A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
Citation: Obaid Algahtani, M. A. Abdelkawy, António M. Lopes. A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations[J]. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
[1] | Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu . A class of hypersurfaces in En+1s satisfying Δ→H=λ→H. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003 |
[2] | Mutaz Al-Sabbagh . Surfaces of coordinate finite II-type. AIMS Mathematics, 2025, 10(3): 6258-6269. doi: 10.3934/math.2025285 |
[3] | Yanlin Li, Erhan Güler, Magdalena Toda . Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Mathematics, 2024, 9(7): 18732-18745. doi: 10.3934/math.2024911 |
[4] | Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252 |
[5] | Mohammed Guediri, Sharief Deshmukh . Hypersurfaces in a Euclidean space with a Killing vector field. AIMS Mathematics, 2024, 9(1): 1899-1910. doi: 10.3934/math.2024093 |
[6] | Hanan Alohali, Sharief Deshmukh . Some generic hypersurfaces in a Euclidean space. AIMS Mathematics, 2024, 9(6): 15008-15023. doi: 10.3934/math.2024727 |
[7] | Yanlin Li, Nasser Bin Turki, Sharief Deshmukh, Olga Belova . Euclidean hypersurfaces isometric to spheres. AIMS Mathematics, 2024, 9(10): 28306-28319. doi: 10.3934/math.20241373 |
[8] | Hassan Al-Zoubi, Bendehiba Senoussi, Mutaz Al-Sabbagh, Mehmet Ozdemir . The Chen type of Hasimoto surfaces in the Euclidean 3-space. AIMS Mathematics, 2023, 8(7): 16062-16072. doi: 10.3934/math.2023819 |
[9] | Sharief Deshmukh, Mohammed Guediri . Characterizations of Euclidean spheres. AIMS Mathematics, 2021, 6(7): 7733-7740. doi: 10.3934/math.2021449 |
[10] | Jin Liu, Botao Wang . A rigidity result for 2-dimensional λ-translators. AIMS Mathematics, 2023, 8(10): 24947-24956. doi: 10.3934/math.20231272 |
A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
Chen [11,12,13,14] originally proposed the notion of submanifolds of finite order immersed in m-space Em or pseudo-Euclidean m -space Emν employing a finite number of eigenfunctions of their Laplacian. This subject has subsequently undergone thorough investigation.
Takahashi established that a Euclidean submanifold is classified as 1-type if and only if it is minimal or minimal within a hypersphere of Em. The study of 2-type submanifolds on closed spheres was conducted by [9,10,12]. Garay further [26] examined Takahashi's theorem in Em. Cheng and Yau [18] focused on hypersurfaces with constant curvature, while Chen and Piccinni [15] concentrated on submanifolds with a Gauss map of finite type in Em. Dursun [22] introduced hypersurfaces with a pointwise 1-type Gauss map in En+1. Aminov [2] delved into the geometry of submanifolds. Within the domain of space forms, Chen et al. [16] dedicated four decades to the investigation of 1-type submanifolds and the 1-type Gauss map.
In E3, Takahashi [43] explored the concept of minimal surfaces, where spheres and minimal surfaces with Δr=λr, λ∈R are the exclusive types of surfaces. Ferrandez et al. [23] identified that surfaces ΔH=A3×3H are either the minimal sections of a sphere or a right circular cylinder. Choi and Kim [19] examined the minimal helicoid with a pointwise 1-type Gauss map of the first kind. Garay [25] derived a category of finite type surfaces that are revolution-based. Dillen et al. [20] investigated the unique surfaces characterized by Δr=A3×3r+B3×1, which include minimal surfaces, spheres, and circular cylinders. Stamatakis and Zoubi [42] established the properties of surfaces of revolution defined by ΔIIIx=A3×3x. Kim et al. [36] focused on the Cheng-Yau operator and the Gauss map of surfaces of revolution.
In E4, Moore [40,41] conducted two studies on general rotational surfaces. Hasanis and Vlachos [35] examined hypersurfaces with a harmonic mean curvature vector field. Cheng and Wan [17] focused on complete hypersurfaces with constant mean curvature. Arslan et al. [3] explored the Vranceanu surface with a pointwise 1-type Gauss map. Arslan et al. [4] investigated generalized rotational surfaces and [5] introduced tensor product surfaces with a pointwise 1-type Gauss map. Yoon [44] established certain relations involving the Clifford torus. Güler et al. [30] delved into helicoidal hypersurfaces, while Güler et al. [29] studied the Gauss map and the third Laplace-Beltrami operator of rotational hypersurfaces. Güler [28] investigated rotational hypersurfaces characterized by ΔIR=A4×4R. Furthermore, Güler [27] obtained the fundamental form IV and curvature formulas of the hypersphere.
In Minkowski 4-space E41, Ganchev and Milousheva [24] explored the analogous surfaces to those in [40,41]. Arvanitoyeorgos et al. [8] investigated the mean curvature vector field, where they established ΔH=αH with a constant α. Arslan and Milousheva [6] focused on meridian surfaces of elliptic or hyperbolic type with a pointwise 1-type Gauss map. Arslan et al. [7] examined rotational λ-hypersurfaces in Euclidean spaces. Güler et al. [31,32,33,34] worked the concept of bi-rotational hypersurfaces. Li and Güler studied a family of hypersurfaces of revolution distinguished by four parameters in the five-dimensional pseudo-Euclidean space E52 [39].
The aim of this paper is to present a family of hypersurfaces of revolution in the seven-dimensional pseudo-Euclidean space E73. This family, denoted as r, is characterized by six parameters. The paper focuses on computing various matrices associated with r, including the fundamental form, Gauss map, and shape operator. The Cayley-Hamilton theorem is employed to determine the curvatures of r. Furthermore, the paper establishes equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of r. Additionally, the paper explores the connection between the Laplace-Beltrami operator of r and a 7×7 matrix.
In Section 2, we provide an explanation of the fundamental concepts of seven-dimensional pseudo-Euclidean geometry.
Section 3 is dedicated to presenting the curvature formulas of a hypersurface in E73.
In Section 4, we offer a comprehensive definition of the hypersurfaces of revolution family, focusing on their properties and characteristics.
In Section 5, we discuss the Laplace-Beltrami operator of a smooth function in E73 and utilize the previously discussed family to compute it.
Finally, we serve a conclusion in the last section.
In this paper, we use the following notations, formulas, eqations, etc.
For clarity, Emv represents a pseudo-Euclidean m-space with coordinates denoted as (x1,x2,⋯,xm) with index v. The canonical pseudo-Euclidean metric tensor on Emv is represented by ˜g and defined as ˜g=⟨ ⟩=−v∑i=1dx2i+m∑i=v+1dx2i. Let ˜M be an m-dimensional semi-Riemannian submanifold, and is embedded in Emv, and the Levi-Civita connections [38] associated with M are denoted as ˜∇,∇, respectively. We utilize X,Y,Z, and W to denote vector fields tangent to M, and ξ,ς to represent vector fields normal to M.
The Gauss formula and the Weingarten formula is given by
˜∇XY=∇XY+h(X,Y), ˜∇Xξ=−Aξ(X)+DXξ, |
where h represents the second fundamental form of M, A denotes the shape operator, and D corresponds to the normal connection of M. The shape operator Aξ is a symmetric endomorphism of the tangent space TpM at each point p∈M for each ξ∈T⊥pM. The shape operator and the second fundamental form are related by the equation.
⟨h(X,Y),ξ⟩=⟨AξX,Y⟩. |
The Gauss equation is determined by
⟨R(X,Y,)Z,W⟩=⟨h(Y,Z),h(X,W)⟩−⟨h(X,Z),h(Y,W)⟩, |
where R describes the curvature tensor associated with the Levi-Civita connection ∇, and h denotes the second fundamental form of M. The Codazzi equation is given by
(ˉ∇Xh)(Y,Z)=(ˉ∇Yh)(X,Z), |
where ˉ∇h denotes the covariant derivative of h w.r.t. the Levi-Civita connection ∇, and X,Y,Z represent tangent vector fields on M. The curvature tensor RD associated with the normal connection D is not explicitly mentioned in the given equations. The covariant derivative of h is defined by
(ˉ∇Xh)(Y,Z)=DXh(Y,Z)−h(∇XY,Z)−h(Y,∇XZ), |
where D represents the normal connection of M.
Let M be an oriented hypersurface in En+1 with its shape operator S, and position vector x. Consider a local orthonormal frame field {e1,e2,⋯,en} consisting of principal directions of M coinciding with the principal curvature ki for i=1,2,⋯,n. Let the dual basis of this frame field be {f1,f2,⋯,fn}. Then, the first structural equation of Cartan is determined by
dθi=n∑i=1θj∧ωij,i,j=1,2,⋯,n, |
where ωij indicates the connection forms coinciding with the chosen frame field. By the Codazzi equation, we derive the equations.
ei(kj)=ωij(ej)(ki−kj),ωij(el)(ki−kj)=ωil(ej)(ki−kl) |
for different i,j,l=1,2,⋯,n.
We let sj=σj(k1,k2,⋯,kn), where σj denotes the j-th elementary symmetric function defined by
σj(a1,a2,⋯,an)=∑1≤i1<i2<⋯<ij≤nai1ai2⋯aij. |
We consider the notation
rji=σj(k1,k2,⋯,ki−1,ki+1,ki+2,⋯,kn). |
According to the given definition, we have r0i=1 and sn+1=sn+2=⋯=0. The function sk is referred to as the k -th mean curvature of the oriented hypersurface M. The mean curvature H=1ns1 is also defined, and the Gauss-Kronecker curvature of M is K=sn. If sj≡0, the hypersurface M is known as j -minimal.
In Euclidean (n+1)-space, getting the i-th curvature formulas Ki (see [1,37] for details), where i=0,⋯,n, we have the following characteristic polynomial equation PS(λ)=0 of S:
n∑k=0(−1)kskλn−k=det(S−λIn)=0. | (2.1) |
Here i=0,⋯,n, In indicates the identity matrix. Hence, we reveal the curvature formulas as (ni)Ki=si.
Let r=r(u,v,w,α,β,γ) be an immersion from M6⊂E6 to E73.
Definition 1. An inner product of υ1=(υ11,υ12,⋯,υ17),⋯, υ2=(υ21,υ22,⋯,υ27) of E73 is determined by
⟨υ1,υ2⟩=υ11υ21−υ12υ22+υ13υ23−υ14υ24+υ15υ25−υ16υ26+υ17υ27. |
Definition 2. A sixtuple vector product of υ1=(υ11,υ12,⋯,υ17), υ2=(υ21,υ22,⋯,υ27),⋯, υ6=(υ61,υ62,⋯,υ67) of E73 is defined by
υ1×υ2×⋯×υ6=det(e1−e2e3−e4e5−e6e7υ11υ12υ13υ14υ15υ16υ17υ21υ22υ23υ24υ25υ26υ27υ31υ32υ33υ34υ35υ36υ37υ41υ42υ43υ44υ45υ46υ47υ51υ52υ53υ54υ55υ56υ57υ61υ62υ63υ64υ65υ66υ67). |
Definition 3. The product matrix (gij)−1· (hij) describes the shape operator matrix S of hypersurface r in pseudo-Euclidean 7-space E73, where, (gij)6×6 and (hij)6×6 describe the first and the second fundamental form matrices, respectively, and gij=⟨ri,rj⟩, hij=⟨rij,G⟩, i,j=1,2,⋯,6, ru=∂r∂u when i=1, ruv=∂2r∂u∂v when i=1 and j=2, etc., ek denotes the natural base elements of E7. Here,
G=ru×rv×rw×rα×rβ×rγ‖ | (2.2) |
determines the Gauss map of the hypersurface \mathfrak{r} .
In this section, we reveal the curvature formulas of any hypersurface \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7}.
Theorem 1. A hypersurface \mathfrak{r} in \mathbb{E}_{3}^{7} has the following curvature formulas, \mathcal{K}_{0} = 1 by definition,
\begin{equation} 6\mathcal{K}_{1} = -\frac{\mathfrak{a}_{5}}{\mathfrak{a}_{6}},{\text{ }}15 \mathcal{K}_{2} = \frac{\mathfrak{a}_{4}}{\mathfrak{a}_{6}},{\text{ }}20\mathcal{ K}_{3} = -\frac{\mathfrak{a}_{3}}{\mathfrak{a}_{6}},{\text{ }}15\mathcal{K}_{4} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}},{\text{ }}6\mathcal{K}_{5} = -\frac{ \mathfrak{a}_{1}}{\mathfrak{a}_{6}},{\text{ }}\mathcal{K}_{6} = \frac{\mathfrak{a }_{0}}{\mathfrak{a}_{6}}, \end{equation} | (3.1) |
where \mathfrak{a}_{6}\lambda ^{6}+\mathfrak{a}_{5}\lambda ^{5}+ \mathfrak{a}_{4}\lambda ^{4}+\mathfrak{a}_{3}\lambda ^{3}+\mathfrak{a} _{2}\lambda ^{2}+\mathfrak{a}_{1}\lambda +\mathfrak{a}_{0} = 0 denotes the characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of the shape operator matrix \mathcal{S} , \mathfrak{a} _{6} = \det \left(\mathfrak{g}_{ij}\right) , \mathfrak{a}_{0} = \det \left(\mathfrak{h}_{ij}\right) , and \left(\mathfrak{g} _{ij}\right) , \left(\mathfrak{h}_{ij}\right) are the first, and the second fundamental form matrices, respectively.
Proof. The solution matrix \left(\mathfrak{g}_{ij}\right) ^{-1} · \left(\mathfrak{h}_{ij}\right) supplies the shape operator matrix \mathcal{S} of hypersurface \mathfrak{r} in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . In \mathbb{E} _{3}^{7} , computing the curvature formula \mathcal{K}_{i} , where i = 0, 1, \cdots, 6, we reveal the characteristic polynomial equation \det (\mathcal{S} -\lambda \mathcal{I}_{6}) = 0 of \mathcal{S} . Then, we obtain
\begin{eqnarray*} \binom{6}{0}\mathcal{K}_{0} & = &1, \\ \binom{6}{1}\mathcal{K}_{1} & = &\sum\limits_{i = 1}^{6}k_{i} = -\frac{\mathfrak{a} _{5}}{\mathfrak{a}_{6}}, \\ \binom{6}{2}\mathcal{K}_{2} & = &\sum\limits_{1 = i_{1} < i_{2}}^{6}k_{i_{1}}k_{i_{2}} = \frac{\mathfrak{a}_{4}}{ \mathfrak{a}_{6}}, \\ \binom{6}{3}\mathcal{K}_{3} & = &\sum\limits_{1 = i_{1} < i_{2} < i_{3}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}} = -\frac{ \mathfrak{a}_{3}}{\mathfrak{a}_{6}}, \\ \binom{6}{4}\mathcal{K}_{4} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}}, \\ \binom{6}{5}\mathcal{K}_{5} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4} < i_{5}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}}k_{i_{5}} = - \frac{\mathfrak{a}_{1}}{\mathfrak{a}_{6}}, \\ \binom{6}{6}\mathcal{K}_{6} & = &\prod\limits_{i = 1}^{6}k_{i} = \frac{\mathfrak{a} _{0}}{\mathfrak{a}_{6}}. \end{eqnarray*} |
Definition 4. A space-like hypersurface \mathfrak{r} is called j -maximal if \mathcal{K}_{j} = 0 , where j = 1, ..., 6.
Theorem 2. A hypersurface \mathfrak{r} = \mathfrak{r} (u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7} has the following relation
\begin{equation*} \mathcal{K}_{0}\mathbb{VII}-6\mathcal{K}_{1}\mathbb{VI}+15\mathcal{K}_{2} \mathbb{V}-20\mathcal{K}_{3}\mathbb{IV}+15\mathcal{K}_{4}\mathbb{III}-6 \mathcal{K}_{5}\mathbb{II}+\mathcal{K}_{6}\mathbb{I} = \mathcal{O}_{6}, \end{equation*} |
where \mathbb{I}, \mathbb{II}, \cdots, \mathbb{VII} determines the fundamental form matrices, \mathcal{O}_{6} represents the zero matrix having order 6\times 6 of the hypersurface.
Proof. Regarding n = 6 in \left(2.1\right) , it works.
In this section, we define the hypersurfaces of revolution family (HRF), then find its differential geometric properties in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . An HR in Riemannian space forms were given in [21].
An HRF M of Euclidean \left(n+1\right) -space constructed by a hypersurface \hbar around rotating axis \mathcal{\ell } does not meet \hbar is acquired by taking the orbit of \mathcal{\ell } under the orthogonal transformations of \left(n+1\right) -space.
To consctruct an HRF, we start with the generating hypersurface given by \hbar = \hbar \left(u, v, w\right) = \left(\eta, 0, \psi, 0, \phi, 0, \varphi \right), and apply the rotation matrix \mathfrak{R} = diag \left(\mathcal{R}_{\alpha }, \mathcal{R}_{\beta }, \mathcal{R}_{\gamma }, 1\right) with the elements given by \mathcal{R}_{k} = \left(\begin{array}{cc} \cosh k & \sinh k \\ \sinh k & \cosh k \end{array} \right), k = \alpha, \beta, \gamma, respectively, and \mathfrak{R}{\text{ · }}\mathcal{\ell } = \mathcal{\ell } , \det \mathfrak{R} = 1. Therefore, we state the HRF given by \mathfrak{r} = \mathfrak{R} · \hbar ^{T} when \hbar rotates about axis \mathcal{ \ell } = \overrightarrow{e_{7}} = (0, 0, 0, 0, 0, 0, 1). We then present the following.
Definition 5. An HRF is an immersion \mathfrak{r} : M^{6} \subset \mathbb{E}^{6}\longrightarrow \mathbb{E}_{3}^{7} with rotating axis \overrightarrow{e_{7}} , defined by
\begin{equation} \mathfrak{r}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \eta \cosh \alpha ,\eta \sinh \alpha ,\psi \cosh \beta ,\psi \sinh \beta ,\phi \cosh \gamma ,\phi \sinh \gamma ,\varphi \right) , \end{equation} | (4.1) |
where \eta, \psi, \phi, \varphi denote the differentiable functions, depend on u, v, w\in \mathbb{R} , 0\leq \alpha, \beta, \gamma < 2\pi.
Considering the first derivatives of HRF given by Eq \left(4.1\right) w.r.t. u, v, w, \alpha, \beta, \gamma, respectively, we find the symmetical first fundamental form matrix
\begin{equation} \left( \mathfrak{g}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{g}_{kl}\right) _{3\times 3}, & \mathfrak{g}_{44}, & \mathfrak{g}_{55}, & \mathfrak{g}_{66} \end{array} \right) , \end{equation} | (4.2) |
where
\begin{eqnarray*} \mathfrak{g}_{11} & = &\eta _{u}^{2}+\psi _{u}^{2}+\phi _{u}^{2}+\varphi _{u}^{2}, \\ \mathfrak{g}_{12} & = &\eta _{u}\eta _{v}+\psi _{u}\psi _{v}+\phi _{u}\phi _{v}+\varphi _{u}\varphi _{v}, \\ \mathfrak{g}_{13} & = &\eta _{u}\eta _{w}+\psi _{u}\psi _{w}+\phi _{u}\phi _{w}+\varphi _{u}\varphi _{w}, \\ \mathfrak{g}_{22} & = &\eta _{v}^{2}+\psi _{v}^{2}+\phi _{v}^{2}+\varphi _{v}^{2}, \\ \mathfrak{g}_{23} & = &\eta _{v}\eta _{w}+\psi _{v}\psi _{w}+\phi _{v}\phi _{w}+\varphi _{v}\varphi _{w}, \\ \mathfrak{g}_{33} & = &\eta _{w}^{2}+\psi _{w}^{2}+\phi _{w}^{2}+\varphi _{w}^{2}, \\ \mathfrak{g}_{44} & = &\eta ^{2},{\text{ }}\mathfrak{g}_{55} = \psi ^{2},{\text{ }} \mathfrak{g}_{66} = \phi ^{2}, \end{eqnarray*} |
and \eta _{u} = \frac{\partial \eta }{\partial u}, \eta _{v} = \frac{\partial \eta }{\partial v}, \eta _{u}^{2} = \frac{\partial ^{2}\eta }{\partial u^{2}}, etc. Hence, {\bf{\hat{g}}} = \det \left(\mathfrak{g}_{ij}\right) = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}, where
\begin{equation*} \mathcal{Q} = \left( {\mathcal{G}}_{1}\right) ^{2}+\left( {\mathcal{G}} _{2}\right) ^{2}+\left( {\mathcal{G}}_{3}\right) ^{2}+\left( {\mathcal{G}} _{4}\right) ^{2}, \end{equation*} |
and
\begin{eqnarray*} {\mathcal{G}}_{1} & = &\left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{2} & = &\left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{3} & = &\left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{4} & = &\left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w}. \end{eqnarray*} |
Since {\bf{\hat{g}}} > 0 , the HRF given by Eq \left(4.1 \right) is a space-like hypersurface.
Using \left(2.2\right), we obtain the following Gauss map of the HRF determined by Eq \left(4.1\right) :
\begin{equation} {\mathcal{G}} = \mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\cosh \alpha ,{ \mathcal{G}}_{1}\sinh \alpha ,{\mathcal{G}}_{2}\cosh \beta ,{\mathcal{G}} _{2}\sinh \beta ,{\mathcal{G}}_{3}\cosh \gamma ,{\mathcal{G}}_{3}\sinh \gamma ,{\mathcal{G}}_{4}\right) . \end{equation} | (4.3) |
With the help of the second derivatives w.r.t. u, v, w, \alpha, \beta, \gamma, of HRF described by Eq \left(4.1\right), and by using the Gauss map given by Eq \left(4.3\right) , we reveal the following symmetical second fundamental form matrix
\begin{equation} \left( \mathfrak{h}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{h}_{kl}\right) _{3\times 3}, & \mathfrak{h}_{44}, & \mathfrak{h}_{55}, & \mathfrak{h}_{66} \end{array} \right) , \end{equation} | (4.4) |
where
\begin{eqnarray*} \mathfrak{h}_{11} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uu}+{ \mathcal{G}}_{2}\psi _{uu}+{\mathcal{G}}_{3}\phi _{uu}+{\mathcal{G}} _{4}\varphi _{uu}\right) , \\ \mathfrak{h}_{12} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uv}+{ \mathcal{G}}_{2}\psi _{uv}+{\mathcal{G}}_{3}\phi _{uv}+{\mathcal{G}} _{4}\varphi _{uv}\right) , \\ \mathfrak{h}_{13} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uw}+{ \mathcal{G}}_{2}\psi _{uw}+{\mathcal{G}}_{3}\phi _{uw}+{\mathcal{G}} _{4}\varphi _{uw}\right) , \\ \mathfrak{h}_{22} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vv}+{ \mathcal{G}}_{2}\psi _{vv}+{\mathcal{G}}_{3}\phi _{vv}+{\mathcal{G}} _{4}\varphi _{vv}\right) , \\ \mathfrak{h}_{23} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vw}+{ \mathcal{G}}_{2}\psi _{vw}+{\mathcal{G}}_{3}\phi _{vw}+{\mathcal{G}} _{4}\varphi _{vw}\right) , \\ \mathfrak{h}_{33} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{ww}+{ \mathcal{G}}_{2}\psi _{ww}+{\mathcal{G}}_{3}\phi _{ww}+{\mathcal{G}} _{4}\varphi _{ww}\right) , \\ \mathfrak{h}_{44} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{1}\eta ,{\text{ }} \\ \mathfrak{h}_{55} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{2}\psi ,{\text{ }} \\ \mathfrak{h}_{66} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{3}\phi , \end{eqnarray*} |
and \eta _{uu} = \frac{\partial ^{2}\eta }{\partial u^{2}}, \eta _{uv} = \frac{\partial ^{2}\eta }{\partial u\partial v}, ect.. By using \left(4.2\right) and \left(4.4\right) , we compute the following shape operator matrix of \left(4.1\right) :
\begin{equation*} \mathcal{S} = {\text{diag}}\left( \begin{array}{cccc} \left( {\mathfrak{s}}_{kl}\right) _{3\times 3}, & {\mathfrak{ s}}_{44}, & \mathfrak{s}_{55}, & \mathfrak{s}_{66} \end{array} \right) \end{equation*} |
with the following components
\begin{eqnarray*} \mathfrak{s}_{11} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{12} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{13} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{21} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{22} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{23} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{31} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{13}\right] /\mathcal{Q}, \\ \mathfrak{s}_{32} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{23}\right] /\mathcal{Q}, \\ \mathfrak{s}_{33} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{33}\right] /\mathcal{Q}, \\ \mathfrak{s}_{44} & = &\frac{\mathfrak{h}_{44}}{\mathfrak{g}_{44}}, \ \mathfrak{s}_{55} = \frac{\mathfrak{h}_{55}}{\mathfrak{g}_{55}}, \ \mathfrak{s}_{66} = \frac{\mathfrak{h}_{66}}{\mathfrak{g}_{66}}. \end{eqnarray*} |
Finally, using \left(3.1\right) , with \left(4.2\right) , \left(4.4\right) , respectively, we find the curvatures of the HRF defined by Eq \left(4.1\right) as follows.
Theorem 3. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} contains the following curvatures
\begin{eqnarray*} \mathcal{K}_{1} & = &\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s} _{33}+\mathfrak{s}_{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) /6, \\ && \\ \mathcal{K}_{6} & = &\left( \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+ \mathfrak{s}_{12}\mathfrak{s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{ s}_{12}\mathfrak{s}_{13}+\mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{ s}_{23}-\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}\right) \mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66}. \end{eqnarray*} |
Here, \mathcal{K}_{1} represents the mean curvature, \mathcal{K}_{6} denotes the Gauss-Kronecker curvature.
Proof. By using the Cayley-Hamilton theorem, we reveal the following characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of \mathcal{S} :
\begin{equation*} \mathcal{K}_{0}\lambda ^{6}-6\mathcal{K}_{1}\lambda ^{5}+15\mathcal{K} _{2}\lambda ^{4}-20\mathcal{K}_{3}\lambda ^{3}+15\mathcal{K}_{4}\lambda ^{2}-6\mathcal{K}_{5}\lambda +\mathcal{K}_{6} = 0. \end{equation*} |
The curvatures \mathcal{K}_{1} and \mathcal{K}_{6} of \mathfrak{r} are obtained by the above equation.
Corollary 1. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 1 -maximal (i.e., has zero mean curvature) iff the following partial differential equation appears
\begin{equation*} \begin{array}{l} \left( \mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{h}_{66}+\mathfrak{g}_{44} \mathfrak{h}_{55}\mathfrak{g}_{66}+\mathfrak{h}_{44}\mathfrak{g}_{55} \mathfrak{g}_{66}\right) Q \\ -2\mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{g}_{66}(\mathfrak{g}_{11} \mathfrak{g}_{23}\mathfrak{h}_{23}-\mathfrak{g}_{12}\mathfrak{g}_{13} \mathfrak{h}_{23}+\mathfrak{g}_{12}\mathfrak{h}_{12}\mathfrak{g}_{33}- \mathfrak{g}_{12}\mathfrak{g}_{23}\mathfrak{h}_{13}+\mathfrak{g}_{13} \mathfrak{g}_{22}\mathfrak{h}_{13} \\ -\mathfrak{g}_{13}\mathfrak{h}_{12}\mathfrak{g}_{23}+\mathfrak{g}_{11} \mathfrak{g}_{22}\mathfrak{h}_{33}+\mathfrak{g}_{11}\mathfrak{h}_{22} \mathfrak{g}_{33}+\mathfrak{h}_{11}\mathfrak{g}_{22}\mathfrak{g}_{33}- \mathfrak{h}_{11}\mathfrak{g}_{23}^{2}-\mathfrak{g}_{13}^{2}\mathfrak{h} _{22}-\mathfrak{g}_{12}^{2}\mathfrak{h}_{33}) = 0. \end{array} \end{equation*} |
Corollary 2. Let \mathfrak{r} be a HRF given by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 6 -maximal (i.e., has zero Gauss-Kronecker curvature) iff the following partial differential equation occurs
\begin{equation*} \begin{array}{l} \lbrack \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{ s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}]\mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{array} \end{equation*} |
Corollary 3. Let \mathfrak{r} be a HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} has umbilical point (i.e., \left(\mathcal{K} _{1}\right) ^{6} = \mathcal{K}_{6} ) iff the following partial differential equation holds
\begin{eqnarray*} &&\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s}_{33}+\mathfrak{s} _{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) ^{6} \\ &&-46\,656\left\{ \begin{array}{c} \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{s} _{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33} \end{array} \right\} \mathfrak{s}_{44}\mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{eqnarray*} |
Hence, we find the following.
Example 1. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the profile hypersurface \gamma of \mathfrak{r} is parametrized by the unit hypersphere: \eta = \cos u\cos v\cos w , \psi = \sin u\cos v\cos w , \phi = \sin v\cos w , \varphi = \sin w , then \mathcal{S} = \mathcal{I}_{6} and the HRF has the following curvatures \mathcal{K}_{i} = 1 , where i = 0, 1, ..., 6.
Example 2. Assume \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . While the profile hypersurface \gamma of \mathfrak{r} is parametrized by the rational unit hypersphere: \eta = \frac{ 1-u^{2}}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \psi = \frac{2u}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \phi = \frac{2v}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \varphi = \frac{2w}{1+w^{2}} , the HRF has the same results determined by Example 1.
Example 3. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the generating hypersurface \gamma of \mathfrak{r} is parametrized by the Riemann hypersphere: \eta = \frac{2u}{ u^{2}+v^{2}+w^{2}+1} , \psi = \frac{2v}{u^{2}+v^{2}+w^{2}+1} , \phi = \frac{2w}{u^{2}+v^{2}+w^{2}+1} , \varphi = \frac{ u^{2}+v^{2}+w^{2}-1}{u^{2}+v^{2}+w^{2}+1} , the HRF has \mathcal{S} = -\mathcal{I}_{6}, and has the following curvatures \mathcal{K} _{i} = \left(-1\right) ^{i} , where i = 0, 1, ..., 6.
Example 4.Considering the pseudo-hypersphere \mathbb{S} _{3}^{6}(\rho): = \left\{ {\bf{p}}\in \mathbb{E}_{3}^{7}\mid \langle {\bf{p}}, {\bf{p}}\rangle = \rho ^{2}\right\}, radius \rho > 0 , parametrized by
\begin{equation} {\bf{p}}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \begin{array}{c} \rho \cos u\cos v\cos w\cosh \alpha \\ \rho \cos u\cos v\cos w\sinh \alpha \\ \rho \sin u\cos v\cos w\cosh \beta \\ \rho \sin u\cos v\cos w\sinh \beta \\ \rho \sin v\cos w\cosh \gamma \\ \rho \sin v\cos w\sinh \gamma \\ \rho \sin w \end{array} \right) , \end{equation} | (4.5) |
we compute \mathcal{S} = \frac{1}{\rho }\mathcal{I}_{6}. Hence, we find the following curvatures \mathcal{K}_{i} = \frac{1}{\rho ^{i}} , where i = 0, 1, ..., 6. Then, the hypersurface {\bf{p}} described by Eq \left(4.5\right) is an umbilical hypersphere (i.e., it supplies \left(\mathcal{K}_{1}\right) ^{6} = \mathcal{K}_{6} ) of \mathbb{E}_{3}^{7} .
In this section, our focus is on the Laplace-Beltrami operator of a smooth function in \mathbb{E}_{3}^{7} . We will proceed to compute it utilizing the HRF, which is defined by Eq \left(4.1\right) .
Definition 6. The Laplace-Beltrami operator of a smooth function f = f(x^{1}, x^{2}, ..., x^{6})\mid _{\mathcal{D}} (\mathcal{D} \subset {\mathbb{R}}^{6}) of class C^{6} depends on the first fundamental form \left(\mathfrak{g}_{ij}\right) of a hypersurface \mathfrak{r} , and is the operator defined by
\begin{equation} \Delta f = \frac{1}{{\bf{\hat{g}}}^{1/2}}\sum\limits_{i,j = 1}^{6}\frac{\partial }{ \partial x^{i}}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{ij}\frac{\partial f }{\partial x^{j}}\right) , \end{equation} | (5.1) |
where \left(\mathfrak{g}^{ij}\right) = \left(\mathfrak{g} _{kl}\right) ^{-1} and {\bf{\hat{g}}} = \det \left(\mathfrak{g} _{ij}\right).
By using the inverse matrix of the first fundamental form matrix \left(\mathfrak{g}_{ij}\right) _{6\times 6}, we have the following.
For an HRF given by Eq \left(4.1\right), \mathfrak{g}_{ij} = 0 when i\neq j except for i, j < 4. Therefore, the Laplace-Beltrami operator of the HRF \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) is given by
\begin{eqnarray} \Delta \mathfrak{r} & = &\frac{1}{{\bf{\hat{g}}}^{1/2}}[\frac{\partial }{ \partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{11}\frac{\partial \mathfrak{r}}{\partial u}\right) +\frac{\partial }{\partial u}\left( {\bf{ \hat{g}}}^{1/2}\mathfrak{g}^{12}\frac{\partial \mathfrak{r}}{\partial v} \right) +\frac{\partial }{\partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g }^{13}\frac{\partial \mathfrak{r}}{\partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial v}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{21}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial v}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{22} \frac{\partial \mathfrak{r}}{\partial v}\right)+\frac{\partial }{\partial v} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{23}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial w}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{31}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial w}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{32} \frac{\partial \mathfrak{r}}{\partial v}\right) +\frac{\partial }{\partial w} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{33}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial \alpha }\left( {\bf{\hat{ g}}}^{1/2}\mathfrak{g}^{44}\frac{\partial \mathfrak{r}}{\partial \alpha } \right) +\frac{\partial }{\partial \beta }\left( {\bf{\hat{g}}}^{1/2} \mathfrak{g}^{55}\frac{\partial \mathfrak{r}}{\partial \beta }\right) +\frac{ \partial }{\partial \gamma }\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{66} \frac{\partial \mathfrak{r}}{\partial \gamma }\right). \end{eqnarray} | (5.2) |
By using the derivatives of the functions in \left(5.2\right) , w.r.t. u, v, w, \alpha, \beta, \gamma, resp., we obtain the following.
Theorem 4. The Laplace-Beltrami operator of the HRF \mathfrak{r} denoted by Eq \left(4.1\right) is given by \Delta \mathfrak{r} = 6\mathcal{K}_{1}\mathcal{G} , where \mathcal{K}_{1} denotes the mean curvature, \mathcal{G} represents the Gauss map of \mathfrak{r} .
Proof. By directly computing \left(5.2\right) , we obtain \Delta \mathfrak{r} .
Theorem 5.Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) . \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r } , where \mathcal{A} denotes the square matrix of order 7 iff \mathfrak{r} has \mathcal{K}_{1} = 0 , i.e., it is a 1 -maximal hypersurface.
Proof. We found 6\mathcal{K}_{1}\mathcal{G} = \mathcal{A}\mathfrak{r} , and then we have
\begin{eqnarray*} &&a_{11}\eta \cosh \alpha +a_{12}\eta \sinh \alpha +a_{13}\psi \cosh \beta +a_{14}\psi \sinh \beta +a_{15}\phi \cosh \gamma +a_{16}\phi \sinh \gamma +a_{17}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \alpha , \\ && \\ &&a_{21}\eta \cosh \alpha +a_{22}\eta \sinh \alpha +a_{23}\psi \cosh \beta +a_{24}\psi \sinh \beta +a_{25}\phi \cosh \gamma +a_{26}\phi \sinh \gamma +a_{27}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \alpha , \\ && \\ &&a_{31}\eta \cosh \alpha +a_{32}\eta \sinh \alpha +a_{33}\psi \cosh \beta +a_{34}\psi \sinh \beta +a_{35}\phi \cosh \gamma +a_{36}\phi \sinh \gamma +a_{37}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \beta , \\ && \\ &&a_{41}\eta \cosh \alpha +a_{42}\eta \sinh \alpha +a_{43}\psi \cosh \beta +a_{44}\psi \sinh \beta +a_{45}\phi \cosh \gamma +a_{46}\phi \sinh \gamma +a_{47}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \beta , \\ && \\ &&a_{51}\eta \cosh \alpha +a_{52}\eta \sinh \alpha +a_{53}\psi \cosh \beta +a_{54}\psi \sinh \beta +a_{55}\phi \cosh \gamma +a_{56}\phi \sinh \gamma +a_{57}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \cosh \gamma , \\ && \\ &&a_{61}\eta \cosh \alpha +a_{62}\eta \sinh \alpha +a_{63}\psi \cosh \beta +a_{64}\psi \sinh \beta +a_{65}\phi \cosh \gamma +a_{66}\phi \sinh \gamma +a_{67}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \sinh \gamma , \\ && \\ &&a_{71}\eta \cosh \alpha +a_{72}\eta \sinh \alpha +a_{73}\psi \cosh \beta +a_{74}\psi \sinh \beta +a_{75}\phi \cosh \gamma +a_{76}\phi \sinh \gamma +a_{77}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w} \right] , \end{eqnarray*} |
where \mathcal{A} = \left(a_{ij}\right) is the 7\times 7 matrix, \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}}^{-1/2}, where {\bf{\hat{g}}} = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}. Derivating above ODEs twice w.r.t. \alpha , we obtain the following a_{i7} = 0, \Upsilon = 0, where i = 1, 2, ..., 7. Then, we get \left(a_{i1}\cosh \alpha +a_{i2}\sinh \alpha \right) \eta = 0, where i = 1, 2, ..., 7. The functions \cosh and \sinh are linear independent on \alpha , then all the components of the matrix \mathcal{A} are 0 . Since \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}} ^{-1/2}, then \mathcal{K}_{1} = 0 . This means, \mathfrak{r} is a 1 -maximal HRF.
Therefore, we give the following.
Example 5. Let \mathfrak{r} be an HRF given by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the unit hypersphere determined by Example 1. Then, an HRF \mathfrak{r} supplies \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r} , where \mathcal{A} = -6\mathcal{I}_{7}, \mathcal{I}_{7} denotes identity matrix.
Example 6. Let \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the Riemann hypersphere defined by Example 3. An HRF \mathfrak{r} has the same results denoted by Example 5.
This research has presented a detailed analysis of a family of hypersurfaces of revolution \mathfrak{r} is characterized by six parameters in the seven-dimensional pseudo-Euclidean space {\mathbb{E}}_{3}^{7} , and its geometric properties have been thoroughly explored.
The main focus of the paper was on computing and investigating various matrices associated with \mathfrak{r} . The fundamental form, Gauss map, and shape operator matrices were derived, providing essential information about the local geometry of the hypersurfaces. By utilizing the Cayley-Hamilton theorem, the curvatures of \mathfrak{r} were determined, facilitating a comprehensive understanding of their intrinsic curvature properties. Moreover, the paper established equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of \mathfrak{r} . These equations shed light on the geometric behavior of the hypersurfaces and offer valuable insights into their intrinsic properties. Additionally, the paper investigated the connection between the Laplace-Beltrami operator of \mathfrak{r} and a specific 7\times 7 matrix. This exploration further deepened our understanding of the geometric structure and differential properties of the hypersurface family.
In summary, this research contributes to the understanding of hypersurfaces of revolution in {\mathbb{E}}_{3}^{7} .
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that they have no conflicts of interest to report regarding the present study.
[1] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, New York: Springer-Verlag, 2006. |
[2] |
X. J. Yang, F. Gao, J. A. T. Machado, D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567–3575. https://doi.org/10.1140/epjst/e2018-00020-2 doi: 10.1140/epjst/e2018-00020-2
![]() |
[3] |
R. Koskodan, E. Allen, Construction of consistent discrete and continuous stochastic models for multiple assets with application to option valuation, Math. Comput, Model., 48 (2008), 1775–1786. https://doi.org/10.1016/j.mcm.2007.06.032 doi: 10.1016/j.mcm.2007.06.032
![]() |
[4] |
J. A. T. Machado, A. M. Lopes, Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dyn., 100 (2020), 2953–2972. https://doi.org/10.1007/s11071-020-05680-w doi: 10.1007/s11071-020-05680-w
![]() |
[5] |
A. Ashyralyev, On modified Crank-Nicholson difference schemes for stochastic parabolic equation, Numer. Func. Anal. Optim., 29 (2008), 268–282. https://doi.org/10.1080/01630560801998138 doi: 10.1080/01630560801998138
![]() |
[6] |
M. Kamrani, S. M. Hosseini, The role of coefficients of a general SPDE on the stability and convergence of a finite difference method, J. Comput. Appl. Math., 234 (2010), 1426–1434. https://doi.org/10.1016/j.cam.2010.02.018 doi: 10.1016/j.cam.2010.02.018
![]() |
[7] |
C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations, Stoch. Anal. Appl., 24 (2006), 221–240. https://doi.org/10.1080/07362990500397764 doi: 10.1080/07362990500397764
![]() |
[8] |
E. Hausenblas, Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type, SIAM J. Numer. Anal., 46 (2007), 437–471. https://doi.org/10.1137/050654141 doi: 10.1137/050654141
![]() |
[9] | D. Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci., 1 (2003), 361–375. |
[10] |
G. J. Lord, T. Shardlow, Post processing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45 (2007), 870–889. https://doi.org/10.1137/050640138 doi: 10.1137/050640138
![]() |
[11] |
J. B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), 1–43. https://doi.org/10.1007/s11118-004-2950-y doi: 10.1007/s11118-004-2950-y
![]() |
[12] |
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363–1384. https://doi.org/10.1137/040605278 doi: 10.1137/040605278
![]() |
[13] |
Z. Taheri, S. Javadi, E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, J. Comput. Appl. Math., 237 (2017), 336–347. https://doi.org/10.1016/j.cam.2017.02.027 doi: 10.1016/j.cam.2017.02.027
![]() |
[14] | P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/978-3-662-12616-5 |
[15] | G. N. Milstein, Numerical integration of stochastic differential equations, Dordrecht: Kluwer Academic Publishers, 1995. https://doi.org/10.1007/978-94-015-8455-5 |
[16] | N. Samadyar, F. Mirzaee, Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type, Int. J. Numer. Model.: Electron. Networks, Devices Fields, 33 (2020), e2688. |
[17] |
F. Mirzaee, N. Samadyar, Application of Bernoulli wavelet method for estimating a solution of linear stochastic Itô-Volterra integral equations, Multidiscip. Model. Mater. Struct., 15 (2019), 575–598. https://doi.org/10.1108/MMMS-04-2018-0075 doi: 10.1108/MMMS-04-2018-0075
![]() |
[18] | F. Mirzaee, S. Alipour, Bicubic B-spline functions to solve linear two-dimensional weakly singular stochastic integral equation, Iran. J. Sci. Technol., Trans. A: Sci., 45 (2021) 965–972. https://doi.org/10.1007/s40995-021-01109-0 |
[19] |
F. Mirzaee, S. Alipour, Quintic B-spline collocation method to solve n-dimensional stochastic Itô-Volterra integral equations, J. Comput. Appl. Math., 384 (2021), 113153. https://doi.org/10.1016/j.cam.2020.113153 doi: 10.1016/j.cam.2020.113153
![]() |
[20] |
S. Alipour, F. Mirzaee, An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: A combined successive approximations method with bilinear spline interpolation, Appl. Math. Comput., 371 (2020), 124947. https://doi.org/10.1016/j.amc.2019.124947 doi: 10.1016/j.amc.2019.124947
![]() |
[21] |
F. Mirzaee, S. Alipour, An efficient cubic B-spline and bicubic B-spline collocation method for numerical solutions of multidimensional nonlinear stochastic quadratic integral equations, Math. Methods Appl. Sci., 43 (2020), 384–397. https://doi.org/10.1002/mma.5890 doi: 10.1002/mma.5890
![]() |
[22] |
N. Samadyar, F. Mirzaee, Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions, Eng. Anal. Boundary Elem., 101 (2019), 27–36. https://doi.org/10.1016/j.enganabound.2018.12.008 doi: 10.1016/j.enganabound.2018.12.008
![]() |
[23] |
F. Mirzaee, N. Samadyar, On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions, Eng. Anal. Boundary Elem., 100 (2019), 246–255. https://doi.org/10.1016/j.enganabound.2018.05.006 doi: 10.1016/j.enganabound.2018.05.006
![]() |
[24] |
F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math., 366 (2020), 112440. https://doi.org/10.1016/j.cam.2019.112440 doi: 10.1016/j.cam.2019.112440
![]() |
[25] |
F. Mirzaee, E. Solhi, S. Naserifar, Approximate solution of stochastic Volterra integro-differential equations by using moving least squares scheme and spectral collocation method, Appl. Math. Comput., 410 (2021), 126447. https://doi.org/10.1016/j.amc.2021.126447 doi: 10.1016/j.amc.2021.126447
![]() |
[26] |
E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations, Eng. Comput., 38 (2022), 1363–1373. https://doi.org/10.1007/s00366-020-01263-w doi: 10.1007/s00366-020-01263-w
![]() |
[27] |
X. Dai, W. Bu, A. Xiao, Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations, J. Comput. Appl. Math., 356 (2019), 377–390. https://doi.org/10.1016/j.cam.2019.02.002 doi: 10.1016/j.cam.2019.02.002
![]() |
[28] | X. Dai, A. Xiao, W. Bu, Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler-Maruyama approximation, Discrete Cont. Dyn. Syst.-B, 2021, 1–23. https://doi.org/10.3934/dcdsb.2021225 |
[29] |
Y. H. Youssri, W. M. Abd‐Elhameed, M. Abdelhakem, A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials, Math. Methods Appl. Sci., 44 (2021), 9224–9236. https://doi.org/10.1002/mma.7347 doi: 10.1002/mma.7347
![]() |
[30] | M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67 (2015), 773–791. |
[31] | E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A: Math. Gen., 37 (2004), 657–675. |
[32] | A. H. Bhrawy, E. A. Ahmed, D. Baleanu, An efficient collocation technique for solving generalized Fokker-Planck type equations with variable coefficients, Proc. Rom. Acad. Ser. A, 15 (2014), 322–330. |
[33] |
A. H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Appl. Math. Comput., 222 (2013), 255–264. https://doi.org/10.1016/j.amc.2013.07.056 doi: 10.1016/j.amc.2013.07.056
![]() |
[34] |
M. Abbaszadeh, M. Dehghan, M. A. Zaky, A. S. Hendy, Interpolating stabilized element free Galerkin method for neutral delay fractional damped diffusion-wave equation, J. Funct. Spaces, 2021 (2021), 1–11. https://doi.org/10.1155/2021/6665420 doi: 10.1155/2021/6665420
![]() |
[35] |
A. S. Hendy, M. A. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., 38 (2020), 1351–1363. https://doi.org/10.1007/s00366-020-01095-8 doi: 10.1007/s00366-020-01095-8
![]() |
[36] |
M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82 (2020), 1–27. https://doi.org/10.1007/s10915-019-01117-8 doi: 10.1007/s10915-019-01117-8
![]() |
[37] |
A. S. Hendy, M. A. Zaky, Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math., 156 (2020), 276–302. https://doi.org/10.1016/j.apnum.2020.05.002 doi: 10.1016/j.apnum.2020.05.002
![]() |
[38] |
M. A. Zaky, A. S. Hendy, Convergence analysis of an L1-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations, Int. J. Comput. Math., 98 (2020), 1420–1437. https://doi.org/10.1080/00207160.2020.1822994 doi: 10.1080/00207160.2020.1822994
![]() |
[39] |
A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
![]() |
[40] |
M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103–122. https://doi.org/10.1016/j.cam.2019.01.046 doi: 10.1016/j.cam.2019.01.046
![]() |
[41] |
M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
![]() |
[42] |
E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy, R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244–255. https://doi.org/10.1016/j.jcp.2014.01.003 doi: 10.1016/j.jcp.2014.01.003
![]() |
[43] |
A. H. Bhrawy, M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, J. Comput. Phys., 294 (2015), 462–483. https://doi.org/10.1016/j.jcp.2015.03.063 doi: 10.1016/j.jcp.2015.03.063
![]() |
[44] | A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional Pantograph equations, Rom. J. Phys., 59 (2014), 646–657. |
[45] | M. Abdelhakem, M. Biomy, S. A. Kandil, D. Baleanu, A numerical method based on Legendre differentiation matrices for higher order ODEs, Inf. Sci. Lett., 9 (2020), 1–7. |
[46] |
M. Abdelhakem, Y. H. Youssri, Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems, Appl. Numer. Math., 169 (2021), 243–255. https://doi.org/10.1016/j.apnum.2021.07.006 doi: 10.1016/j.apnum.2021.07.006
![]() |
[47] |
A. H. Bhrawy, M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832–845. https://doi.org/10.1016/j.apm.2015.06.012 doi: 10.1016/j.apm.2015.06.012
![]() |
[48] |
M. A. Zaky, E. H. Doha, J. A. Tenreiro Machado, A spectral framework for fractional variational problems based on fractional Jacobi functions, Appl. Numer. Math., 132 (2018), 51–72. https://doi.org/10.1016/j.apnum.2018.05.009 doi: 10.1016/j.apnum.2018.05.009
![]() |
1. | Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Shyamal Kumar Hui, Contact CR-Warped Product Submanifold of a Sasakian Space Form with a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 190, 10.3390/sym16020190 | |
2. | Yanlin Li, Fatemah Mofarreh, Abimbola Abolarinwa, Norah Alshehri, Akram Ali, Bounds for Eigenvalues of q-Laplacian on Contact Submanifolds of Sasakian Space Forms, 2023, 11, 2227-7390, 4717, 10.3390/math11234717 | |
3. | Zewen Li, Donghe Pei, Null cartan geodesic isophote curves in Minkowski 3-space, 2024, 21, 0219-8878, 10.1142/S0219887824501421 | |
4. | Sahar H. Nazra, Rashad A. Abdel-Baky, A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space, 2023, 15, 2073-8994, 1986, 10.3390/sym15111986 | |
5. | Yanlin Li, Erhan Güler, Magdalena Toda, Family of right conoid hypersurfaces with light-like axis in Minkowski four-space, 2024, 9, 2473-6988, 18732, 10.3934/math.2024911 | |
6. | Boyuan Xu, Donghe Pei, Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space, 2024, 39, 0217-7323, 10.1142/S0217732324500408 | |
7. | Esmaeil Peyghan, Davood Seifipour, Ion Mihai, On the Geometry of Kobayashi–Nomizu Type and Yano Type Connections on the Tangent Bundle with Sasaki Metric, 2023, 11, 2227-7390, 3865, 10.3390/math11183865 | |
8. | Ali H. Hakami, Mohd Danish Siddiqi, Significance of Solitonic Fibers in Riemannian Submersions and Some Number Theoretic Applications, 2023, 15, 2073-8994, 1841, 10.3390/sym15101841 | |
9. | Ibrahim Al-Dayel, Meraj Ali Khan, Mohammad Shuaib, Qingkai Zhao, Homology of Warped Product Semi-Invariant Submanifolds of a Sasakian Space Form with Semisymmetric Metric Connection, 2023, 2023, 2314-4785, 1, 10.1155/2023/5035740 | |
10. | Nadia Alluhaibi, Rashad A. Abdel-Baky, Surface Pencil Couple with Bertrand Couple as Joint Principal Curves in Galilean 3-Space, 2023, 12, 2075-1680, 1022, 10.3390/axioms12111022 | |
11. | Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Ricci Curvature Inequalities for Contact CR-Warped Product Submanifolds of an Odd Dimensional Sphere Admitting a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 95, 10.3390/sym16010095 | |
12. | Yanlin Li, Erhan Güler, Twisted Hypersurfaces in Euclidean 5-Space, 2023, 11, 2227-7390, 4612, 10.3390/math11224612 | |
13. | Samesh Shenawy, Alaa Rabie, Uday Chand De, Carlo Mantica, Nasser Bin Turki, Semi-Conformally Flat Singly Warped Product Manifolds and Applications, 2023, 12, 2075-1680, 1078, 10.3390/axioms12121078 | |
14. | Wei Zhang, Pengcheng Li, Donghe Pei, Circular evolutes and involutes of spacelike framed curves and their duality relations in Minkowski 3-space, 2024, 9, 2473-6988, 5688, 10.3934/math.2024276 | |
15. | Marija S. Najdanović, Characterization of dual curves using the theory of infinitesimal bending, 2024, 47, 0170-4214, 8626, 10.1002/mma.10035 | |
16. | Erhan Güler, G. Muhiuddin, Investigating Helical Hypersurfaces Within 7‐Dimensional Euclidean Space, 2024, 2024, 2314-4629, 10.1155/2024/3459717 | |
17. | Erhan Güler, A helicoidal hypersurfaces family in five-dimensional euclidean space, 2024, 38, 0354-5180, 3813, 10.2298/FIL2411813G |