Research article Special Issues

A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations

  • Received: 16 January 2025 Revised: 17 March 2025 Accepted: 21 March 2025 Published: 27 March 2025
  • MSC : 65L05, 65R20, 65N35, 65L03

  • High-order pantograph Volterra-Fredholm integro-differential equations (P-VF-IDEs) arise in various scientific and engineering applications, where systems exhibit delay or scaling in their dynamics. This paper investigates a class of high-order P-VF-IDEs characterized by the presence of both Volterra and Fredholm integral terms as well as pantograph delay elements. We propose a spectral tau approach to approximate the solution P-VF-IDEs in both one- and two-dimensions. In particular, we employ the operational differentiation and integration matrices to approximate the integro-differential operator, transforming the continuous problem into a system of algebraic equations, and providing high accuracy with fewer computational modes. Numerical experiments illustrate the accuracy and convergence properties of the spectral Legendre tau method in solving high-order P-VF-IDEs and demonstrate its efficacy compared to other spectral approaches.

    Citation: Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog. A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations[J]. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322

    Related Papers:

  • High-order pantograph Volterra-Fredholm integro-differential equations (P-VF-IDEs) arise in various scientific and engineering applications, where systems exhibit delay or scaling in their dynamics. This paper investigates a class of high-order P-VF-IDEs characterized by the presence of both Volterra and Fredholm integral terms as well as pantograph delay elements. We propose a spectral tau approach to approximate the solution P-VF-IDEs in both one- and two-dimensions. In particular, we employ the operational differentiation and integration matrices to approximate the integro-differential operator, transforming the continuous problem into a system of algebraic equations, and providing high accuracy with fewer computational modes. Numerical experiments illustrate the accuracy and convergence properties of the spectral Legendre tau method in solving high-order P-VF-IDEs and demonstrate its efficacy compared to other spectral approaches.



    加载中


    [1] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A. Math. Phys. Sci., 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [2] M. Buhmann, A. Iserles, Stability of the discretized pantograph differential equation, Math. Comput., 60 (1993), 575–589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2
    [3] P. Rahimkhani, Y. Ordokhani, E. Babolian, Müntz-legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77 (2018), 1283–1305. https://doi.org/10.1007/s11075-017-0363-4 doi: 10.1007/s11075-017-0363-4
    [4] S. Behera, S. S. Ray, An efficient numerical method based on euler wavelets for solving fractional order pantograph volterra delay-integro-differential equations, J. Comput. Appl. Math., 406 (2022), 113825. https://doi.org/10.1016/j.cam.2021.113825 doi: 10.1016/j.cam.2021.113825
    [5] S. S. Ezz-Eldien, A. Alalyani, Legendre spectral collocation method for one- and two-dimensional nonlinear pantograph Volterra-Fredholm integro-differential equations, Int. J. Mod. Phys. C, 2025. https://doi.org/10.1142/S0129183125500615
    [6] N. A. Elkot, M. A. Zaky, E. H. Doha, I. G. Ameen, On the rate of convergence of the legendre spectral collocation method for multi-dimensional nonlinear volterra–fredholm integral equations, Commun. Theory Phys., 73 (2021), 025002. https://doi.org/10.1088/1572-9494/abcfb3 doi: 10.1088/1572-9494/abcfb3
    [7] D. Trif, Direct operatorial tau method for pantograph-type equations, Appl. Math. Comput., 219 (2012), 2194–2203. https://doi.org/10.1016/j.amc.2012.08.065 doi: 10.1016/j.amc.2012.08.065
    [8] S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
    [9] M. Sezer, S. Yalçinbaş, M. Gülsu, A taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term, Int. J. Comput. Math., 85 (2008), 1055–1063. https://doi.org/10.1080/00207160701466784 doi: 10.1080/00207160701466784
    [10] F. Shakeri, M. Dehghan, Application of the decomposition method of adomian for solving the pantograph equation of order m, Zeitschrift für Naturforschung A, 65 (2010), 453–460. https://doi.org/10.1515/zna-2010-0510 doi: 10.1515/zna-2010-0510
    [11] Ş. Yüzbaşı, E. Gök, M. Sezer, Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations, Math. Meth. Appl. Sci., 37 (2014), 453–463. https://doi.org/10.1002/mma.2801 doi: 10.1002/mma.2801
    [12] S. S. Ezz-Eldien, E. H. Doha, Fast and precise spectral method for solving pantograph type volterra integro-differential equations, Numer. Algor., 21 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
    [13] A. Ghoreyshi, M. Abbaszadeh, M. A. Zaky, M. Dehghan, Finite block method for nonlinear time-fractional partial integro-differential equations: stability, convergence, and numerical analysis, Appl. Numer. Math., 2025. https://doi.org/10.1016/j.apnum.2025.03.002
    [14] C. Yang, J. Hou, Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer. Algor., 86 (2021), 1089–1108. https://doi.org/10.1007/s11075-020-00924-7 doi: 10.1007/s11075-020-00924-7
    [15] F. Ghomanjani, M. H. Farahi, N. Pariz, A new approach for numerical solution of a linear system with distributed delays, volterra delay-integro-differential equations, and nonlinear volterra-fredholm integral equation by bezier curves, Comput. Appl. Math., 36 (2017), 1349–1365. https://doi.org/10.1007/s40314-015-0296-2 doi: 10.1007/s40314-015-0296-2
    [16] Q. Huang, H. Xie, H. Brunner, Superconvergence of discontinuous galerkin solutions for delay differential equations of pantograph type, SIAM J. Sci. Comput., 33 (2011), 2664–2684. https://doi.org/10.1137/110824632 doi: 10.1137/110824632
    [17] Y. Qin, C. Huang, An hp-version error estimate of spectral collocation methods for weakly singular volterra integro-differential equations with vanishing delays, Comput. Appl. Math., 43 (2024), 301. https://doi.org/10.1007/s40314-024-02818-z doi: 10.1007/s40314-024-02818-z
    [18] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
    [19] M. A. Zaky, I. G. Ameen, A novel jacobi spectral method for multi-dimensional weakly singular nonlinear volterra integral equations with nonsmooth solutions, Eng. Comput., 37 (2021), 2623–2631. https://doi.org/10.1007/s00366-020-00953-9 doi: 10.1007/s00366-020-00953-9
    [20] M. A. Zaky, I. G. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related volterra-fredholm integral equations with smooth solutions, Numer. Algor., 84 (2020), 63–89. https://doi.org/10.1007/s11075-019-00743-5 doi: 10.1007/s11075-019-00743-5
    [21] H. Moussa, M. Saker, M. A. Zaky, M. A. Babatin, S. S. Ezz-Eldien, Mapped Legendre-spectral method for high-dimensional multi-term time-fractional diffusion-wave equation with non-smooth solution, Comput. Appl. Math., 44 (2025), 167. https://doi.org/10.1007/s40314-025-03123-z doi: 10.1007/s40314-025-03123-z
    [22] P. Rahimkhani, Y. Ordokhani, Hahn wavelets collocation method combined with Laplace transform method for solving fractional integro-differential equations, Math. Sci., 18 (2024), 463–477. http://doi.org/10.1007/s40096-023-00514-3 doi: 10.1007/s40096-023-00514-3
    [23] E. Doha, A. Bhrawy, S. Ezz-Eldien, An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations, J. Comput. Nonlin. Dyn., 10 (2015), 021019. http://doi.org/10.1115/1.4027944 doi: 10.1115/1.4027944
    [24] S. S. Ezz-Eldien, R. M. Hafez, A. H. Bhrawy, D. Baleanu, A. A. El-Kalaawy, New numerical approach for fractional variational problems using shifted legendre orthonormal polynomials, J. Opt. Theory Appl., 174 (2017), 295–320. http://doi.org/10.1007/s10957-016-0886-1 doi: 10.1007/s10957-016-0886-1
    [25] J. Zhao, Y. Cao, Y. Xu, Sinc numerical solution for pantograph volterra delay-integro-differential equation, Int. J. Comput. Math., 94 (2017), 853–865. http://doi.10.1080/00207160.2016.1149577 doi: 10.1080/00207160.2016.1149577
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(921) PDF downloads(44) Cited by(5)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog