Research article Special Issues

Haar wavelet method for solution of variable order linear fractional integro-differential equations

  • In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.

    Citation: Rohul Amin, Kamal Shah, Hijaz Ahmad, Abdul Hamid Ganie, Abdel-Haleem Abdel-Aty, Thongchai Botmart. Haar wavelet method for solution of variable order linear fractional integro-differential equations[J]. AIMS Mathematics, 2022, 7(4): 5431-5443. doi: 10.3934/math.2022301

    Related Papers:

    [1] Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the $ \psi $-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110
    [2] Ranbir Kumar, Sunil Kumar, Jagdev Singh, Zeyad Al-Zhour . A comparative study for fractional chemical kinetics and carbon dioxide CO2 absorbed into phenyl glycidyl ether problems. AIMS Mathematics, 2020, 5(4): 3201-3222. doi: 10.3934/math.2020206
    [3] Amnah E. Shammaky, Eslam M. Youssef . Analytical and numerical techniques for solving a fractional integro-differential equation in complex space. AIMS Mathematics, 2024, 9(11): 32138-32156. doi: 10.3934/math.20241543
    [4] Kamal Shah, Hafsa Naz, Muhammad Sarwar, Thabet Abdeljawad . On spectral numerical method for variable-order partial differential equations. AIMS Mathematics, 2022, 7(6): 10422-10438. doi: 10.3934/math.2022581
    [5] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [6] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Fahad Sameer Alshammari . New technique for solving the numerical computation of neutral fractional functional integro-differential equation based on the Legendre wavelet method. AIMS Mathematics, 2024, 9(6): 14288-14309. doi: 10.3934/math.2024694
    [7] Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151
    [8] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [9] Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
    [10] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
  • In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.



    Fractional calculus is an extension of the integer order calculus by considering derivatives of arbitrary order. Fractional calculus is as old as the conventional analytic proposed by Newton and Leibniz in 1695. These equations are used for modelling of various phenomena in the field of science, engineering, physical chemistry, electric circuits and mechanical systems. In the literature, various variable order (VO) fractional operators can be found. Some of them are definitions of Riemann Liouville, Grunwald, Marchaud Coimbra, and Caputo. Many physical phenomena show characteristics of fractional-order that varies with time, or space, or with space and time. Several numerical methods have been published in literature for the solution of VO fractional integro-differential equations (FIDEs). Some methods are: Finite difference technique [1], Legendre wavelet [2], Chebyshev polynomials [3], Bernstein polynomials [4], spectral method [5,6]. A cubic Spline interpolation method for solution of VO FIDE with weakly singular kernels was used by Moghaddam and Machado [7]. Tavares et al. [8] used Caputo derivatives for solution of VO FIDE.

    Samko and Ross [9] used the Riemann-Liouville definition and Fourier transforms to investigate integration and differentiation of functions of a VO. Samko [10] provides an overview of a number of studies on fractional operations of integration and differentiation of variable order where the order varies from point to point. Patnaik et al. [11] gives a concise and extensive overview of the progress made in the development of VO fractional calculus analytical and computational approaches for simulation of physical systems. Variable and distributed order fractional operators were studied by Lorenzo and Hartley [12]. To synchronies VO fractional chaotic systems, Escamilla et al. [13] proposes a state observer based technique. Aziz et al. [14] developed a predator prey model with a constant VO and a time fractional VO. Patnaik and Jokar [15] studied that how the VO continuum mechanics theory was developed and how it was applied to the study of nonlocal heterogeneous solids. With power-law, exponential-law, and Mittag-Leffler kernels. Pérez et al. [16] studied a novel extended numerical scheme for modelling VO fractional differential operators.

    The Haar wavelets are the mathematically simplest of all wavelet families since they are made up of piecewise constant functions. These wavelets have the characteristic to be integrated analytically arbitrary times. The advantage of Haar technique is its simplicity and less computation costs, the proposed technique take less CPU time and provides better solution in terms of accuracy.

    The Chen and Hsiao approach is commonly used in the literature for numerical solution of many differential equations [17]. Haar wavelet collocation technique (HWCT) was used for the numerical solution of differential equations [18], integral equations [19]. Pioneering work of Lepik in the development of HWCT can be seen in [20,21,22,23]. The convergence of HWCT is proved by Majak et al. [24,25]. Higher order HWCT as an improvement of HWCT was recently introduced by Majak et al. in [26,27,28,29]. The free vibrations analysis of the Euler-Bernoulli nanobeam was studied in [30].

    HWCT is more suitable for solution of initial as well as boundary value problems. This technique gives good accuracy for less collocation points. The HWCT is very feasible for detecting singularities of irregular structures. The HWCT is developed for solution of the following linear Volterra Fredholm FIDEs

    Dα(t)0,tw(t)=a(t)w(t)+b(t)t0M1(t,s)w(s)ds+c(t)10M2(t,s)w(s)ds+f(t),t[0, 1], (1.1)

    with initial condition w(0)=λ, Dα(t) is VO Caputo derivative, M1(t,s), M2(t,s) are smooth functions known as kernel of integration which are closed and bounded functions over the square [0,1]×[0,1] and a, b, c, and f:[0, 1]R are continuous functions.

    The following is how the paper is structured: Section 2 contains the preliminaries. In Section 3 HWCT scheme for solution of VO linear FIDEs is discussed. Some examples are given in Section 4. In the last part 6, the conclusion is given.

    Definition 2.1. Scaling function on [α1,α2) is [31]

    h1(t)={1for  t[α1,α2),0elsewhere. (2.1)

    Mother wavelet on [α1,α2) is

    h2(t)={1fort[α1,α1+α22),1fort[α1+α22,α2),0elsewhere. (2.2)

    The rest of the terms can be written as

    hi(t)={1ift[η1,η2),1ift[η2,η3),0elsewhere, (2.3)

    where η1=α1+(α2α1)ζd,η2=α1+(α2α1)ζ+0.5d,η3=α1+(α2α1)ζ+1d, where d=2r, and ζ=0,1,,d1. If we take interval [0,1], then values of η1, η2 and η3 are : η1=ζd, η2=1/2+ζd, η3=1+ζd. Any function belonging to square integrable function space L2[0,1), is u(t)=k=1λkhk(t), just for approximation, we truncate this series at N terms, u(t)Nk=1λkhk(t).

    Using the notation

    pi,1(t)=t0hi(s)ds, (2.4)

    and

    pi,1(t)={tη1ift[η1,η2),η3tift[η2,η3),0otherwhere. (2.5)

    Generally,

    pi,n(t)=t0pi,n1(x)dx. (2.6)

    Thus [31],

    pi,n(t)={0if  t[0,η1),(tη1)nn!if  t[η1,η2),[(tη1)n2(η1η2)n]n!if  t[η2,η3),1n![(tη1)n2(η1η2)n+(tη3)n],if  t[η3,1). (2.7)

    Some of the work using HWC scheme can be found in [32,33,34,35].

    Definition 2.2. The interval [β1,β2] for HWCT is discretized as [36]

    ti=β1+(β2β1)i1/22Mi=1,2,3,4,,2M. (2.8)

    In the above Eq (2.8), collocation points (CPs) are defined.

    Remark 2.3. The integral in Eq (1.1) is calculated by the following formula [37]

    β2β1u(x)dxβ2β1NNk=1u(xk)=β2β1NNk=1u(β1+(β2β1)(k0.5)N). (2.9)

    Here, we developed the numerical scheme HWCT for solution of Eq (1.1). We follow Haar technique adopted by Lepik in [23]. By applying Caputo definition, Eq (1.1) becomes

    1Γ(nα(t))t0w(n)(τ)dτ(tτ)α(t)+1n=a(t)w(t)+c(t)t0M1(t,s)w(s)ds+b(t)10M2(t,s)w(s)ds+f(t). (3.1)

    If we take α(t) between 0 and 1, then n=1, so Eq (3.1) becomes

    1Γ(1α(t))t0w(τ)dτ(tτ)α(t)=a(t)w(t)+b(t)t0M1(t,s)w(s)ds+b(t)10M2(t,s)w(s)ds+f(t). (3.2)

    Let w(t)L2[0,1), then w(t) is written as

    w(t)=Ni=1aihi(t), (3.3)

    where the unknown coefficients of the Haar wavelet are ai and by the process of Gauss elemination, we need to find these coefficients. Integrating Eq (3.3), we obtain the following expression

    t0w(s)ds=t0Ni=1aihi(s)ds.

    After integration and using initial condition, we have

    w(t)=λ+Ni=1aipi,1(t), (3.4)

    where

    pi,1(t)=t0hi(s)ds.

    By applying Haar approximations to Eq (1.1), we get

    1Γ(1α(t))t0Ni=1aihi(τ)dτ(tτ)α(t)=a(t)(λ+Ni=1aipi,1(t))+b(t)t0M1(t,s)(λ+Ni=1aipi,1(s))ds+c(t)10M2(t,s)(λ+Ni=1aipi,1(s))ds+f(t).

    We get the following expression after simplification

    1Γ(1α(t))t0Ni=1aihi(τ)dτ(tτ)α(t)a(t)Ni=1aipi,1(t)b(t)tj0M1(t,s)Ni=1aipi,1(s)dsc(t)10M2(t,s)Ni=1aipi,1(s)ds=a(t)λ+λb(t)t0M1(t,s)+c(tj)10M2(t,s)λ+f(t),

    substituting the CPs in above equation, we have

    1Γ(1α(tj))tj0Ni=1aihi(τ)dτ(tjτ)α(tj)a(tj)Ni=1aipi,1(tj)b(tj)tj0M1(tj,s)Ni=1aipi,1(s)dsc(tj)10M2(tj,s)Ni=1aipi,1(s)ds=a(tj)λ+λb(tj)tj0M1(tj,s)+c(tj)10M2(tj,s)λ+f(tj).

    It is possible to write above expression in matrix form as

    MA=B, (3.5)

    where

    M(j,i)=1Γ(1α(tj))tj0hi(τ)dτ(tjτ)α(tj)a(tj)pi,1(tj)b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,A=ai,andB=a(tj)λ+λb(tj)tj0M1(tj,s)+c(tj)10M2(tj,s)λ+f(tj).

    We use the Lepik [23] method to calculate value of matrix M.

    For this, we have cases.

    Case ⅰ. If tj<0, so hi(tj)=0. Thus M(j,i)=0.

    Case ⅱ. If tj[α,β), then

    M(j,i)=1Γ(1α(tj))(α0hi(τ)dτ(tjτ)α(tj)+tjαhi(τ)dτ(tjτ)α(tj))a(tj)pi,1(tj) b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=1Γ(1α(tj))tjαdτ(tjτ)α(tj)a(tj)pi,1(tj)b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=(tjα)1α(tj)1α(tj)Γ(1α(tj))a(tj)pi,1(tj)tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk).

    Case ⅲ.If tj[β,γ). Then

    M(j,i)=1Γ(1α(tj))(α0hi(τ)(tjτ)α(tj)dτ+βαhi(τ)(tjτ)α(tj)dτ+tjβhi(τ)(tjτ)α(tj)dτ) a(tj)pi,1(tj)b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=1Γ(1α(tj))(βαdτ(tjτ)α(tj)tjβdτ(tjτ)α(tj)) pi,1(tj)a(tj) b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=1Γ(1α(tj))(2(tjβ)1α(tj)(tjα)1α(tj)α(tj)1)a(tj)pi,1(tj) tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk).

    Case ⅳ. If tj[γ,1), so

    M(j,i)=1Γ(1α(tj))(α0hi(τ)(tjτ)α(tj)dτ+βαhi(τ)(tjτ)α(tj)dτ+γβhi(τ)(tjτ)α(tj)dτtjγhi(τ)dτ(tjτ)α(tj)) pi,1(tj)a(tj)b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=1Γ(1α(tj))(βαdτ(tjτ)α(tj)γβdτ(tjτ)α(tj)tjγhi(τ)dτ(tjτ)α(tj)) pi,1(tj)a(tj) b(tj)tj0M1(tj,s)pi,1(s)dsc(tj)10M2(tj,s)pi,1(s)ds,=1Γ(1α(tj))(2(βtj)1α(tj)(tjα)1α(tj)(tjγ)α(tj)1α(tj)1) a(tj)pi,1(tj) tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk).

    Thus the matrix M is given by

    M(j,i)={0,if  tj<0,(tjα)1α(tj)1α(tj)Γ(1α(tj))a(tj)pi,1(tj)tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk),if  tj[α, β),1Γ(1α(tj))(2(tjβ)1α(tj)(tjα)1α(tj)α(tj)1)a(tj)pi,1(tj) tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk),if  tj[β, γ),1Γ(1α(tj))(2(βtj)1α(tj)(tjα)1α(tj)(tjγ)α(tj)1α(tj)1) pi,1(tj)a(tj) tj  b(tj)NNk=1M1(tj,sk)pi,1(sk) c(tj)NNk=1M2(tj,sk)pi,1(sk),if  tj[γ, 1).

    Hence ai's can be obtained as A=M1B. Finally, by putting ai=1,2,3,,N in the above Eq (3.4), the approximate solution at CPs is determined.

    To show the convergence of the HWCT scheme, some examples are given in this section. If wex denotes the exact and wap denotes approximate solution at CPs, so Ecp maximum absolute error is Ecp=max|wexcwapc|, and the Mcp mean square root error in CPs is defined as Mcp=1N(Ni=1|wexcwapc|2). Rcp is used for convergence rate and is given by:

    Rcp=log[wapc(N/2)/wapc(N)]1log2. (4.1)

    Problem 4.1. Consider the following VO FIDEs [6]

    {Dα1(t)w(t)+Iα2(t)w(t)=f(t),t[0, 1],u(0)=0, (4.2)

    where α1(t)=16sin(10πt)+23, α2(t)=ett2 and f is so that exact solution is w(t)=sint.

    Problem 4.2. Consider the following VO FIDEs [6]

    {Dα1(t)w(t)+Iα2(t)w(t)=f(t),t[0, 1],w(0)=1, (4.3)

    where α1(t)=t2t+0.8, α2(t)=esin(5πt)t and f is so that exact solution is w(t)=cos(t2).

    Problem 4.3. Consider following VO FIDEs [6]

    {Dα1(t)w(t)=t0w(t)(ts)sin2tds+f(t),t[0, 1],w(0)=0, (4.4)

    where α1(t)=10.01t and f is so that exact solution is w(t)=sint and t0w(t)(ts)sin2tds=Γ(α2)Iα2(t)w(t) with α2(t)=1sin2(t).

    The first Caputo definition is applied with a combination of Haar functions. The errors are calculated for various number of CPs. Tables 13 show errors Ecp, Rcp, and Mcp for Examples 4.1–4.3 respectively. From the tables, we see that both errors are reduced by increasing the number of CPs. The rate of convergence which is equivalent to 2, is also calculated supporting the analytical results proved by Majak et al. [24]. The solution comparisons between the exact and the approximation for 32 different number of CPs is shown in Figure 1, represent the comparison of numerical and exact solution of Example 4.1 for 32 CPs, Figure 2, represent comparison of Example 4.2 for 32 CPs, and Figure 3, represent comparison of Example 4.3 for 32 CPs. One can see from the figures that the exact and approximate solutions close to each other.

    Table 1.  Ecp, Rcp, and Mcp for Example 4.1.
    J N=2J+1 Ecp Rcp Mcp
    0 2 0.011653 0.008859
    1 4 0.003186 1.8709 0.002249
    2 8 8.218890e-004 1.9547 5.644172e-004
    3 16 2.081486e-004 1.9813 1.412291e-004
    4 32 5.234196e-005 1.9916 3.531506e-005
    5 64 1.312177e-005 1.9960 8.8292496e-006
    6 128 3.284864e-006 1.9981 2.2073427e-006
    7 256 8.217619e-007 1.9990 5.5183757e-007
    8 512 2.055083e-007 1.9995 1.3795951e-007
    9 1024 5.138551e-008 1.9998 3.4489885e-008

     | Show Table
    DownLoad: CSV
    Table 2.  Ecp, Rcp, and Mcp for Example 4.2.
    J N=2J+1 Ecp Rcp Mcp
    1 4 0.020685 0.012206
    2 8 0.005495 1.9124 0.003054
    3 16 0.001400 1.9725 7.636399e-004
    4 32 3.523508e-004 1.9905 1.909094e-004
    5 64 8.830975e-005 1.9964 4.772727e-005
    6 128 2.210089e-005 1.9985 1.193181e-005
    7 256 5.527884e-006 1.9993 2.982953e-006
    8 512 1.382286e-006 1.9997 7.457382e-007
    9 1024 3.456099e-007 1.9998 1.864345e-007

     | Show Table
    DownLoad: CSV
    Table 3.  Ecp, Rcp, and Mcp for Example 4.3.
    J N=2J+1 Ecp Rcp Mcp
    0 2 0.014838 0.011141
    1 4 0.004179 1.8278 0.002810
    2 8 0.001099 1.9262 7.040264e-004
    3 16 2.815491e-004 1.9658 1.760981e-004
    4 32 7.119401e-005 1.9836 4.403022e-005
    5 64 1.789826e-005 1.9919 1.100791e-005
    6 128 4.486966e-006 1.9960 2.751999e-006
    7 256 1.123287e-006 1.9980 6.880013e-007
    8 512 2.810148e-007 1.9990 1.720004e-007
    9 1024 7.027781e-008 1.9995 4.300011e-008

     | Show Table
    DownLoad: CSV
    Figure 1.  Solution comparison for 32 CPs of Example 4.1 for 32 CPs.
    Figure 2.  Solution comparison for 32 CPs of Example 4.2 for 32 CPs.
    Figure 3.  Solution comparison for 32 CPs of Example 4.3 for 32 CPs.

    In this work, the collocation method is developed based on Haar wavelet for the solution of linear VO FIDEs. The HWCT is very convenient for solving VO FIDEs with initial conditions because during the process of determining the expression of the approximate solution, the initial conditions are taken into account automatically. The Haar functions are used for approximation of ordinary derivatives and Caputo derivative is used for VO fractional derivative. A system of linear equations is obtained by replacing CPs using the HWCT. Gauss elimination is used for the solution of this system. Finally, the solution at CPs is found by using these coefficients. To show the applicability and consistency of the HWCT method, some examples are given. For all computational work, MATLAB software is used.

    The authors declare that they have no competing interests.



    [1] Y. Xu, V. S. Erturk, A finite difference technique for solving variable-order fractional integro-differential equation, Bull. Iran. Math. Soc., 40 (2014), 699–712.
    [2] Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46 (2015), 83–88. https://doi.org/10.1016/j.aml.2015.02.010 doi: 10.1016/j.aml.2015.02.010
    [3] K. Sun, M. Zhu, Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/902161 doi: 10.1155/2015/902161
    [4] Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329–341. https://doi.org/10.1016/j.amc.2014.03.066 doi: 10.1016/j.amc.2014.03.066
    [5] M. Zayernouri, G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312–338. https://doi.org/10.1016/j.jcp.2014.12.001 doi: 10.1016/j.jcp.2014.12.001
    [6] E. H. Doha, M. A. Abdelkawy, A. Z. Amin, A. M. Lopes, On spectral methods for solving variable order fractional integro differential equations, Comp. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9
    [7] B. P. Moghaddam, J. A. T. Machado, A computational approach for solution of a class of variable order fractional integro differential equation with weakly singular kernels, Fract. Calc. Appl. Anal., 20 (2017), 1023–1042. https://doi.org/10.1515/fca-2017-0053 doi: 10.1515/fca-2017-0053
    [8] D. Tavares, R. Almeida, D. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [9] S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 4 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [10] S. Samko, Fractional integration and differentiation of variable order:an overview, Nonlinear Dyn., 71 (2013), 653–662. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0
    [11] S. Patnaik, J. P. Hollkamp, F. Semperlotti, Applications of variable-order fractional operators: A review, P. Roy. Soc. A, 476 (2020), 20190498. https://doi.org/10.1098/rspa.2019.0498 doi: 10.1098/rspa.2019.0498
    [12] C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654
    [13] A. C. Escamilla, J. F. G. Aguilar, L. Torres, R. F. E.Jiménez, M. V. Rodríguez, Physica A, 487 (2017), 1–21.
    [14] A. Khan, H. M. Alshehri, J. F. G. Aguilar, Z. A. Khan, G. F. Anaya, Adv. Differ. Eqs., 183 (2021), 1–18.
    [15] S. Patnaik, M. Jokar, F. Semperlotti, Variable-order approach to nonlocal elasticity: Theoretical formulation, order identification via deep learning, and applications, Comput. Mech., 2021, 1–32. https://doi.org/10.1007/s00466-021-02093-3 doi: 10.1007/s00466-021-02093-3
    [16] J. E. S. Pérez, J. F. G. Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [17] C. Chen, C. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE P.-Contr. Theor. Ap., 144 (1997), 87–94. https://doi.org/10.1049/ip-cta:19970702 doi: 10.1049/ip-cta:19970702
    [18] U. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comp. Simul., 68 (2005), 127–143. https://doi.org/10.1016/j.matcom.2004.10.005 doi: 10.1016/j.matcom.2004.10.005
    [19] I. Aziz, S. Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345. https://doi.org/10.1016/j.cam.2012.08.031 doi: 10.1016/j.cam.2012.08.031
    [20] U. Lepik, Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput., 176 (2006), 324–333. https://doi.org/10.1016/j.amc.2005.09.021 doi: 10.1016/j.amc.2005.09.021
    [21] U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl., 61 (2011), 1873–1879. https://doi.org/10.1016/j.camwa.2011.02.016 doi: 10.1016/j.camwa.2011.02.016
    [22] U. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, P. Est. Acad. Sci., 56 (2007), 28–46. https://doi.org/10.3176/phys.math.2007.1.03 doi: 10.3176/phys.math.2007.1.03
    [23] U. Lepik, Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput., 214 (2009), 468–478. https://doi.org/10.1016/j.amc.2009.04.015 doi: 10.1016/j.amc.2009.04.015
    [24] J. Majak, B. S. Shvartsman, M. Kirs, M. Pohlak, M. Herranen, Convergence theorem for the Haar wavelet based discretization method, Comp. Struct., 126 (2015), 227–232. https://doi.org/10.1016/j.compstruct.2015.02.050 doi: 10.1016/j.compstruct.2015.02.050
    [25] J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A. Haavajõe, M. Pohlak, On the accuracy of the Haar wavelet discretization method, Compos. Part B-Eng., 80 (2015), 321–327. https://doi.org/10.1016/j.compositesb.2015.06.008 doi: 10.1016/j.compositesb.2015.06.008
    [26] J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B. Shvartsman, New higher order Haar wavelet method: Application to FGM structures, Compos. Struct., 201 (2018), 72–78. https://doi.org/10.1016/j.compstruct.2018.06.013 doi: 10.1016/j.compstruct.2018.06.013
    [27] M. Ratas, A. Salupere, Application of higher order Haar wavelet method for solving nonlinear evolution equations, Math. Model. Anal., 25 (2020), 271–288. https://doi.org/10.3846/mma.2020.11112 doi: 10.3846/mma.2020.11112
    [28] J. Majak, B. Shvartsman, M. Ratas, D. Bassir, M. Pohlak, K. Karjust, et al., Higher-order Haar wavelet method for vibration analysis of nanobeams, Mater. Today Commun., 25 (2020), 101290. https://doi.org/10.1016/j.mtcomm.2020.101290 doi: 10.1016/j.mtcomm.2020.101290
    [29] J. Majak, M. Pohlak, M. Eerme, B. Shvartsman, Solving ordinary differential equations with higher order Haar wavelet method, AIP Conf. Proc., 2116 (2019), 330002. https://doi.org/10.1063/1.5114340 doi: 10.1063/1.5114340
    [30] J. Majak, M. Pohlak, M. Eerme, Application of the Haar wavelet-based discretization technique to problems of orthotropic plates and shells, Mech. Compos. Mater., 45 (2009), 631–642. https://doi.org/10.1007/s11029-010-9119-0 doi: 10.1007/s11029-010-9119-0
    [31] I. Aziz, R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via haar wavelet, Appl. Math. Model., 40 (2016), 10286–10299. https://doi.org/10.1016/j.apm.2016.07.018 doi: 10.1016/j.apm.2016.07.018
    [32] R. Amin, B. Alshahrani, A. H. Aty, K. Shah, Wejdan Deebani, Haar wavelet method for solution of distributed order time-fractional differential equations, Alex. Eng. J., 60 (2021), 3295–3303. https://doi.org/10.1016/j.aej.2021.01.039 doi: 10.1016/j.aej.2021.01.039
    [33] R. Amin, K. Shah, M. Asif, I. Khan, A computational algorithm for the numerical solution of fractional order delay differential equations, Appl. Math. Comput., 402 (2021), 125863. https://doi.org/10.1016/j.amc.2020.125863 doi: 10.1016/j.amc.2020.125863
    [34] R. Amin, H. Ahmad, K. Shah, M. B. Hafeez, W. Sumelka, Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method, Chaos Soliton. Fract., 151 (2021), 111252. https://doi.org/10.1016/j.chaos.2021.111252 doi: 10.1016/j.chaos.2021.111252
    [35] M. M. Alqarni, R. Amin, K.Shah, S. Nazir, M. Awais, E. E. Mahmoud, Solution of third order linear and nonlinear boundary value problems of integro-differential equations using Haar wavelet method, Results Phys., 25 (2021), 104176. https://doi.org/10.1016/j.rinp.2021.104176 doi: 10.1016/j.rinp.2021.104176
    [36] R. Amin, K. Shah, M. Asif, I. Khan, F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021), 113028. https://doi.org/10.1016/j.cam.2020.113028 doi: 10.1016/j.cam.2020.113028
    [37] R. Amin, S. Nazir, I. G. Magarino, Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via haar wavelet for dense sensor networks in emerging telecommunications, T. Emerg. Telecommun. T., 20 (2020), e3877. https://doi.org/10.1002/ett.3877 doi: 10.1002/ett.3877
  • This article has been cited by:

    1. Kumbinarasaiah S., Mallanagoud Mulimani, Fibonacci wavelets approach for the fractional Rosenau-Hyman equations, 2023, 26667207, 100221, 10.1016/j.rico.2023.100221
    2. Danuruj Songsanga, Parinya Sa Ngiamsunthorn, Single-step and multi-step methods for Caputo fractional-order differential equations with arbitrary kernels, 2022, 7, 2473-6988, 15002, 10.3934/math.2022822
    3. Shumaila Javeed, Muhammad Awais Abbasi, Tayyab Imran, Rabia Fayyaz, Hijaz Ahmad, Thongchai Botmart, New soliton solutions of Simplified Modified Camassa Holm equation, Klein–Gordon–Zakharov equation using First Integral Method and Exponential Function Method, 2022, 38, 22113797, 105506, 10.1016/j.rinp.2022.105506
    4. Yahong Wang, Wenmin Wang, Liangcai Mei, Yingzhen Lin, Hongbo Sun, An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations, 2023, 7, 2504-3110, 90, 10.3390/fractalfract7010090
    5. Mashael M. AlBaidani, Abdul Hamid Ganie, Asia Fahd Mohammad Almuteb, Generalized notion of integral inequalities of variables, 2022, 20, 2391-5471, 822, 10.1515/phys-2022-0070
    6. Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu, An approximate approach for fractional singular delay integro-differential equations, 2022, 7, 2473-6988, 9156, 10.3934/math.2022507
    7. M. P. Preetham, S. Kumbinarasaiah, A numerical study of two-phase nanofluid MHD boundary layer flow with heat absorption or generation and chemical reaction over an exponentially stretching sheet by Haar wavelet method, 2024, 85, 1040-7790, 706, 10.1080/10407790.2023.2253364
    8. Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour, Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order, 2024, 32, 2688-1594, 134, 10.3934/era.2024007
    9. Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383
    10. Zareen A. Khan, Sajjad Ahmad, Salman Zeb, Hussam Alrabaiah, Bernoulli-Type Spectral Numerical Scheme for Initial and Boundary Value Problems with Variable Order, 2023, 7, 2504-3110, 392, 10.3390/fractalfract7050392
    11. Inaam Abdulbaset Fathi, Kais Ismail Ibraheem, 2025, 3211, 0094-243X, 100005, 10.1063/5.0257174
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3167) PDF downloads(260) Cited by(11)

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog