High-order pantograph Volterra-Fredholm integro-differential equations (P-VF-IDEs) arise in various scientific and engineering applications, where systems exhibit delay or scaling in their dynamics. This paper investigates a class of high-order P-VF-IDEs characterized by the presence of both Volterra and Fredholm integral terms as well as pantograph delay elements. We propose a spectral tau approach to approximate the solution P-VF-IDEs in both one- and two-dimensions. In particular, we employ the operational differentiation and integration matrices to approximate the integro-differential operator, transforming the continuous problem into a system of algebraic equations, and providing high accuracy with fewer computational modes. Numerical experiments illustrate the accuracy and convergence properties of the spectral Legendre tau method in solving high-order P-VF-IDEs and demonstrate its efficacy compared to other spectral approaches.
Citation: Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog. A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations[J]. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
Related Papers:
[1]
Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif .
New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060.
doi: 10.3934/math.2022117
[2]
M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam .
Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411.
doi: 10.3934/math.2019.3.397
[3]
Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera .
W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486.
doi: 10.3934/math.2023222
[4]
Aslı Alkan, Halil Anaç .
The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359.
doi: 10.3934/math.20241237
[5]
M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque .
New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214.
doi: 10.3934/math.2019.2.199
[6]
Baojian Hong, Jinghan Wang, Chen Li .
Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688.
doi: 10.3934/math.2023800
[7]
Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar .
Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. AIMS Mathematics, 2022, 7(7): 13169-13191.
doi: 10.3934/math.2022726
[8]
Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV .
An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761.
doi: 10.3934/math.2020243
[9]
Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon .
On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343.
doi: 10.3934/math.20221061
[10]
Ali Khalouta, Abdelouahab Kadem .
A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. AIMS Mathematics, 2020, 5(1): 1-14.
doi: 10.3934/math.2020001
Abstract
High-order pantograph Volterra-Fredholm integro-differential equations (P-VF-IDEs) arise in various scientific and engineering applications, where systems exhibit delay or scaling in their dynamics. This paper investigates a class of high-order P-VF-IDEs characterized by the presence of both Volterra and Fredholm integral terms as well as pantograph delay elements. We propose a spectral tau approach to approximate the solution P-VF-IDEs in both one- and two-dimensions. In particular, we employ the operational differentiation and integration matrices to approximate the integro-differential operator, transforming the continuous problem into a system of algebraic equations, and providing high accuracy with fewer computational modes. Numerical experiments illustrate the accuracy and convergence properties of the spectral Legendre tau method in solving high-order P-VF-IDEs and demonstrate its efficacy compared to other spectral approaches.
1.
Introduction
In recent decades, importance of fractional order models is well disclosed fact in many fields of engineering and science. Numerous fractional order partial differential equations(FPDEs) have been used by many authors to describe various important biological and physical processes like in the fields of chemistry, biology, mechanics, polymer, economics, biophysics control theory and aerodynamics. In this concern, many researchers have studied various schemes and aspects of PDEs and FPDEs as well, see [1,2,3,4,5,6,7,8,9,10]. However, the great attention has been given very recently to obtaining the solution of fractional models of the physical interest. Keeping in views, the computation complexities involved in fractional order models is very crucial and is the difficulty in solving these fractional models. Some times, the exact analytic solution of each and every FPDE can not be obtained using the traditional schemes and methods. However, there exists some schemes and methods, which have been proved to be efficient in obtaining the approximation to solution of the fractional order problems. Among them, we bring the attention of readers to these methods and schemes [11,12,13,14,15,16,17,18,19,20,21] which are used successfully. These methods and schemes have their own demerits and merits. Some of them provide a very good approximation with convenient way. For example, see the methods and schemes in the articles [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39].
The main aim of this work is to develop a new procedure which is easy with respect to application and more efficient as compare with existing procedures. In this concern, we introduced asymptotic homotopy perturbation method (AHPM) to obtain the solution of nonlinear fractional order models. It is a new version of perturbation techniques. In simulation section, we have testified our proposed procedure by considering the test problems of non linear fractional order Zakharov-Kuznetsov ZK(m,n,r) equations of the form [11,12]
Where a0, a1, a2 are arbitrary constants and m,n,r are non zero integers. If α=1, then equation (1.1) becomes classical Zakharov-Kuznetsov ZK(m,n,r) equation given as:
The ZK equation has been firstly modelized for depicting weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasma [40]. The ZK equation governs the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [41,42].
The plan of the rest paper is as follows: Section 2 provides theory of the AHPM; Section 3 provides implementation of AHPM. Finally, a brief conclusion and the further work has been listed.
2.
Basic idea of AHPM
Here, we provide that the Caputo type fractional order derivative will be used throughout this paper for the computation of derivative.
Let us consider the nonlinear problem in the form as
T(u(x,y,t))+g(x,y,t)=0,
(2.1)
B(u(x,y,t),∂u(x,y,t)∂t)=0.
(2.2)
Where T(u(x,y,t)) denotes a differential operator which may consists ordinary, partial or space- fractional or time-fractional differential derivative. T(u(x,y,t)) can be expressed for fractional model as follows:
∂αu(x,y,t)∂tα+N(u(x,y,t))+g(x,y,t)=0
(2.3)
subject to the condition
B(u(x,y,t),∂u(x,y,t)∂t)=0,
(2.4)
where the operator ∂α∂tα denotes the Caputo derivative operator, N is non linear operator and B denotes a boundary operator, u(x,y,t) is unknown exact solution of Eq. (2.1), g(x,y,t) denotes known function and x,y and t denote special and temporal variables respectively. Let us construct a homotopy Φ(x,y,t;p):Ω×[0,1]→R which satisfies
∂αΦ(x,y,t;p)∂tα+g(x,y,t)−p[N(Φ(x,y,t;p)]=0,
(2.5)
where p∈[0,1] is said to be an embedding parameter. At this phase of our work it is pertinent that our proposed deformation Eq. (2.5) is an alternate form of the deformation equations as
in HPM, HAM, OHAM proposed by Liao in [43], He in [44] and Marinca in [45] respectively.
Basically, according to homotopy definition, when p=0 and p=1 we have
Φ(x,y,t;p)=u0(x,y,t),ϕ(x,y,t;p)=u(x,y,t).
Obviously, when the embedding parameter p varies from 0 to 1, the defined homotopy ensures the convergence of ϕ(x,y,t;p) to the exact solution u(x,y,t). Consider ϕ(x,y,t;p) in the form
It is obvious that the construction of introduced auxiliary function in Eq. (2.10) is different from the auxiliary functions that are proposed in articles [43,44,45]. Hence the procedure proposed in our paper is different from the procedures proposed by Liao, He, Marinca in aforesaid papers [43,44,45] as well as Optimal Homotopy perturbation method (OHPM) in [46].
Furthermore, when we substitute Eq. (2.9) and Eq. (2.10) in Eq. (2.5) and equate like power of p, the obtained series of simpler linear problems are
We obtain the series solutions by using the integral operator Jα on both sides of the above each simple fractional differential equation. The convergence of the series solution Eq. (2.9) to the exact solution depends upon the auxiliary parameters (functions) Bi(x,y,t,ci). The choice of Bi(x,y,t,ci) is purely on the basis of terms appear in nonlinear part of the Eq. (2.1). The Eq.(2.9) converges to the exact solution of Eq. (2.1) at p=1:
˜u(x,y,t)=u0(x,y,t)+∞∑k=1uk(x,y,t;ci),i=1,2,3,….
(2.12)
Particularly, we can truncate the Eq. (2.12) into finite m-terms to obtain the solution of nonlinear problem. The auxiliary convergence control constants c1,c2,c3,… can be found by solving the system
in Eq. (2.10), we obtain exactly the series problems which are obtained by OHAM after expanding and equating the like power of p in deformation equation. Furthermore, concerning the Optimal Homotopy Asymptotic Method (OHAM) mentioned in this manuscript and presented in [45], that the version of OHAM proposed in 2008 was improved in time and the most recent improvement, which also contains an auxiliary functions, are presented in the papers [47,48]. We also have improved the version of OHAM by introducing a very new auxiliary function in Eq. (2.10). Our method proposed in this paper uses a very new and more general form of auxiliary function
N(ϕ(x,y,t;p))=B1N0+∞∑i=1(i∑m=0Bi+1−mNm)pi
which depends on arbitrary parameters B1,B2,B3,… and is useful for adjusting and controlling the convergence of nonlinear part as well as linear part of the problem with simple way.
3.
Applications
In this portion, we apply AHPM to obtain solution of the following problems to show the accuracy and appropriateness of the new procedure for to solve nonlinear problems.
Problem 3.1.Let us consider FZK(2,2,2) in the form:
In similar way, we can compute the solution of the next simpler linear problems which are difficult to compute by using OHAM procedure. we choose B1=c1,B2=c2,B3=c3,B4=c4 and consider
We obtain number of optimal values of auxiliary constants by using the Eq. (2.13) and choose those optimal values whose sum is in [−1,0). Now, substituting the optimal values of auxiliary constants (from the Table 1) into the Eq. (3.12), we obtain the AHPM solutions for different values of α at k=0.001
Table 1.
The auxiliary control constants for the problem 3.1.
Tables 2 and 3 show the AHPM solution, VIM solution, exact solution and absolute error of AHPM solution. It is obvious from Tables 2 and 3 that AHPM solution results are more accurate to the exact solution results as compare with VIM [11] solution results. The AHPM solution, exact solution and absolute error of AHPM solution are plotted for different values of α, x, y and t in Figures 1 and 2. The curves of AHPM and exact solution are exactly matching as compare with homotopy perturbation transform method (HPTM)[12]. It is obvious from the Tables 2 and 3, Figures 1 and 2, that the AHPM solution of the problem 3.1 is in very good agreement with exact solution.
Table 2.
Solution of the problem 3.1 for various values of α, x, y and t at k=0.001.
We obtain number of optimal values of auxiliary constants by using the Eq. (2.13) and choose those optimal values whose sum is in [−1,0). Now, substituting the optimal values of auxiliary constants (from Table 4) into the Eq. (3.20), we obtain the AHPM solutions for different values of α at k=0.001.
Table 4.
The auxiliary control constants for the problem 3.2.
Tables 5–7 show the AHPM solution, VIM solution, exact solution and absolute error of AHPM solution. The AHPM solution, exact solution and absolute error of AHPM solution are plotted for different values of α, x, y and t in Figures 3 and 4. It is obvious from the Tables 5–7, Figures 3 and 4, that the AHPM solution of the problem 3.2 is in very good agreement with exact solution.
Table 5.
Solution of the problem 3.2 for varios values of α, x, y and t at k=0.001.
In this article, asymptotic homotopy perturbation method (AHPM) is developed to solve non-linear fractional models. It is a different procedure from the procedures of HAM, HPM and OHAM. The two special cases, ZK(2,2,2) and ZK(3,3,3) of fractional Zakharov-Kuznetsov model are considered to illustrate a very simple procedure of the homotopy methods. The numerical results in simulation section of AHPM solutions are more accurate to the exact solutions as comparing with fractional complex transform (FCT) using variational iteration method (VIM). In the field of fractional calculus, it is necessary to introduce various procedures and schemes to compute the solution of non-linear fractional models. In this concern, we expect that this new proposed procedure is a best effort. The best improvement and the application of this new procedures to the solution of advanced non-linear fractional models with computer software codes will be our further consideration.
Acknowledgments
The authors would like to thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
Conflict of interest
The authors declare no conflict of interest.
References
[1]
J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A. Math. Phys. Sci., 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
[2]
M. Buhmann, A. Iserles, Stability of the discretized pantograph differential equation, Math. Comput., 60 (1993), 575–589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2
[3]
P. Rahimkhani, Y. Ordokhani, E. Babolian, Müntz-legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77 (2018), 1283–1305. https://doi.org/10.1007/s11075-017-0363-4 doi: 10.1007/s11075-017-0363-4
[4]
S. Behera, S. S. Ray, An efficient numerical method based on euler wavelets for solving fractional order pantograph volterra delay-integro-differential equations, J. Comput. Appl. Math., 406 (2022), 113825. https://doi.org/10.1016/j.cam.2021.113825 doi: 10.1016/j.cam.2021.113825
[5]
S. S. Ezz-Eldien, A. Alalyani, Legendre spectral collocation method for one- and two-dimensional nonlinear pantograph Volterra-Fredholm integro-differential equations, Int. J. Mod. Phys. C, 2025. https://doi.org/10.1142/S0129183125500615
[6]
N. A. Elkot, M. A. Zaky, E. H. Doha, I. G. Ameen, On the rate of convergence of the legendre spectral collocation method for multi-dimensional nonlinear volterra–fredholm integral equations, Commun. Theory Phys., 73 (2021), 025002. https://doi.org/10.1088/1572-9494/abcfb3 doi: 10.1088/1572-9494/abcfb3
[7]
D. Trif, Direct operatorial tau method for pantograph-type equations, Appl. Math. Comput., 219 (2012), 2194–2203. https://doi.org/10.1016/j.amc.2012.08.065 doi: 10.1016/j.amc.2012.08.065
[8]
S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
[9]
M. Sezer, S. Yalçinbaş, M. Gülsu, A taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term, Int. J. Comput. Math., 85 (2008), 1055–1063. https://doi.org/10.1080/00207160701466784 doi: 10.1080/00207160701466784
[10]
F. Shakeri, M. Dehghan, Application of the decomposition method of adomian for solving the pantograph equation of order m, Zeitschrift für Naturforschung A, 65 (2010), 453–460. https://doi.org/10.1515/zna-2010-0510 doi: 10.1515/zna-2010-0510
[11]
Ş. Yüzbaşı, E. Gök, M. Sezer, Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations, Math. Meth. Appl. Sci., 37 (2014), 453–463. https://doi.org/10.1002/mma.2801 doi: 10.1002/mma.2801
[12]
S. S. Ezz-Eldien, E. H. Doha, Fast and precise spectral method for solving pantograph type volterra integro-differential equations, Numer. Algor., 21 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
[13]
A. Ghoreyshi, M. Abbaszadeh, M. A. Zaky, M. Dehghan, Finite block method for nonlinear time-fractional partial integro-differential equations: stability, convergence, and numerical analysis, Appl. Numer. Math., 2025. https://doi.org/10.1016/j.apnum.2025.03.002
[14]
C. Yang, J. Hou, Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer. Algor., 86 (2021), 1089–1108. https://doi.org/10.1007/s11075-020-00924-7 doi: 10.1007/s11075-020-00924-7
[15]
F. Ghomanjani, M. H. Farahi, N. Pariz, A new approach for numerical solution of a linear system with distributed delays, volterra delay-integro-differential equations, and nonlinear volterra-fredholm integral equation by bezier curves, Comput. Appl. Math., 36 (2017), 1349–1365. https://doi.org/10.1007/s40314-015-0296-2 doi: 10.1007/s40314-015-0296-2
[16]
Q. Huang, H. Xie, H. Brunner, Superconvergence of discontinuous galerkin solutions for delay differential equations of pantograph type, SIAM J. Sci. Comput., 33 (2011), 2664–2684. https://doi.org/10.1137/110824632 doi: 10.1137/110824632
[17]
Y. Qin, C. Huang, An hp-version error estimate of spectral collocation methods for weakly singular volterra integro-differential equations with vanishing delays, Comput. Appl. Math., 43 (2024), 301. https://doi.org/10.1007/s40314-024-02818-z doi: 10.1007/s40314-024-02818-z
[18]
M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
[19]
M. A. Zaky, I. G. Ameen, A novel jacobi spectral method for multi-dimensional weakly singular nonlinear volterra integral equations with nonsmooth solutions, Eng. Comput., 37 (2021), 2623–2631. https://doi.org/10.1007/s00366-020-00953-9 doi: 10.1007/s00366-020-00953-9
[20]
M. A. Zaky, I. G. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related volterra-fredholm integral equations with smooth solutions, Numer. Algor., 84 (2020), 63–89. https://doi.org/10.1007/s11075-019-00743-5 doi: 10.1007/s11075-019-00743-5
[21]
H. Moussa, M. Saker, M. A. Zaky, M. A. Babatin, S. S. Ezz-Eldien, Mapped Legendre-spectral method for high-dimensional multi-term time-fractional diffusion-wave equation with non-smooth solution, Comput. Appl. Math., 44 (2025), 167. https://doi.org/10.1007/s40314-025-03123-z doi: 10.1007/s40314-025-03123-z
[22]
P. Rahimkhani, Y. Ordokhani, Hahn wavelets collocation method combined with Laplace transform method for solving fractional integro-differential equations, Math. Sci., 18 (2024), 463–477. http://doi.org/10.1007/s40096-023-00514-3 doi: 10.1007/s40096-023-00514-3
[23]
E. Doha, A. Bhrawy, S. Ezz-Eldien, An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations, J. Comput. Nonlin. Dyn., 10 (2015), 021019. http://doi.org/10.1115/1.4027944 doi: 10.1115/1.4027944
[24]
S. S. Ezz-Eldien, R. M. Hafez, A. H. Bhrawy, D. Baleanu, A. A. El-Kalaawy, New numerical approach for fractional variational problems using shifted legendre orthonormal polynomials, J. Opt. Theory Appl., 174 (2017), 295–320. http://doi.org/10.1007/s10957-016-0886-1 doi: 10.1007/s10957-016-0886-1
[25]
J. Zhao, Y. Cao, Y. Xu, Sinc numerical solution for pantograph volterra delay-integro-differential equation, Int. J. Comput. Math., 94 (2017), 853–865. http://doi.10.1080/00207160.2016.1149577 doi: 10.1080/00207160.2016.1149577
This article has been cited by:
1.
ZAIN UL ABADIN ZAFAR, ZAHIR SHAH, NIGAR ALI, EBRAHEEM O. ALZAHRANI, MESHAL SHUTAYWI,
MATHEMATICAL AND STABILITY ANALYSIS OF FRACTIONAL ORDER MODEL FOR SPREAD OF PESTS IN TEA PLANTS,
2021,
29,
0218-348X,
2150008,
10.1142/S0218348X21500080
2.
D. Gopal, S. Saleem, S. Jagadha, Farooq Ahmad, A. Othman Almatroud, N. Kishan,
Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation,
2021,
60,
11100168,
1861,
10.1016/j.aej.2020.11.034
3.
Jiabin Xu, Hassan Khan, Rasool Shah, A.A. Alderremy, Shaban Aly, Dumitru Baleanu,
The analytical analysis of nonlinear fractional-order dynamical models,
2021,
6,
2473-6988,
6201,
10.3934/math.2021364
4.
Alamgeer Khan, Muhammad Farooq, Rashid Nawaz, Muhammad Ayaz, Hijaz Ahmad, Hanaa Abu-Zinadah, Yu-Ming Chu,
Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods,
2021,
19,
2391-5471,
134,
10.1515/phys-2021-0015
5.
Haji Gul, Sajjad Ali, Kamal Shah, Shakoor Muhammad, Thanin Sitthiwirattham, Saowaluck Chasreechai,
Application of Asymptotic Homotopy Perturbation Method to Fractional Order Partial Differential Equation,
2021,
13,
2073-8994,
2215,
10.3390/sym13112215
6.
Muhammad Farooq, Hijaz Ahmad, Dilber Uzun Ozsahin, Alamgeer Khan, Rashid Nawaz, Bandar Almohsen,
A study of heat and mass transfer flow of a variable viscosity couple stress fluid between inclined plates,
2024,
38,
0217-9849,
10.1142/S0217984923502317
7.
Murugesan Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar,
Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions,
2024,
8,
2504-3110,
441,
10.3390/fractalfract8080441
8.
Razia Begum, Sajjad Ali, Nahid Fatima, Kamal Shah, Thabet Abdeljawad,
Dynamical behavior of whooping cough SVEIQRP model via system of fractal fractional differential equations,
2024,
12,
26668181,
100990,
10.1016/j.padiff.2024.100990
Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog. A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations[J]. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog. A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations[J]. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322