Research article

Weight distributions of a class of skew cyclic codes over $ M_{2}(\mathbb{F}_{2}) $

  • Published: 20 May 2025
  • MSC : 11T71, 94B05, 94B15

  • Let $ M_{2}(\mathbb{F}_{2}) $ be the ring of matrices of order $ 2 \times 2 $ over finite field $ \mathbb{F}_{2} $ and $ \omega\in M_{2}(\mathbb{F}_{2}) $ be a cubic primitive root of unity. For any even positive integer $ t $, the weight distributions of the skew cyclic codes of length $ 3t $ with parity check polynomials $ x^{t}-\omega^{i}, i = 0, \; 1, \; 2 $ and $ (x^{t}-\omega^{j}) (x^{t}-\omega^{k}) $, $ 0 \le j < k\leq 2 $ were determined.

    Citation: Zhen Du, Chuanze Niu. Weight distributions of a class of skew cyclic codes over $ M_{2}(\mathbb{F}_{2}) $[J]. AIMS Mathematics, 2025, 10(5): 11435-11443. doi: 10.3934/math.2025520

    Related Papers:

  • Let $ M_{2}(\mathbb{F}_{2}) $ be the ring of matrices of order $ 2 \times 2 $ over finite field $ \mathbb{F}_{2} $ and $ \omega\in M_{2}(\mathbb{F}_{2}) $ be a cubic primitive root of unity. For any even positive integer $ t $, the weight distributions of the skew cyclic codes of length $ 3t $ with parity check polynomials $ x^{t}-\omega^{i}, i = 0, \; 1, \; 2 $ and $ (x^{t}-\omega^{j}) (x^{t}-\omega^{k}) $, $ 0 \le j < k\leq 2 $ were determined.



    加载中


    [1] S. Bagheri, R. M. Hesari, H. Rezaei, K. Samei, Skew cyclic codes of length $p^{s}$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Iranian J. Sci. Technol. Transa. A: Sci., 46 (2022), 1469–1475. https://doi.org/10.1007/s40995-022-01352-z doi: 10.1007/s40995-022-01352-z
    [2] N. Boston, G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symbolic Comput., 45 (2010), 723–733. https://doi.org/10.1016/j.jsc.2010.03.007 doi: 10.1016/j.jsc.2010.03.007
    [3] D. Boucher, W. Geiselmann, F. Ulmer, Skew-cyclic codes, AAECC, 18 (2007), 379–389. https://doi.org/10.1007/s00200-007-0043-z doi: 10.1007/s00200-007-0043-z
    [4] D. Boucher, P. Solé, F. Ulmer, Skew constacyclic codes over Galois rings, Amer. Inst. Math. Sci., 2 (2008), 273–292. https://doi.org/10.3934/amc.2008.2.273 doi: 10.3934/amc.2008.2.273
    [5] K. Feng, J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390–409. https://doi.org/10.1016/j.ffa.2007.03.003 doi: 10.1016/j.ffa.2007.03.003
    [6] S. Jitman, S. Ling, P. Udomkavanich, Skew constacyclic codes over finite chain rings, Amer. Inst. Math. Sci., 6 (2012), 39–63. https://doi.org/10.3934/amc.2012.6.39 doi: 10.3934/amc.2012.6.39
    [7] Z. Heng, Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptogr. Commun., 9 (2017), 323–343. https://doi.org/10.1007/s12095-015-0177-y doi: 10.1007/s12095-015-0177-y
    [8] C. Li, Q. Yue, L. Hu, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94–114. https://doi.org/10.1016/j.ffa.2014.01.009 doi: 10.1016/j.ffa.2014.01.009
    [9] F. Li, Q. Yue, The primitive idempotents and weight distributions of irreducible constacyclic codes, Des. Codes Cryptogr., 86 (2018), 771–784. https://doi.org/10.1007/s10623-017-0356-2 doi: 10.1007/s10623-017-0356-2
    [10] F. Li, Q. Yue, The weight distributions of constacyclic codes, Amer. Inst. Math. Sci., 11 (2017), 471–480. https://doi.org/10.3934/amc.2017039 doi: 10.3934/amc.2017039
    [11] Z. Li, H. Yan, D. Han, A class of power functions with four-valued Walsh transform and related cyclic codes, Finite Fields Appl., 83 (2022), 102078. https://doi.org/10.1016/j.ffa.2022.102078 doi: 10.1016/j.ffa.2022.102078
    [12] Y. Liu, H. Yan, C. Liu, A class of six-weight cyclic codes and their weight distribution, Des. Codes Cryptogr., 77 (2015), 1–9. https://doi.org/10.1007/s10623-014-9984-y doi: 10.1007/s10623-014-9984-y
    [13] Y. Pan, Y. Liu, New classes of few-weight ternary codes from simplicial complexes, AIMS Math., 7 (2022), 4315–4325. https://doi.org/10.3934/math.2022239 doi: 10.3934/math.2022239
    [14] O. Prakash, S. Patel, Skew cyclic codes over $\mathbb{F}_{q}[u, v, w]/\langle u^{2}-1, v^{2}-1, w^{2}-1, uv-vu, vw-wv, wu-uw \rangle$, Discrete Math. Algor. Appl., 14 (2022), 2150113. https://doi.org/10.1142/S1793830921501135 doi: 10.1142/S1793830921501135
    [15] M. Sangwan, P. Kumar, The weight distributions of irreducible cyclic codes of length $2^np^m$, Asian-Eur. J. Math., 11 (2018), 1850085. https://doi.org/10.1142/S1793557118500857 doi: 10.1142/S1793557118500857
    [16] M. Shi, T. Yao, A. Alahmadi, S. Patrick, Skew cyclic codes over $\mathbb{F}_{q} + v\mathbb{F}_{q} + v^{2}\mathbb{F}_{q}$, IEICE Trans. Fundament. Elect. Commun. Compu. Sci., 98 (2015), 1845–1848. https://doi.org/10.1587/transfun.E98.A.1845 doi: 10.1587/transfun.E98.A.1845
    [17] M. Shi, T. Yao, P. Solè, Skew cyclic codes over a non-chain ring, Chinese J. Elect., 26 (2017), 544–547. https://doi.org/10.1049/cje.2017.03.008 doi: 10.1049/cje.2017.03.008
    [18] X. Si, C. Niu, On skew cyclic codes over $M_{2}(\mathbb{F}_{2})$, AIMS Math., 8 (2023), 24434–24445. https://doi.org/10.3934/math.20231246 doi: 10.3934/math.20231246
    [19] I. Siap, T. Abualrub, N. Aydin, P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inform. Coding Theory, 2 (2011), 10–20. https://doi.org/10.1504/IJICOT.2011.044674 doi: 10.1504/IJICOT.2011.044674
    [20] G. Vega, F. Hernández, The complete weight distribution of a subclass of optimal three-weight cyclic codes, Cryptogr. Commun., 15 (2023), 317–330. https://doi.org/10.1007/s12095-022-00601-7 doi: 10.1007/s12095-022-00601-7
    [21] G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, AAECC, 29 (2018), 363–370. https://doi.org/10.1007/s00200-017-0347-6 doi: 10.1007/s00200-017-0347-6
    [22] G. Vega, L. Morales, A general description for the weight distribution of some reducible cyclic codes, IEEE Trans. Inform. Theory, 15 (2013), 5994–6001. https://doi.org/10.1109/TIT.2013.2263195 doi: 10.1109/TIT.2013.2263195
    [23] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555–575. https://doi.org/10.1353/ajm.1999.0024 doi: 10.1353/ajm.1999.0024
    [24] Y. Wu, Q. Yue, X. Zhu, S. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Math., 342 (2019), 671–682. https://doi.org/10.1016/j.disc.2018.10.035 doi: 10.1016/j.disc.2018.10.035
    [25] H. Zhu, M. Shi, F. Özbudak, Complete b-symbol weight distribution of some irreducible cyclic codes, Des. Codes Cryptogr., 90 (2022), 1113–1125. https://doi.org/10.1007/s10623-022-01030-6 doi: 10.1007/s10623-022-01030-6
    [26] X. Zhu, Q. Yue, L. Hu, Weight distributions of cyclic codes of length $tl^{m}$, Discrete Math., 338 (2015), 844–856. https://doi.org/10.1016/j.disc.2015.01.002 doi: 10.1016/j.disc.2015.01.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(548) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog