Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels

  • Received: 07 February 2023 Revised: 30 May 2023 Accepted: 05 June 2023 Published: 13 June 2023
  • MSC : 41A05, 41A10, 41A25, 45D05, 65N35

  • We present a multi-step spectral collocation method to solve Caputo-type fractional integro-differential equations (FIDEs) involving weakly singular kernels. We reformulate the problem as the second type Volterra integral equation (VIE) with two different weakly singular kernels. Based on these integral equations, we construct a multi-step Legendre-Gauss spectral collocation scheme for the problem. The hp-version convergence is established rigorously. To demonstrate the effectiveness of the suggested method and the validity of the theoretical results, the results of some numerical experiments are presented.

    Citation: Chuanli Wang, Biyun Chen. An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels[J]. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010

    Related Papers:

    [1] Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068
    [2] Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019
    [3] Muhammad Rashid, Muhammad Sarwar, Muhammad Fawad, Saber Mansour, Hassen Aydi . On generalized b-contractions and related applications. AIMS Mathematics, 2023, 8(9): 20892-20913. doi: 10.3934/math.20231064
    [4] Anam Arif, Muhammad Nazam, Aftab Hussain, Mujahid Abbas . The ordered implicit relations and related fixed point problems in the cone b-metric spaces. AIMS Mathematics, 2022, 7(4): 5199-5219. doi: 10.3934/math.2022290
    [5] Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina . Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194
    [6] Sudipta Kumar Ghosh, Ozgur Ege, Junaid Ahmad, Ahmad Aloqaily, Nabil Mlaiki . On elliptic valued b-metric spaces and some new fixed point results with an application. AIMS Mathematics, 2024, 9(7): 17184-17204. doi: 10.3934/math.2024835
    [7] Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
    [8] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
    [9] Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274
    [10] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
  • We present a multi-step spectral collocation method to solve Caputo-type fractional integro-differential equations (FIDEs) involving weakly singular kernels. We reformulate the problem as the second type Volterra integral equation (VIE) with two different weakly singular kernels. Based on these integral equations, we construct a multi-step Legendre-Gauss spectral collocation scheme for the problem. The hp-version convergence is established rigorously. To demonstrate the effectiveness of the suggested method and the validity of the theoretical results, the results of some numerical experiments are presented.



    In 2011, Azam et al. [1] gave the concept of a complex valued metric space (CVMS) as a special case of cone metric space. Since the concept to introduce complex valued metric spaces is designed to define rational expressions that cannot be defined in cone metric spaces and therefore several results of fixed point theory cannot be proved to cone metric spaces, so complex valued metric space form a special class of cone metric space. Actually, the definition of a cone metric space banks on the underlying Banach space which is not a division ring. However, we can study generalizations of many results of fixed point theory involving divisions in complex valued metric spaces. Moreover, this idea is also used to define complex valued Banach spaces [2] which offer a lot of scope for further investigation. Subsequently, Rouzkard et al. [3] proved some common fixed point results fulfilling rational inequalities in CVMS which generalize the chief results of Azam et al. [1]. Although, Klin-Eam et al. [4] extended the concept of CVMS and extended the main theorems of Azam et al. [1] and Rouzkard et al. [3]. Sintunavarat et al. [5] proved common fixed point results by putting control functions of one variable on the place of constants in contractive condition. Later on, Sitthikul et al. [6] extended the results of Sintunavarat et al. [5] by generalizing the control functions from one variable to two variables. Afterwards, Karuppiah et al. [7] obtained common coupled fixed point results for generalized rational type contractions in the background of complex valued metric spaces. For more details, we refer the readers to [8,9,10,11,12,13,14,15,16,17,18].

    In this article, we obtain common fixed points of the contractive type mappings involving control functions of two variables with the conditions of contraction on a closed subset of CVMS. In this regard, we present some results which are more general than the results of Sitthikul et al. [6], Sintunavarat et al. [5], Rouzkard et al. [3] and Azam et al. [1] in complex valued metric spaces. We also supply a non trivial example to show the authenticity of our leading results.

    The conception of CVMS is given as follows:

    Definition 1. ([1]) Let ω1,ω2C. A partial order on C is defined in this way.

    ω1ω2  Re(ω1)Re(ω2), Im(ω1)Im(ω2).

    It follows that

    ω1ω2

    if one of these assertions is satisfied:

    (a) Re(ω1)=Re(ω2), Im(ω1)<Im(ω2),(b) Re(ω1)<Re(ω2), Im(ω1)=Im(ω2),(c) Re(ω1)<Re(ω2), Im(ω1)<Im(ω2),(d) Re(ω1)=Re(ω2), Im(ω1)=Im(ω2).

    Definition 2. ([1]) Let P and φ:P×PC be a continuous mapping satisfying

    (i) 0φ(o,τ),  for all o,τP  and φ(o,τ)=0 if and only if o=τ;

    (ii) φ(o,τ)=φ(τ,o)  for all o,τP;

    (iii) φ(o,τ)φ(o,ν)+φ(ν,τ), for all o,τ,νP,

    then (P,φ) is said to be a CVMS. A point oP is said to be an interior point of AP, whenever there exists 0rC such that

    B(o,r)={τP:φ(o,τ)r}A,

    where B(o,r) is an open ball. Then ¯B(o,r)={τP:φ(o,τ)r} is a closed ball.

    Example 1. ([1]) Let P=[0,1] and o,τP. Define φ:P×PC by

    φ(o,τ)={0,if  o=τ,i2,if  oτ.

    Then (P,φ) is a CVMS.

    Azam et al. [1] presented this result in CVMS.

    Theorem 1. ([1]) Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist some constants 1,2[0,1) with 1+2<1 such that

    φ(L1o,L2τ)μφ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Rouzkard et al.[3] established this result.

    Theorem 2. ([3]) Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist some constants 1,2,3[0,1) with 1+2+3<1 such that

    φ(L1o,L2τ)1φ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+3φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Sintunavarat et al. [5] proved the following result.

    Theorem 3. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2:P[0,1) such that

    (a) ϱ1(L1o)ϱ1(o) and ϱ1(L2o)ϱ1(o),      ϱ2(L1o)ϱ2(o) and ϱ2(L2o)ϱ2(o), (b) ϱ1(o)+ϱ2(o)<1,

    (c) φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Lemma 1. ([1]) Let (P,φ) be a CVMS and let {on} P. Then {on} converges to o if and only if |φ(on,o)|0 when n.

    Lemma 2. ([1]) Let (P,φ) be a CVMS and let {on} P. Then {on} is Cauchy if and only if  |φ(on,on+m)|0 when n,  for each mN.

    Motivated with proposition proved by Sitthikul et al. [6], we state and prove the following proposition which is required in the proof of our main result.

    Proposition 1. Let (P,φ) be a CVMS. Let o0¯B(o0,r). Define the sequence {on} by

    o2n+1=L1o2n  and  o2n+2=L2o2n+1 (3.1)

    for all n=0,1,2,.

    Assume that there exists ϱ1:P×P[0,1) satisfies

    ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ)

    for all o,τ¯B(o0,r). Then

    ϱ1(o2n,τ)ϱ1(o0,τ) and ϱ1(o,o2n+1)ϱ1(o,o1)

    for all o,τ¯B(o0,r) and n=0,1,2,.

    Lemma 3. Let ϱ1,ϱ2:P×P[0,1) and o,τ¯B(o0,r). If L1,L2:¯B(o0,r) P satisfy

    φ(L1o,L2L1o)ϱ1(o,L1o)φ(o,L1o)+ϱ2(o,L1o)φ(o,L1o)φ(L1o,L2L1o)1+φ(o,L1o),
    φ(L1L2τ,L2τ)ϱ1(L2τ,τ)φ(L2τ,τ)+ϱ2(L2τ,τ)φ(L2τ,L1L2τ)φ(τ,L2τ)1+φ(L2τ,τ),

    then

    |φ(L1o,L2L1o)|ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(L1o,L2L1o)|.
    |φ(L1L2τ,L2τ)|ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(L2τ,L1L2τ)|.

    Proof. We can write

    |φ(L1o,L2L1o)||ϱ1(o,L1o)φ(o,L1o)+ϱ2(o,L1o)φ(o,L1o)φ(L1o,L2L1o)1+φ(o,L1o)|ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(o,L1o)1+φ(o,L1o)||φ(L1o,L2L1o)|ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(L1o,L2L1o)|.

    Similarly, we have

    |φ(L1L2τ,L2τ)||ϱ1(L2τ,τ)φ(L2τ,τ)+ϱ2(L2τ,τ)φ(L2τ,L1L2τ)φ(τ,L2τ)1+φ(L2τ,τ)|ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(τ,L2τ)1+φ(L2τ,τ)||φ(L2τ,L1L2τ)|ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(L2τ,L1L2τ)|.

    Theorem 4. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)P. If there exist the mappings ϱ1,ϱ2,ϱ3:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),      ϱ2(L2L1o,τ)ϱ2(o,τ) and ϱ2(o,L1L2τ)ϱ2(o,τ),      ϱ3(L2L1o,τ)ϱ3(o,τ) and ϱ3(o,L1L2τ)ϱ3(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ), (3.2)

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|, (3.3)

    where λ=ϱ1(o0,o1)1ϱ2(o0,o1)<1, then there exists a unique point o¯B(o0,r) such that L1o=L2o=o.

    Proof. For the arbitrary point o0 in ¯B(o0,r), define the sequence {on} by

    o2n+1=L1o2n and o2n+2=L2o2n+1

    for all n=0,1,2,... Now by inequality (3.3) and the fact that 0λ<1, we have

    |φ(o0,L1o0)||r|.

    It yields that o1¯B(o0,r). Let o2,o3,...,oj¯B(o0,r). It is enough to show that oj+1¯B(o0,r). First suppose that j is even, then we can write j=2k also j+1=2k+1. Now by the inequality (3.2), we have

    φ(o2k+1,o2k)=φ(L1L2o2k1,L2o2k1)ϱ1(L2o2k1,o2k1)φ(L2o2k1,o2k1)+ϱ2(L2o2k1,o2k1)φ(L2o2k1,L1L2o2k1)φ(o2k1,L2o2k1)1+φ(L2o2k1,o2k1)+ϱ3(L2o2k1,o2k1)φ(o2k1,L1L2o2k1)φ(L2o2k1,L2o2k1)1+φ(L2o2k1,o2k1),

    which implies

    φ(o2k+1,o2k)ϱ1(o2k,o2k1)φ(o2k1,o2k)+ϱ2(o2k,o2k1)φ(o2k,o2k+1)φ(o2k1,o2k)1+φ(o2k1,o2k)+ϱ3(o2k,o2k1)φ(o2k1,o2k+1)φ(o2k,o2k)1+φ(L2o2k,o2k1)=ϱ1(o2k,o2k1)φ(o2k1,o2k)+ϱ2(o2k,o2k1)φ(o2k,o2k+1)φ(o2k1,o2k)1+φ(o2k1,o2k).

    It yields

    |φ(o2k+1,o2k)||ϱ1(o2k,o2k1)φ(o2k1,o2k)+ϱ2(o2k,o2k1)φ(o2k,o2k+1)φ(o2k1,o2k)1+φ(o2k1,o2k)|ϱ1(o2k,o2k1)|φ(o2k1,o2k)|+ϱ2(o2k,o2k1)|φ(o2k,o2k+1)||φ(o2k1,o2k)||1+φ(o2k1,o2k)|.

    Using Proposition 1 and the fact that |φ(o2k1,o2k)||1+φ(o2k1,o2k)|<1 in above inequality, we have

    |φ(o2k+1,o2k)|ϱ1(o0,o2k1)|φ(o2k,o2k1)|+ϱ2(o0,o2k1)|φ(o2k,o2k+1)|ϱ1(o0,o1)|φ(o2k,o2k1)|+ϱ2(o0,o1)|φ(o2k,o2k+1)|

    which implies that

    |φ(o2k+1,o2k)|ϱ1(o0,o1)1ϱ2(o0,o1)|φ(o2k,o2k1)|. (3.4)

    Similarly, if j is odd, then we can write j=2k+1 and j+1=2k+2. Now by inequality (3.2), we have

    φ(o2k+2,o2k+1)=φ(L2L1o2k,L1o2k)=φ(L1o2k,L2L1o2k)ϱ1(o2k,L1o2k)φ(o2k,L1o2k)+ϱ2(o2k,L1o2k)φ(o2k,L1o2k)φ(L1o2k,L2L1o2k)1+φ(o2k,L1o2k)+ϱ3(o2k,L1o2k)φ(L1o2k,L1o2k)φ(o2k,L2L1o2k)1+φ(o2k,L1o2k),=ϱ1(o2k,o2k+1)φ(o2k,o2k+1)+ϱ2(o2k,o2k+1)φ(o2k,o2k+1)φ(o2k+1,o2k+2)1+φ(o2k,o2k+1).

    It implies

    |φ(o2k+2,o2k+1)||ϱ1(o2k,o2k+1)φ(o2k,o2k+1)+ϱ2(o2k,o2k+1)φ(o2k,o2k+1)1+φ(o2k,o2k+1)φ(o2k+1,o2k+2)|ϱ1(o2k,o2k+1)|φ(o2k,o2k+1)|+ϱ2(o2k,o2k+1)|φ(o2k,o2k+1)||1+φ(o2k,o2k+1)||φ(o2k+1,o2k+2)|.

    Using Proposition 1 and the fact that |φ(o2k,o2k+1)||1+φ(o2k,o2k+1)|<1 in above inequality, we have

    |φ(o2k+2,o2k+1)|ϱ1(o0,o1)|φ(o2k,o2k+1)|+ϱ2(o0,o1)|φ(o2k+1,o2k+2)|,

    implies that

    |φ(o2k+2,o2k+1)|ϱ1(o0,o1)1ϱ2(o0,o1)|φ(o2k+1,o2k)|. (3.5)

    Since λ=ϱ1(o0,o1)1ϱ2(o0,o1)<1, then by (3.4) and (3.5), we conclude that

    |φ(oj+1,oj)|λ|φ(oj,oj1)| (3.6)

    for all jN. Therefore we have

    |φ(oj+1,oj)|λ|φ(oj,oj1)|λ2|φ(oj1,oj2)|λȷ|φ(o1,o0)| (3.7)

    for all jN. Now by triangle inequality and inequality(3.7), we have

    |φ(oj+1,o0)||φ(oj+1,oj)|+....+|φ(o1,o0)|λȷ|φ(o1,o0)|+λȷ1|φ(o1,o0)|....+|φ(o1,o0)||φ(o1,o0)|(λȷ+λȷ1+...+1)(1λȷ+1)1λ|φ(o1,o0)|.

    By inequality (3.3), we have

     |φ(oj+1,o0)|(1λȷ+1)1λ(1λ)|r||r|,

    gives oj+1¯B(o0,r). Thus on¯B(o0,r), for all nN. Now, by inequality (3.2) and the inequality (3.7), we have

    |φ(on+1,on)|λn|φ(o0,o1)|

    for all nN. Now for m>n, we have

    |φ(on,om)||φ(on,on+1)|+|φ(on+1,on+2)|+....+|φ(om1,om)||φ(o1,o0)|(λn+λn+1+λm1+...+1)λn1λ|φ(o0,o1)|0,

    as n. It implies that the sequence {on} is a Cauchy sequence in ¯B(o0,r). As ¯B(o0,r) is closed set in P and (P,φ) is complete. So (¯B(o0,r),φ) is complete. Thus there exists o/¯B(o0,r) such that ono/ as n.

    Next, we show that o/ is a fixed point of L1. By (3.2) and Proposition 1, we have

    φ(o/,L1o/)φ(o/,L2o2n+1)+φ(L2o2n+1,L1o/)=φ(o/,o2n+2)+φ(L1o/,L2o2n+1)φ(o/,o2n+2)+ϱ1(o/,o2n+1)φ(o/,o2n+1)+ϱ2(o/,o2n+1)φ(o/,L1o/)φ(o2n+1,L2o2n+1)1+φ(o/,o2n+1)+ϱ3(o/,o2n+1)φ(o2n+1,L1o/)φ(o/,L2o2n+1)1+φ(o/,o2n+1)φ(o/,o2n+2)+ϱ1(o/,o1)φ(o/,o2n+1)+ϱ2(o/,o1)φ(o/,L1o/)φ(o2n+1,o2n+2)1+φ(o/,o2n+1)ϱ3(o/,o1)φ(o2n+1,L1o/)φ(o/,o2n+2)1+φ(o/,o2n+1),

    letting n, we have

    φ(o/,L1o/)=0

    and hence o/=L1o/. We also show that o/ is a fixed point of L2. By (3.2) and Proposition 1, we have

    φ(o/,L2o/)φ(o/,L1o2n)+φ(L1o2n,L2o/)φ(o/,o2n+1)+ϱ1(o2n,o/)φ(o2n,o/)+ϱ2(o2n,o/)φ(o2n,L1o2n)φ(o/,L2o/)1+φ(o2n,o/)+ϱ3(o2n,o/)φ(o/,L1o2n)φ(o2n,L2τ)1+φ(o2n,o/)φ(o/,o2n+1)+ϱ1(o0,o/)φ(o2n,o/)+ϱ2(o0,o/)φ(o2n,o2n)φ(o/,L2o/)1+φ(o2n,o/)+ϱ3(o0,o/)φ(o/,o2n+1)φ(o2n,L2τ)1+φ(o2n,o/),

    letting n, we have

    φ(o/,L2o/)=0

    and hence o/=L2o/. Therefore o/ is a common fixed point of L1 and L2. Now assume that there is o¯B(o0,r) is another fixed point of L1 and L2, then o=L1o=L2o and o/o. Now by (3.2), we have

    φ(o/,o)=φ(L1o/,L2o)ϱ1(o/,o)φ(o/,o)+ϱ2(o/,o)φ(o/,L1o/)φ(o,L2o)1+φ(o/,o)+ϱ3(o/,o)φ(o,L1o/)φ(o/,L2o)1+φ(o/,o)=ϱ1(o/,o)φ(o/,o)+ϱ3(o/,o)φ(o,o/)φ(o/,o)1+φ(o/,o),

    which implies that

    |φ(o/,o)||ϱ1(o/,o)φ(o/,o)+ϱ3(o/,o)φ(o/,o)φ(o/,o)1+φ(o/,o)|ϱ1(o/,o)|φ(o/,o)|+ϱ3(o/,o)|φ(o/,o)||φ(o/,o)||1+φ(o/,o)||ϱ1(o/,o)|φ(o/,o)|+ϱ3(o/,o)|φ(o/,o)|(ϱ1(o/,o)+ϱ3(o/,o))|φ(o/,o)|.

    Since ϱ1(o/,o)+ϱ3(o/,o)<1, we have |φ(o/,o)|=0. Thus o/=o.

    Corollary 1. Let (P,φ) be a complete CVMS and L:¯B(o0,r)P. If there exist mappings ϱ1,ϱ2,ϱ3:P×P[0,1) such that

    (a) ϱ1(Lo,τ)ϱ1(o,τ) and ϱ1(o,Lτ)ϱ1(o,τ),

    ϱ2(Lo,τ)ϱ2(o,τ) and ϱ2(o,Lτ)ϱ2(o,τ),

    ϱ3(Lo,τ)ϱ3(o,τ) and ϱ3(o,Lτ)ϱ3(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)<1, (c) φ(Lo,Lτ)ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,Lo)φ(τ,Lτ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,Lo)φ(o,Lτ)1+φ(o,τ),

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,Lo0)|(1λ)|r|,

    where λ=ϱ1(o0,o1)1ϱ2(o0,o1)<1. Then L has a unique fixed point.

    Proof. Take L1=L2=L in Theorem 4.

    Corollary 2. Let (P,φ) be a complete CVMS and L1,L2:¯B(o0,r)P. If there exist mappings ϱ1,ϱ2:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),

    ϱ2(L2L1o,τ)ϱ2(o,τ) and ϱ2(o,L1L2τ)ϱ2(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)<1, (c) φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ),

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|,

    where λ=ϱ1(o0,o1)1ϱ2(o0,o1)<1. Then there exists a unique point o¯B(o0,r) such that L1o=L2o=o.

    Proof. Take ϱ3(o,τ)=0 in Theorem 4.

    Corollary 3. Let (P,φ) be a complete CVMS and L1,L2:¯B(o0,r)P. If there exist mappings ϱ1,ϱ3:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),

    ϱ3(L2L1o,τ)ϱ3(o,τ) and ϱ3(o,L1L2τ)ϱ3(o,τ),

    (b) ϱ1(o,τ)+ϱ3(o,τ)<1, (c) φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ),

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|,

    where λ=ϱ1(o0,o1)<1. Then there exists a unique point o¯B(o0,r) such that L1o=L2o=o.

    Proof. Take ϱ2(o,τ)=0 in Theorem 4.

    Theorem 5. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)P. If there exist the mappings ϱ1,ϱ2,ϱ3:P[0,1) such that

    (a) ϱ1(L1o)ϱ1(o) and ϱ1(L2o)ϱ1(o),      ϱ2(L1o)ϱ2(o) and ϱ2(L2o)ϱ2(o),      ϱ3(L1o)ϱ3(o) and ϱ3(L2o)ϱ3(o),

    (b) ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c) φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|,

    where λ=ϱ1(o0)1ϱ2(o0)<1, then there exists a unique point o¯B(o0,r) such that L1o=L2o=o.

    Proof. Define ϱ1,ϱ2,ϱ3:P×P[0,1) by

    ϱ1(o,τ)=ϱ1(o),  ϱ2(o,τ)=ϱ2(o)     and   ϱ3(o,τ)=ϱ3(o)

    for all o,τ¯B(o0,r). Then for all o,τ¯B(o0,r), we have

    (a) ϱ1(L2L1o,τ)=ϱ1(L2L1o)ϱ1(L1o)ϱ1(o)=ϱ1(o,τ) and ϱ1(o,L1L2τ)=ϱ1(o)=ϱ1(o,τ),

    ϱ2(L2L1o,τ)=ϱ2(L2L1o)ϱ2(L1o)ϱ2(o)=ϱ2(o,τ) and ϱ2(o,L1L2τ)=ϱ2(o)=ϱ2(o,τ),

    ϱ3(L2L1o,τ)=ϱ3(L2L1o)ϱ3(L1o)ϱ3(o)=ϱ3(o,τ) and ϱ3(o,L1L2τ)=ϱ3(o)=ϱ3(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)=ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ) =ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ),

    (d) λ=ϱ1(o0,o1)1ϱ2(o0,o1)=ϱ1(o0)1ϱ2(o0)<1.

    By Theorem 4, L1 and L2 have a unique common fixed point.

    Remark 1. Condition (a) and (b) of Theorem 4 can be weakened by the following condition

    ϱ1(L2L1o)ϱ1(o), ϱ2(L2L1o)ϱ2(o) and ϱ3(L2L1o)ϱ3(o)

    for all o,τ¯B(o0,r). So, it will be interesting to present the following result in this context.

    Theorem 6. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)P. If there exist the mappings ϱ1,ϱ2,ϱ3:P[0,1) such that

    (a) ϱ1(L2L1o)ϱ1(o) and ϱ1(L1L2o)ϱ1(o),

         ϱ2(L2L1o)ϱ2(o) and ϱ2(L1L2o)ϱ2(o),

         ϱ3(L2L1o)ϱ3(o) and ϱ3(L1L2o)ϱ3(o),

    (b) ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c) φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|,

    where λ=ϱ1(o0)1ϱ2(o0)<1, then L1 and L2 have a unique common fixed point.

    Proof. Define ϱ1,ϱ2,ϱ3:P×P[0,1) by

    ϱ1(o,τ)=ϱ1(o),  ϱ2(o,τ)=ϱ2(o)     and  ϱ3(o,τ)=ϱ3(o).

    Then for all o,τ¯B(o0,r), we have

    (a) ϱ1(L2L1o,τ)=ϱ1(L2L1o)ϱ1(o)=ϱ1(o,τ) and ϱ1(o,L1L2τ)=ϱ1(o)=ϱ1(o,τ),

    ϱ2(L2L1o,τ)=ϱ2(L2L1o)ϱ2(o)=ϱ2(o,τ) and ϱ2(o,L1L2τ)=ϱ2(o)=ϱ2(o,τ),

    ϱ3(L2L1o,τ)=ϱ3(L2L1o)ϱ3(o)=ϱ3(o,τ) and ϱ3(o,L1L2τ)=ϱ3(o)=ϱ3(o,τ),

    (b) \ ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)=ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ) =ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ),

    (d) λ=ϱ1(o0,o1)1ϱ2(o0,o1)=ϱ1(o0)1ϱ2(o0)<1.

    By Theorem 4, L1 and L2 have a unique common fixed point.

    Corollary 4. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)P. If there exist some constants 1,2,3[0,1) with 1+2+3<1 such that

    φ(L1o,L2τ)1φ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+3φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|,

    where λ=112<1, then L1 and L2 have a unique common fixed point.

    Proof. Define ϱ1,ϱ2,ϱ3:o[0,1) by

    ϱ1()=1,  ϱ2()=2    and   ϱ3()=3

    in the Theorem 6.

    Corollary 5. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)P. If there exist some constants 1,2[0,1) with 1+2<1 such that

    φ(L1o,L2τ)1φ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o0,o,τ¯B(o0,r), 0rC and

    |φ(o0,L1o0)|(1λ)|r|

    where λ=112<1, then L1 and L2 have a unique common fixed point.

    Now if we expand the closed ball ¯B(o0,r) to the whole space P, we obtain this result.

    Corollary 6. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2,ϱ3:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),

         ϱ2(L2L1o,τ)ϱ2(o,τ) and ϱ2(o,L1L2τ)ϱ2(o,τ),

         ϱ3(L2L1o,τ)ϱ3(o,τ) and ϱ3(o,L1L2τ)ϱ3(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Corollary 7. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),

         ϱ2(L2L1o,τ)ϱ2(o,τ) and ϱ2(o,L1L2τ)ϱ2(o,τ),

    (b) ϱ1(o,τ)+ϱ2(o,τ)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Corollary 8. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1:P×P[0,1) such that

    (a) ϱ1(L2L1o,τ)ϱ1(o,τ) and ϱ1(o,L1L2τ)ϱ1(o,τ),

    (b) ϱ1(o,τ)<1,

    (c) φ(L1o,L2τ)ϱ1(o,τ)φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Now if we expand the closed ball ¯B(o0,r) to the whole space P in Theorem 5, we obtain this result.

    Corollary 9. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2,ϱ3:P[0,1) such that

    (a) ϱ1(L1o)ϱ1(o) and ϱ1(L2o)ϱ1(o),      ϱ2(L1o)ϱ2(o) and ϱ2(L2o)ϱ2(o),      ϱ3(L1o)ϱ3(o) and ϱ3(L2o)ϱ3(o),

    (b) ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Now if we expand the closed ball ¯B(o0,r) to the whole space P in Theorem 6, we obtain this result.

    Theorem 9. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2,ϱ3:P[0,1) such that

    (a) ϱ1(L2L1o)ϱ1(o) and ϱ1(L1L2o)ϱ1(o),

         ϱ2(L2L1o)ϱ2(o) and ϱ2(L1L2o)ϱ2(o),

         ϱ3(L2L1o)ϱ3(o) and ϱ3(L1L2o)ϱ3(o),

    (b) ϱ1(o)+ϱ2(o)+ϱ3(o)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Corollary 10. Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist the mappings ϱ1,ϱ2:P[0,1) such that

    (a) ϱ1(L2L1o)ϱ1(o) and ϱ1(L1L2o)ϱ1(o),

         ϱ2(L2L1o)ϱ2(o) and ϱ2(L1L2o)ϱ2(o),

    (b) ϱ1(o)+ϱ2(o)<1,

    (c)

    φ(L1o,L2τ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Corollary 11. ([5]) Let (P,φ) be a complete CVMS and let L:PP. If there exist the mappings ϱ1,ϱ2:P[0,1) such that

    (a) ϱ1(Lo)ϱ1(o) and ϱ1(Lo)ϱ1(o),

         ϱ2(Lo)ϱ2(o) and ϱ2(Lo)ϱ2(o),

    (b) ϱ1(o)+ϱ2(o)<1,

    (c)

    φ(Lo,Lτ)ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,Lo)φ(τ,Lτ)1+φ(o,τ)

    for all o,τP, then L has a unique fixed point.

    Now if we expand the closed ball ¯B(o0,r) to the whole space P in result 4, we obtain a result which is main result of Rouzkard et al. [3].

    Corollary 12. ([3]) Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist some constants 1,2,3[0,1) with 1+2+3<1 such that

    φ(L1o,L2τ)1φ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+3φ(τ,L1o)φ(o,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Now we give a result which is main result of Azam et al. [1] from above result.

    Corollary 13. ([1]) Let (P,φ) be a complete CVMS and let L1,L2:PP. If there exist some constants 1,2[0,1) with 1+2<1 such that

    φ(L1o,L2τ)1φ(o,τ)+2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)

    for all o,τP, then L1 and L2 have a unique common fixed point.

    Example 2. Let

    P1={ωC:Re(ω)0, Im(ω)=0},P2={ωC:Im(ω)0, Re(ω)=0},

    and let P=P1P2. Consider a metric φ:P×PC  as follows:

    φ(ω1,ω2)={23|o1o2|+i2|o1o2|,if   ω1,ω2P112|τ1τ2|+i3|τ1τ2|,if   ω1,ω2P229(o1+τ2)+i6(o1+τ2),if   ω1P1, ω2P2i3(o2+τ1)+2i9(o2+τ1),if   ω1P2, ω2P1

    for ω1=o1+o2i and ω2=τ1+τ2i. Then (P,φ) is CVMS. Take o0=12+0i and r=13+14i. Then

    ¯B(o0,r)={ωC:0Re(ω)1, Im(ω)=0if  ωP1ωC:0Im(ω)1, Re(ω)=0if  ωP2.

    Define L1,L2:¯B(o0,r)P as

    L1ω={0+o3iif ωP1 with 0Re(ω)1, Im(ω)=04o5+0iif ωP1 with Re(ω)>1, Im(ω)=0τ4+0iif ωP2 with 0Im(ω)1, Re(ω)=00+3τ4iif ωP2 with Im(ω)>1, Re(ω)=0.
    L2ω={0+o5iif ωP1 with 0Re(ω)1, Im(ω)=05o6+0iif ωP1 withRe(ω)>1, Im(ω)=0τ8+0iif ωP2 with 0Im(ω)1, Re(ω)=00+4τ7iif ωP2 with Im(ω)>1, Re(ω)=0.

    Then the mappings L1 and L2 satisfy the conditions (3.2) and (3.3) of our main Theorem 4 with ϱ1,ϱ2,ϱ3:P×P[0,1) defined as follows

    ϱ1(ω1,ω2)={|0+o1+o2+τ1+τ216i|,     if ω1,ω2¯B(o0,r)34,       otherwise.
    ϱ2(ω1,ω2)={|0+o1+o2+τ1+τ218i|,     if ω1,ω2¯B(o0,r)16,       otherwise.
    ϱ3(ω1,ω2)={|0+o1+o2+τ1+τ217i|,     if ω1,ω2¯B(o0,r)350,       otherwise.

    Hence L1 and L2 have unique common fixed point 0+0i¯B(o0,r).

    It is interesting to notice that contractiveness on the whole space P does not hold because if ω1= ω2=43+0i ¯B(o0,r), then

    φ(L1ω1,L2ω2)=φ(1615+0i,109+0i)=4135+145i>34(0+0i)+16(0.011+0.039i)+350(0.011+0.039i)=ϱ1(ω1,ω2)φ(ω1,ω2)+ϱ2(ω1,ω2)φ(ω1,L1ω1)φ(ω2,L2ω2)1+φ(ω1,ω2)+ϱ3(ω1,ω2)φ(ω2,L1ω1)φ(ω1,L2ω2)1+φ(ω1,ω2).

    So it is not necessary to obtain the common fixed point of L1 and L2 on the whole space.

    Let P=C([a,b],R), a>0 where C[a,b] denotes the set of all real continuous functions defined on the closed interval [a,b] and φ:P×PC be defined in this way

    φ(o,τ)=max

    for all o, \tau \in \mathcal{P} and t\in \lbrack a, b]. Then ( \mathcal{P}, \varphi ) is complete CVMS. Consider the Urysohn integral equations

    \begin{equation} o(t) = \int_{a}^{b}K_{1}(t, s, o(s))\varphi s+g(t), \end{equation} (5.1)
    \begin{equation} o(t) = \int_{a}^{b}K_{2}(t, s, o(s))\varphi s+l(t), \end{equation} (5.2)

    where K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R}\rightarrow \mathbb{R} and g, l: [a, b]\rightarrow \mathbb{R} are continuous and t\in \lbrack a, b] .

    Theorem 8. Let K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R}\rightarrow \mathbb{R} are such that \mathfrak{L}_{o}\left(t\right), \mathfrak{M} _{o}\left(t\right) \in \mathcal{P}\ \ for each \ o\in \mathcal{P}, \ where

    \begin{equation*} \mathfrak{L}_{o}\left( t\right) = \int_{a}^{b}K_{1}(t, s, o(s))\varphi s, \quad \mathfrak{M}_{o}\left( t\right) = \int_{a}^{b}K_{2}(t, s, o(s))\varphi s, \end{equation*}

    for all \ t\in \lbrack a, b]. Suppose there exist \varrho _{1}, \varrho _{2}, \varrho _{3}:C([a, b], \mathbb{R})\mathfrak{\rightarrow }[0, 1) such that

    (a) \varrho _{1}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{1}(o) and \varrho _{1}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{1}(o)

    \varrho _{2}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{2}(o) and \varrho _{2}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{2}(o)

    \varrho _{3}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{3}(o) and \varrho _{3}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{3}(o),

    (b) ( \varrho _{1}+\varrho _{2}+\varrho _{3})(o) < 1,

    (c)

    \begin{equation*} \left \Vert \mathfrak{L}_{o}\left( t\right) -\mathfrak{M}_{\tau }\left( t\right) +g(t)-h(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}\preceq \varrho _{1}\left( o\right) A\left( o, \tau \right) \left( t\right) +\varrho _{2}(o)B\left( o, \tau \right) \left( t\right) +\varrho _{3}(o)B\left( o, \tau \right) \left( t\right) , \end{equation*}

    where

    \begin{eqnarray*} A\left( o, \tau \right) \left( t\right) & = &\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \\ B\left( o, \tau \right) \left( t\right) & = &\frac{\left \Vert \mathfrak{L} _{o}\left( t\right) +g(t)-o(t)\right \Vert _{\infty }\left \Vert \mathfrak{M} _{\tau }\left( t\right) +l(t)-\tau (t)\right \Vert _{\infty }\ }{1+\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }}\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a} \\ C\left( o, \tau \right) \left( t\right) & = &\frac{\left \Vert \mathfrak{M} _{\tau }\left( t\right) +l(t)-o(t)\right \Vert _{\infty }\left \Vert \mathfrak{L}_{o}\left( t\right) +g(t)-\tau (t)\right \Vert _{\infty }\ }{ 1+\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }} \sqrt{1+a^{2}}e^{i\tan ^{-1}a} \end{eqnarray*}

    then the integral operators defined by (5.1) and (5.2) have a unique common solution.

    Proof. Define continuous mappings \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P} \rightarrow \mathcal{P} by

    \begin{equation*} \mathcal{L}_{1}o(t) = \mathfrak{L}_{o}\left( t\right) +g(t), \end{equation*}
    \begin{equation*} \mathcal{L}_{2}o(t) = \mathfrak{M}_{o}\left( t\right) +g(t), \end{equation*}

    for all \ t\in \lbrack a, b]. Then

    \begin{equation*} \; \; \; \; \; \; \; \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L}_{o}\left( t\right) -\mathfrak{M}_{\tau }\left( t\right) +g(t)-l(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*}
    \begin{equation*} \varphi (o, \mathcal{L}_{1}o) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L} _{o}\left( t\right) +g(t)-o(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*}
    \begin{equation*} \varphi (\tau , \mathcal{L}_{2}\tau ) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{M}_{\tau }\left( t\right) +l(t)-\tau (t)\right \Vert _{\infty } \sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*}
    \begin{equation*} \varphi (o, \mathcal{L}_{2}\tau ) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{M}_{\tau }\left( t\right) +l(t)-o(t)\right \Vert _{\infty }\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*}
    \begin{equation*} \varphi (\tau , \mathcal{L}_{1}o) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L}_{o}\left( t\right) +g(t)-\tau (t)\right \Vert _{\infty }\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a}. \end{equation*}

    Then it very simple to show that for all o, \tau \in \mathcal{P} , we have

    (a) \varrho _{1}(\mathcal{L}_{1}o) = \varrho _{1}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{1}(o) and \varrho _{1}(\mathcal{L} _{2}o) = \varrho _{1}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{1}(o),

    \varrho _{2}(\mathcal{L}_{1}o) = \varrho _{2}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{2}(o) and \varrho _{2}(\mathcal{L}_{2}o) = \varrho _{2}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{2}(o),

    \varrho _{3}\left(\mathcal{L}_{1}o\right) = \varrho _{3}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{3}(o) and \varrho _{3}\left(\mathcal{L} _{2}o\right) = \varrho _{3}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{3}(o),

    (b) ( \varrho _{1}+\varrho _{2}+\varrho _{3})(o) < 1,

    (c)

    \begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }. \end{equation*}

    Hence all the assumptions of Corollary 9 are satisfied and the integral equations (5.1) and (5.2) have a unique common solution.

    This article is precised on the notion of complex valued metric space to establish common fixed points of two self mappings for generalized contractions involving control functions of two variables. A non-trivial example is also provided to show the validity of obtained results. At the end of this paper, we applied our result to discuss the solution of Urysohn integral equation. We believe that the established outcomes in this paper will set a contemporary connection for investigators.

    Common fixed points of multivalued mappings and fuzzy mappings in the context of complex valued metric space can be interesting outline for the future work in this direction. Differential and integral inclusions can be investigated as applications of these results.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was funded by the University of Jeddah, Saudi Arabia, under grant No. UJ-22-DR-4. The authors, therefore, acknowledge with thanks the University technical and financial support. All authors read and approved the final paper.

    The authors declare that they have no conflicts of interest.



    [1] F. Mainardi, Fractional calculus and waves in linear viscoleasticity, Word Scientific, 2010. http://doi.org/10.1142/p614
    [2] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 1999. https://doi.org/10.1142/3779
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [4] I. Podlubny, Fractional differential equations, Academic Process, 1999.
    [5] K. Diethelm, The analysis of fractional differential equations, Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [6] M. M. Khader, N. H. Sweilam, On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method, Appl. Math. Modell., 37 (2013), 9819–9828. https://doi.org/10.1016/j.apm.2013.06.010 doi: 10.1016/j.apm.2013.06.010
    [7] J. Zhao, J. Xiao, N. J. Ford, Collocation methods for fractional integro-differential equations with weakly singular kernels, Numer. Algorithms, 65 (2014), 723–743. https://doi.org/10.1007/s11075-013-9710-2 doi: 10.1007/s11075-013-9710-2
    [8] C. Wang, Z. Wang, L. Wang, A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative, J. Sci. Comput., 76 (2018), 166–188. https://doi.org/10.1007/s10915-017-0616-3 doi: 10.1007/s10915-017-0616-3
    [9] H. Dehestani, Y. Ordokhani, M. Razzaghi, Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Eng. Comput., 37 (2020), 1791–1806. https://doi.org/10.1007/s00366-019-00912-z doi: 10.1007/s00366-019-00912-z
    [10] K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, A high-accuracy Vieta-Fibonacci collocation scheme to solve linear time-fractional telegraph equations, Waves Random Complex Media, https://doi.org/10.1080/17455030.2022.2135789 doi: 10.1080/17455030.2022.2135789
    [11] K. Sadri, K. Hosseini, E. Hincal, D. Baleanu, S. Salahshour, A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation, Math. Meth. Appl. Sci., 46 (2023), 8759–8778. https://doi.org/10.1002/mma.9015 doi: 10.1002/mma.9015
    [12] H. Dehestania, Y. Ordokhania, M. Razzaghib, Numerical solution of Variable-order time fractional weakly singular partial integro-difffferential equations with error estimation, Math. Modell. Anal., 25 (2020), 680–701. https://doi.org/10.3846/mma.2020.11692 doi: 10.3846/mma.2020.11692
    [13] H. Cai, A fractional spectral collocation for solving second kind nonlinear Volterra integral equations with weakly singular kernels, J. Sci. Comput., 80 (2019), 1529–1548. https://doi.org/10.1007/s10915-019-00987-2 doi: 10.1007/s10915-019-00987-2
    [14] S. Chen, J. Shen, L. L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85 (2016), 1603–1638. https://doi.org/10.1090/mcom3035 doi: 10.1090/mcom3035
    [15] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [16] S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3646–3654. https://doi.org/10.1016/j.cnsns.2010.12.008 doi: 10.1016/j.cnsns.2010.12.008
    [17] P. Mokhtary, F. Ghoreishi, The L^2-convergence of the Legendre spectral tau matrix formulation for nonlinear fractional integro-differential equations, Numer. Algorithms, 58 (2011), 475–496. https://doi.org/10.1007/s11075-011-9465-6 doi: 10.1007/s11075-011-9465-6
    [18] C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calculus Appl. Anal., 15 (2012), 383–406. https://doi.org/10.2478/s13540-012-0028-x doi: 10.2478/s13540-012-0028-x
    [19] C. T. Sheng, Z. Q. Wang, B. Y. Guo, A multistep Legendre-Gauss spectral collocation method for nonlinear Volterra integral equations, SIAM J. Numer. Anal., 52 (2014), 1953–1980. https://doi.org/10.1137/130915200 doi: 10.1137/130915200
    [20] C. L. Wang, Z. Q. Wang, H. L. Jia, An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels, J. Sci. Comput., 72 (2017), 647–678. https://doi.org/10.1007/s10915-017-0373-3 doi: 10.1007/s10915-017-0373-3
    [21] Z. Wang, Y. Guo, L. Yi, An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels, Math. Comput., 86 (2017), 2285–2324. https://doi.org/10.1090/mcom/3183 doi: 10.1090/mcom/3183
    [22] Z. Wang, C. Sheng, An hp-spectral collocation method for nonlinear Volterra integral equations with vanishing variable delays, Math. Comput., 85 (2016), 635–666. https://doi.org/10.1090/mcom/3023 doi: 10.1090/mcom/3023
    [23] Y. Guo, Z. Wang, An hp-version Chebyshev collocation method for nonlinear fractional differential equations, Appl. Numer. Math., 158 (2020), 194–211. https://doi.org/10.1016/j.apnum.2020.08.003 doi: 10.1016/j.apnum.2020.08.003
    [24] Y. Guo, Z. Wang, An hp-version Legendre spectral collocation method for multi-order fractional differential equations, Adv. Comput. Math., 47 (2021), 37. https://doi.org/10.1007/s10444-021-09858-7 doi: 10.1007/s10444-021-09858-7
    [25] G. Yao, D. Tao, C. Zhang, A hybrid spectal method for the nonlinear Volterra integral equations with weakly singular kernel and vanishing delays, Appl. Math. Comput., 417 (2022), 126780. https://doi.org/10.1016/j.amc.2021.126780 doi: 10.1016/j.amc.2021.126780
    [26] H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge University Press, 2004. https://doi.org/10.1017/cbo9780511543234
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1841) PDF downloads(62) Cited by(3)

Figures and Tables

Figures(8)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog