem with three different
viscosity coefficients ν = 0.01, 0.5, 1.0, by varying step sizes under the relation h = △x2 such as
(h,△x) = (2−2k, 2−k), k = 1, 2, · · · , 9. The numerical results are displayed in Table 2. The figures show
that the method has an almost fourth-order spatial convergence since each term in the error expression
has fourth-order convergence under the relation h = △x2 as seen in (4.1). This supports the theoretical
order of convergence analyzed in Theorem 3.6.
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Table 2. Errors with quintic Lagrangian interpolation for (h,△x) = (4−k, 2−k) under h = △x2.

ν = 0.01 ν = 0.5 ν = 1.0

(4−k, 2−k) ∥eN∥2 Rate (4−k, 2−k) ∥eN∥2 Rate (4−k, 2−k) ∥eN∥2 Rate

(4−5, 2−5) 8.05 × 10−3 - (4−1, 2−1) 2.28 × 10−2 - (4−2, 2−2) 6.29 × 10−5 -

(4−6, 2−6) 7.05 × 10−4 3.51 (4−2, 2−2) 1.15×10−3 4.31 (4−3, 2−3) 4.24 × 10−6 3.89

(4−7, 2−7) 3.72 × 10−5 4.24 (4−3, 2−3) 7.29 × 10−5 3.98 (4−4, 2−4) 2.54 × 10−7 4.06

(4−8, 2−8) 2.04 × 10−6 4.19 (4−4, 2−4) 5.30 × 10−6 3.78 (4−5, 2−5) 1.60 × 10−8 3.99

(4−9, 2−9) 1.26 × 10−7 4.01 (4−5, 2−5) 4.32 × 10−7 3.62 (4−6, 2−6) 1.05 × 10−9 3.94

Finally, in order to check the reciprocal term of the temporal step size O(△xp+1/h), we apply
Lagrange interpolations with different orders p = 1, 2, 3. It can be seen that the term △xp+1/h dominates
the error as soon as h < △x(p+1)/3 ≪ 1, since

△xp+1

h
=
△x

p+1
3

h
△x

2(p+1)
3 ≥ △x

2(p+1)
3 >

h2

△x4
for p = 1, 2, 3.

We display the behavior of the error for each different interpolation order p = 1, 2, 3 in Figure 1
while varying h = 1/2k, k = 3, 4, · · · , 11 for a fixed spatial grid size △x = 1/26, 1/27 with viscosity
ν = 0.1, 0.01. The horizontal and vertical axes are represented by − ln(h) and ln(∥eN(h)∥2), respectively.
The behavior of the error confirms to a slop of approximately 2 when h ≥ △x(p+1)/3, since O(h2)
dominates the error, as seen in Figure 1. However, the error stops decreasing after the point at which
the △xp+1/h term begins to dominate it. Moreover, we can see that the error is slowly increasing to
certain levels as h is decreasing with h ≤ △x(p+1)/3. This behavior comes from the term O(1/h) and thus
it is not useful for the accuracy of the scheme to choose a temporal step size such as h < △x(p+1)/3.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

-13
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-5
Linear

Quadratic

Cubic

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

-8

-6

-4

-2

Linear

Quadratic

Cubic

Figure 1. The error with respect to h for different interpolations.

Example 4.2. This example is the unsteady two-dimensional Burgers’ equation with periodic boundary
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condition described as

ut(t, x, y) + u⃗(t, x, y) · ∇u(t, x, y) = ν∆u(t, x, y), (x, y) ∈ (−1, 1) × (−1, 1), t ∈ (0, 1],

where u⃗(t, x, y) = [u(t, x, y), u(t, x, y)]T and the initial value is given as u(0, x, y) = − sin (πy) .

In this example, we uniformly discretize the spatial domain given by △x = △y and present the
resulting convergence orders in Theorem 3.6 as extended in the two-dimensional problem. With
the lack of an exact solution for the problem, we compute reference solutions by setting (h,△x) =
(1/28, 1/28) with cubic Lagrangian interpolation and (h,△x) = (1/217, 1/28) with quintic Lagrangian
interpolation to estimate the temporal convergence and spatial convergence rates, respectively. To
estimate the temporal order of convergence, we approach the test problem similarly to Example 1 by
varying h = 1/2k, k = 1, 2, · · · , 7 for a fixed small spatial grid size △x = 1/211, which guarantees that
the two dependent spatial terms △x4 and △xp+1/h become sufficiently smaller than h2. The numerical
results for three different viscosities ν = 0.01, 0.1, 1.0 are displayed in Figure 2(a). The figures indicate
that the method has an almost second-order convergence rate in time, which allows us to use a much
larger temporal than spatial step size, guaranteeing the theoretical temporal order of convergence shown
in Theorem 3.6 with good stability. To check the spatial order of convergence, we reduce spatial step
sizes by half based on the relation h = △x2, for instance (h,△x) = (1/22k, 1/2k), k = 1, 2, · · · , 7
while applying the quintic Lagrange interpolation for different viscosity coefficients ν = 0.01, 0.1, 1.0,
as displayed in Figure 2(b). The figure shows that the proposed scheme has a fourth-order spatial
convergence rate, as seen in the previous example.

1 2 3 4 5

-14

-12

-10

-8

-6

-4

-2

=1

=0.1

=0.01

1 2 3 4 5

-25

-20

-15

-10

-5

0

=1

=0.1

=0.01

Figure 2. (a) Rate Temporal Convergence (RTC) with cubic Lagrangian interpolation and
△x = 1/211. (b) Errors with quintic Lagrange interpolation and h = △x2.

In the next numerical experiment, we support the numerical stability result of Theorem 3.8 for the
proposed BSLM by estimating the generic constant Cs in the theorem as well as showing the behavior
of the numerical solution over a sufficiently long time T with no restriction of step sizes △x and h. The
constant Cs is computed as the ratio of the solution at between the initial time t0 = 0 with its spatial
differences and the final time T = 1 such as

Cs =
∥UN∥2∥∥∥U0

∥∥∥
2
+

∥∥∥δxU0
∥∥∥

2
+ △x

∥∥∥δ2
xU0

∥∥∥
2

.
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We present the estimates of Cs while varying △x = 1/2k, k = 4, 5, · · · , 10 for fixed h = 1/24 and
while varying h = 1/2k, k = 4, 5, · · · , 10 for fixed △x = 1/24 when ν = 0.01, 0.05, 0.1, 0.5, and 1,
which are plotted in Figure 3(a) and 3(b), respectively. The presented figures show that the constant
Cs is independent of the sizes of △x and h as claimed in Theorem 3.8. We next exhibit the behavior
of the discrete ℓ2-norm of the solution Un versus time tn < T = 10 with different spatial step sizes
△x = 1/2k, k = 1, 5, 9, 13 for fixed h = 1/2 when ν = 0.01 and ν = 1.0, which are displayed in
Figure 4, respectively. The experiments show that the solutions consistently decrease for a long time
without blowing up under various spatial step sizes in both cases of ν, even when h is 212(= 4096)
times larger than △x in the case k = 13; this provides strong evidence for the numerical stability of
the scheme. Therefore, the experiment results guarantee that the numerical scheme of the proposed
BSLM is stable without any restriction of the relation between mesh and temporal discretizations, as
we claimed.
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Figure 3. (a) Estimates of Cs for fixed h = 1/24. (b) Estimates of Cs for fixed △x = 1/24.
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Figure 4. (a) Estimates of ∥Un∥2 for 0 ≤ tn ≤ 10 when ν = 0.01. (b) Estimates of ∥Un∥2 for
0 ≤ tn ≤ 10 when ν = 1.0.

We end the section with a comment about the performance of the solution with respect to the
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viscosity. It is well known that one of the difficulties for solving Burgers’ equation occurs when a small
viscosity ν is applied, which generates solution curves steepen as a shock like discontinuity as time
increases. This creates spurious oscillations called Gibbs phenomena near the shock front [18]. The
design of the schemes to overcome this problem with sharp front solutions is one of the challenges [7].
In Figure 5, we present the behaviors of the numerical solution obtained by the proposed BSLM when
viscosity coefficients ν = 1, 0.1, 0.01, 0.001. The figures show the proposed scheme does not suffer
from the sharp front phenomena up to the viscosity ν = 0.001. For more related results or comparisons
of the proposed method, we refer the interested readers to [22, 24, 26–28] and references therein.
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Figure 5. Behavior of the numerical solution u(t, x) when ν = 1, 0.1, 0.01, 0.001 for h = 1/29,
△x = 1/29, p=3.

5. Conclusions

We have proposed a BSLM for solving Burgers’ equation with the periodic boundary condition
and have proved that the scheme has second-order and fourth-order convergence in time and space,
respectively. In particular, the asymptotic expression possesses a reciprocal term of temporal step size
that is inversely proportional to interpolation order. Furthermore, we have shown that the proposed
BSLM is unconditionally stable, allowing the use of a large size of temporal step compared to spatial
step size, with examples of supporting numerical experiments. The analysis of the model problem
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suggests an extension of linear advection–diffusion problems and high-dimensional model problems
with no restriction due to boundary conditions using the same order of discretization, implying
the cognate results for order of convergence. The paper contains a theoretical result, namely, the
asymptotic order of convergence and numerical stability of the scheme with respect to the discrete ℓ2-
norm with varying viscosity coefficients. The overall theoretical order of convergence and numerical
stability of the scheme are also numerically verified with examples.

Acknowledgments

The first author (P.Kim) was supported by the R&D program through Korea Institute of Fusion
Energy (KFE) funded by the Government funds, Republic of Korea (No. EN2241-3) and the
National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1A4A1018190).

Conflict of interest

The authors declare no conflicts of interest.

References

1. A. Allievi, R. Bermejo, Finite element modified method of characteristics for the Navier–Stokes
equations, Int. J. Numer. Methods Fluids, 32 (2000), 439–463.

2. K. E. Atkinson, An introduction to numerical analysis, 2 Eds., Canada: Wiley, 1989.
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Appendix

Lagrange interpolation and its properties

In this appendix, we review the Lagrange interpolation polynomial used to analyze the convergence
and stability of the proposed BSLM and also introduce its properties. We consider the domain I to
be uniformly discretized by a spatial grid size △x and a fixed number J as shown in (2.2). For a
given periodic function w(x) defined in I and each local cell I j := [x j−1, x j], let L jw(x) be a jth local
Lagrangian interpolation polynomial of degree p ≥ 1 defined by

L jw(x) :=
∑
k∈Λ j

wkL j,k(x), x ∈ I j,

L j,k(x) :=
∏

jℓ∈Λ j\{ jk}

x − x jℓ

x jk − x jℓ
, Λ j :=

{
jℓ := j + ℓ −

[
p + 1

2

]
, 0 ≤ ℓ ≤ p

}
,

(A.1)

where wk := w(xk) and [m] denotes the integer satisfying [m] ≤ m < [m] + 1. For the interpolation
polynomial near boundary points, we consider wJ+k = wk and w−k = wJ−k for the periodicity when
J + k, −k ∈ Λ j. Using the local interpolation L jw(x) of (A.1), a sufficiently smooth function w(x) can
be approximated as

w(x) ≈ Lw(x) :=
∑

1≤ j≤J

1I j(x)L jw(x), w := [w1, · · · ,wJ]T, (A.2)

and for x ∈ I j, its truncation error (see [2] for detail) satisfies∣∣∣∣w(x) − Lw(x)
∣∣∣∣ =

∣∣∣∏ jℓ∈Λ j
(x − x jℓ)

∣∣∣
(p + 1)!

∣∣∣w(p+1)(ξ j)
∣∣∣ ≤ △xp+1

4(p + 1)

∥∥∥w(p+1)
∥∥∥
∞

(A.3)

for some ξ j ∈ I j, since |
∏

jℓ∈Λ j
(x − x jℓ)| ≤

1
4△xp+1

[
p+1

2

]
!
[

p+2
2

]
! for uniformly spaced. Here, 1I j

denotes the indicator function and ∥ · ∥∞ is the infinity norm. Note that the interpolation Lw(x) is
piece-wise continuous in I but in general not differentiable at the grid points. To overcome this non-
differentiability of Lw(x) for x ∈ I j on the interface, we define a derivative D̃xLw(x) such as

D̃x(Lw(x)) :=

1
2

(
Dx(L jw(x)) + Dx(L j+1w(x))

)
if x = x j,

Dx(L jw(x)) otherwise.
(A.4)

We note [27, Lemma 2.3] that for a sufficiently smooth function w(x) defined on I j, the derivative
D̃x defined in (A.4) satisfies

Dxw(x) − D̃x(Lw(x)) = O(△xp). (A.5)

Lastly, we introduce some boundedness properties for the interpolation polynomial.

Lemma A.1. The derivative of L jw(x) defined in (A.1) can be bounded by∣∣∣Dx(L jw(x))
∣∣∣ ≤ d1

∑
k∈Λ′j

∣∣∣δxwk

∣∣∣, δxwk :=
wk − wk−1

△x
,
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where Λ′j := { jℓ ∈ Λ j|1 ≤ ℓ ≤ p}, d1 := d0 p(p + 1), d0 := max
x∈I j

( ∏
k,ℓ∈Λ j

k,ℓ

∣∣∣∣ x−xk
xℓ−xk

∣∣∣∣ ). Furthermore, for x ∈ I j,

we have ∣∣∣∣Dx(L jw(x))
∣∣∣∣ ≤ d2

△x
∥w∥2, w = [w1, · · · ,wJ]T,

where d2 := 2d0 p2(p + 1), and ∥ · ∥ denotes the standard Euclidean L2-norm.

Proof. First note that the Lagrange interpolation basis L j,k(x) of degree p given by (A.1) satisfies∑
k∈Λ j

L j,k(x) = 1, Dx

( ∑
k∈Λ j

L j,k(x)
)
= 0. (A.6)

Hence, using the property (A.6), one can easily check that

Dx(L jw(x)) =
∑
k∈Λ j

wkDx(L j,k(x)) =
∑
k∈Λ′j

k∑
ℓ= j1

Dx(L j,k(x))
(
wℓ − wℓ−1

)
. (A.7)

From the definition of (A.1), we have that for any k ∈ Λ j∣∣∣∣Dx(L j,k(x))
∣∣∣∣ ≤ ∑

i∈Λ j\{k}

∣∣∣∣∣∣
∏
ℓ∈Λ j\{i,k}(x − xℓ)∏
ℓ∈Λ j\{k}(xk − xℓ)

∣∣∣∣∣∣
=

∑
i∈Λ j\{k}

1
|xk − xi|

∏
ℓ∈Λ j\{i,k}

∣∣∣∣∣ x − xℓ
xk − xℓ

∣∣∣∣∣
≤

p
△x

d0,

(A.8)

and Eqs (A.7) and (A.8) imply∣∣∣∣Dx(L jw(x))
∣∣∣∣ ≤ d0 p(p + 1)

∑
k∈Λ′j

∣∣∣∣wk − wk−1

△x

∣∣∣∣ ≤ d1

∑
k∈Λ′j

∣∣∣∣wk − wk−1

△x

∣∣∣∣,
which proves the first assertion. For the second assertion, we apply the triangle inequality and the
Cauchy-Schwartz inequality to obtain∣∣∣∣DxL jw(x)

∣∣∣∣ ≤ d0 p(p + 1)
△x

∑
k∈Λ′j

(
|wk| + |wk−1|

)
≤

d2

△x
∥w∥2,

which completes the proof. □

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 11270–11296.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Calculation of departure points and discretization of BSLM
	Review of ECM
	Estimation of truncation errors for departure points
	Fourth-order spatial discretization of the Helmholtz equation

	Convergence and stability analysis of BSLM 
	Convergence analysis
	Stability analysis

	Numerical experiments
	Conclusions

