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1. Introduction

In this paper, we focus on numerical methods to solve FIDEs involving weakly singular kernels,
i.e., equations of the form

C
0 Dαx u(x) = g(x) + p(x)u(x) +

∫ x

0
(x − t)−βq(x, t)u(t)dt, 0 < x < T, (1.1)

u(0) = u0, (1.2)

where 0 < α, β < 1, u0 is any real number, g(x) and p(x) are continuous and bounded functions on
IT := [0,T ], q(x, t) is nonzero continuous function of x and t defined on

△T := {(x, t) ∈ R2 : 0 ≤ t ≤ x ≤ T }.
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The symbol C
0 Dαx denotes a Caputo-type fractional derivative defined by [3]

C
0 Dαxϕ(x) =

1
Γ(n − α)

∫ x

0

ϕ(n)(s)
(x − s)α−n+1 ds, n − 1 < α < n, n ∈ N.

Correspondingly,

Dαxϕ(x) =
dnϕ(x)

dxn , α = n ∈ Z+.

During the last few decades, fractional-order derivatives has been widely used to model physical
phenomena in many different contexts (see [1–5]). It is usually very hard to find exact solutions of
fractional order differential equations and much attention has been devoted to develop efficient
approaches to approximately solve these problems. Khader et al. [6] developed a Chebyshev
pseudo-spectral method based on a new formula of Caputo derivative to solve FIDEs systems
numerically. In [7], Zhao et al. transformed FIDEs to Volterra integral equations with weakly singular
kernels and presented a piecewise polynomials collocation method to solve the problem. Wang [8]
presented an one-step spectral collocation method for nonlinear fractional boundary value problems.
Dehestani et al. [9] investigated fractional Genocchi functions (FGFs) and their Pseudo-operational
matrix, and construct the collocation method based on FGFs to find the numerical solution of the
fractional partial integro-differential equations with variable-order. Sadri et al. [10] explored the
two-variable Vieta-Fibonacci polynomials and their operational matrices to derive a collocation
method for time-fractional telegraph equations.

Relevant results may be found in [11–18]. Most of of the approaches correspond to p-version
methods, which are usually inefficient to deal with local weak singularities and always result in lower
order of accuracy nearby the singular points.

Recently, Wang have obtained results using multi-step or hp-version spectral methods for Volterra
integral equations (see [19–22]). Guo and Wang [23, 24] investigated multi-step spectral collocation
methods based on classical shifted Jacobi polynomials for single order and multi-order fractional
differential equations. Yao et al. [25] developed a hybrid spectral element method to solve VIEs with
vanishing delays, using different kinds of meshes and different orthogonal functions as basis to obtain
higher accuracy. Based on these results we further explore hp-version spectral collocation approaches
for FIDEs (1.1) and (1.2). Our main results may be summarized as follows:

(i) The original problems (1.1) and (1.2) are recasted as a VIE with two different singular kernels,
and an hp-version Legendre spectral collocation method is proposed. The time step h and polynomial
degree M in the scheme may be chosen arbitrarily, according to the requirements of accuracy or storage.
The explicit form and the iteration method make the new scheme highly convenient.

(ii) The priori error estimate for the new method is derived rigorously for 1
2 < α < 1. The

convergence characteristic of our method is verified numerically on the basis of several typical
examples, which fits the theoretical results well. The numerical comparison illustrates that our
hp-version spectral collocation approaches also suits well to the case 1

2 < α < 1, and allows one to
achieve higher accuracy than other piecewise polynomial collocation methods.

The article is structured as follows: Section 2 is for preliminaries. In Section 3, the FIDEs is
transformed into Volterra integral equation and its piece-wised form. Then, a multi-step spectral
collocation scheme based on the reformulated problem is constructed. In Section 4, the hp-version
convergence of the proposed method is analyzed in the L2 function space. In Section 5, we present the
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results of some numerical experiments to illustrated the suitability of this method. Finally, some
concluding remarks were presented at the end of the paper.

2. Preliminaries

To make a preparation for the later work, some basic definitions and properties of the shifted
Legendre polynomials shall be introduced at first. We make an arbitrary partition on the given interval
I = [0, 1], which can be denoted by

Ih := {xn : 0 = x0 < x1 < · · · < xN = 1}.

We set In =
(
xn−1, xn

]
, hn = xn − xn−1.

Lk(t), t ∈ (−1, 1) denotes the standard Legendre polynomial of the degree k. The shifted form of
Legendre polynomial with degree k over In is defined by [22]

Ln,k(x) = Lk(
2x − xn−1 − xn

hn
), x ∈ In, k ≥ 0.

We denote the set of polynomials of degree not greater than Mn on the sub-interval In byPMn(In). Let
{tn, j, ωn, j}

Mn
j=0 be the nodes and the corresponding quadrature weights for the standard Legendre-Gauss

interpolation over (−1, 1), and xn, j be the nodes for the shifted form of Legendre-Gauss quadrature on
the sub-interval In,

xn, j =
1
2

(hntn, j + xn−1 + xn), 0 ≤ j ≤ Mn.

It has been known that [22] ∫
In

Ln,k(x)Ln, j(x)dx =
hn

2k + 1
δk, j, (2.1)

where δk, j is the Kronecker function. Furthermore, it can be verified that [21]

∫
In

ϕ(x)dx =
hn

2

Mn∑
j=0

ϕ(xn, j)ωn, j, ∀ϕ ∈ P2Mn+1(In), (2.2)

and
Mn∑
i=0

Ln,k(xn,i)Ln, j(xn,i)ωn,i =
2

2k + 1
δk, j, ∀0 ≤ k + j ≤ 2Mn + 1. (2.3)

Let Ix,Mn : C(In)→ PMn(In) denote the shifted Legendre-Gauss interpolation operator implemented
on the n-th sub-interval In, such that

Ix,Mnv(xn,i) = v(xn,i), i = 0, 1, · · · ,Mn. (2.4)

For later uses, we transfer the integral interval
(
xn−1, x

]
to In via the following transformation:

ξ = ξ(λ, x) := xn−1 +
(λ − xn−1)(x − xn−1)

hn
, ξ ∈ (xn−1, x], λ ∈ In. (2.5)
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Then, we introduce another interpolation operator

I
(xn−1,x]
ξ,Mn

: C(xn−1, x)→ PMn(xn−1, x),

defined by
I

(xn−1,x]
ξ,Mn

v(ξn,i) = v(ξn,i), i = 0, 1, · · · ,Mn,

where ξn,i are the shifted Legendre-Gauss points on the interval (xn−1, x). Obviously,

I
(xn−1,x]
ξ,Mn

v(ξ)
∣∣∣∣
ξ=ξ(λ,x)

= Iλ,Mnv(ξ(λ, x)).

Due to the presence of the weak singularity, we naturally introduce the interpolatory quadrature
formula with weight depending on the weakly singular kernel (x − t)δ, which was mentioned in [26]
and defined as follows: For any ϕ(t) ∈ PMk(Ik), one has

∫
Ik

(x − t)δϕ(t)dt =
Mk∑
q=0

ϕ(xk,q)ω̃δk,q(x), x ∈ In, 1 ≤ k ≤ n − 1, (2.6)

where

ω̃δk,q(x) =
∫

Ik

(x − t)δhk,q(t)dt

and {hk,q(t)}Mk
q=0 are Lagrange interpolation basis function corresponding to the quadrature points

{xk,q}
Mk
q=0.

3. The multi-step Legendre-Gauss spectral collocation method

In this part, we first convert the original problem to VIE and its piecewise form equivalently. Then
we shall present the multi-step Legendre-Gauss spectral collocation approach to solve numerically the
reformulated problem (3.7).

3.1. Reformulation of the original problem

To obtain the reformulation of the discussed problem, we recall the equation of the classical form

C
0 Dαx u(x) = f (x, u(x)), α > 0,

u(i)(0) = ui
0, i = 0, 1, · · · , n − 1.

(3.1)

The equivalence between (3.1) and the second kind VIEs is given by the following statements:

Lemma 1. Assume that α > 0, n − 1 ≤ α < n, n ∈ N, f is a continuous function, then the Eq (3.1) is
equvalent to the following Volterra Integral equation of the second kind:

u(x) =
n−1∑
i=0

ui
0 +

1
Γ(α)

∫ x

0
(x − t)α−1 f (t, u(t))dt. (3.2)
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Applying the above Lemma into the problems (1.1) and (1.2), we can deduce that

u(x) = u0 +
1
Γ(α)

∫ x

0
(x − t)α−1

[
g(t) + p(t)u(t) +

∫ t

0
(t − s)−βq(t, s)u(s)ds

]
dt

= u0 +
1
Γ(α)

∫ x

0
(x − t)α−1g(t)dt +

1
Γ(α)

∫ x

0
(x − t)α−1 p(t)u(t)dt

+
1
Γ(α)

∫ x

0
(x − t)α−1

∫ t

0
(t − s)−βq(t, s)u(s)dsdt.

(3.3)

This is an equivalent VIE to the original problem. By exchanging the integration order of the last
part, (3.3) can be expressed as follows:

1
Γ(α)

∫ x

0
(x− t)α−1

∫ t

0
(t − s)−βq(t, s)u(s)dsdt =

1
Γ(α)

∫ x

0

( ∫ x

s
(x− t)α−1(t − s)−βq(t, s)dt

)
u(s)ds. (3.4)

By introducing variable substitution t = s + τ(x − s), the above formula can be transformed into

1
Γ(α)

∫ x

0
(x − t)α−1

∫ t

0
(t − s)−βq(t, s)u(s)dsdt

=
1
Γ(α)

∫ x

0
(x − s)α−β

( ∫ 1

0
(1 − τ)α−1τ−βq(s + τ(x − s), s)dτ

)
u(s)ds

=
1
Γ(α)

∫ x

0
(x − t)α−βK(x, t)u(t)dt,

(3.5)

where

K(x, t) =
∫ 1

0
(1 − τ)α−1τ−βq

(
t + τ(x − t), t)dτ.

Since q(x, t) is bounded and continuous in △T , assuming that qmax is the maximum of q for (x, t) ∈ △T ,
and qmin is the minimum, correspondingly, then

qminB(α, 1 − β) ≤
∫ 1

0
(1 − τ)α−1τ−βq

(
t + τ(x − t), t)dτ ≤ qmaxB(α, 1 − β),

where B(·, ·) is Beta function defined by

B(a, b) =
∫ 1

0
sa−1(1 − s)b−1ds. (3.6)

Thus K(x, t) is a bounded and continuous founction of x and t in △T .
As a result, Eqs (1.1) and (1.2) can be reformulated as the following equivalent form:

u(x) = u0 +
1
Γ(α)

[ ∫ x

0
(x − t)α−1g(t)dt +

∫ x

0
(x − t)α−1 p(t)u(t)dt +

∫ x

0
(x − t)α−βK(x, t)u(t)dt

]
. (3.7)

According to the basic results of VIEs (Theorem 6.1.2 in [26]), the above equation possesses a unique
solution u ∈ C(I). Equation (3.7) is different from the reformation in [7]. We have two different
singular kernels which can be treated respectively. That means we can choose suitable collocation
methods for each kernel for the sake of solving the problem more conveniently and efficiently.
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3.2. The multi-step Legendre-Gauss collocation scheme

Now, we aim to construct an efficient multi-step spectral collocation scheme for (1.1) and (1.2).
We set T = 1 for the sake of convenience and simplicity. Denote by un(x) the exact solution to (1.1)
and (1.2) on the n-th sub-interval, that is,

un(x) = u(x), x ∈ In, 1 ≤ n ≤ N,

where In is defined in Section 2. From (1.1) we know that for any x ∈ In

un(x) = u0 +
1
Γ(α)

[ n−1∑
k=1

∫
Ik

(x − t)α−1g(t)dt +
∫ x

xn−1

(x − t)α−1g(ξ)dξ

+

n−1∑
k=1

∫
Ik

(x − t)α−1 p(t)uk(t)dt +
∫ x

xn−1

(x − ξ)α−1 p(ξ)un(ξ)dξ

+

n−1∑
k=1

∫
Ik

(x − t)α−βK(x, t)uk(t)dt +
∫ x

xn−1

(x − ξ)α−βK(x, ξ)un(ξ)dξ
]
.

(3.8)

Using the transformation in (2.5), the Eq (3.8) becomes

un(x) = u0 +
1
Γ(α)

[ n−1∑
k=1

∫
Ik

(x − t)α−1g(t)dt +
n−1∑
k=1

∫
Ik

(x − t)α−1 p(t)uk(t)dt

+

n−1∑
k=1

∫
Ik

(x − t)α−βK(x, t)uk(t)dt +
( x − xn−1

hn

)α ∫
In

(xn − λ)α−1g(ξ(λ, x))dλ

+
( x − xn−1

hn

)α ∫
In

(xn − λ)α−1 p(ξ(λ, x))un(ξ(λ, x))dλ

+
( x − xn−1

hn

)α−β+1
∫

In

(xn − λ)α−βK(x, ξ(λ, x))un(ξ(λ, x))dλ
]
.

(3.9)

The multi-step spectral collocation method to solve (3.7) based on Legendre-Gauss points is to seek
Un(x) ∈ PMn(In), such that

Un(x) = u0 +
1
Γ(α)
Ix,Mn

[ n−1∑
k=1

∫
Ik

(x − t)α−1It,Mkg(t)dt +
n−1∑
k=1

∫
Ik

(x − t)α−1It,Mk p(t)Uk(t)dt

+

n−1∑
k=1

∫
Ik

(x − t)α−βIt,Mk K(x, t)Uk(t)dt +
( x − xn−1

hn

)α ∫
In

(xn − λ)α−1Iλ,Mng(ξ(λ, x))dλ

+
( x − xn−1

hn

)α ∫
In

(xn − λ)α−1Iλ,Mn p(ξ(λ, x))Un(ξ(λ, x))dλ

+
( x − xn−1

hn

)α−β+1
∫

In

(xn − λ)α−βIλ,Mn K(x, ξ(λ, x))Un(ξ(λ, x))dλ
]
,

(3.10)

where Uk(x) is the approximate solution of uk(x) on the element Ik. To describe the numerical
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implementations in details for scheme (3.10), we set

Un(x) =
Mn∑
p=0

Zn
pLn,p(x),

Ix,Mnω̃
α−1
k,q (x) =

Mn∑
p=0

ω̂k,α−1
p,q Ln,p(x),

Ix,Mn K(x, xα−βk,q )ω̃α−βk,q (x) =
Mn∑
p=0

v̂k,α−β
p,q Ln,p(x),

Ix,MnIλ,Mn

(
(x − xn−1)αp(ξ(λ, x))Un(ξ(λ, x))

)
=

Mn∑
p=0

Mn∑
q=0

Bn
p,qLn,p(x)Ln,q(λ),

Ix,MnIλ,Mn

(
(x − xn−1)α−β+1K(x, ξ(λ, x))Un(ξ(λ, x))

)
=

Mn∑
p=0

Mn∑
q=0

Dn
p,qLn,p(x)Ln,q(λ),

Ix,MnIλ,Mn(x − xn−1)αg(ξ(λ, x)) =
Mn∑
p=0

Mn∑
q=0

Gn
p,qLn,p(x)Ln,q(λ).

(3.11)

Then by applying (2.4), (2.6) and (3.11), one has

Ix,Mn

n−1∑
k=1

∫
Ik

(x − t)α−1It,Mk

(
p(t)Uk(t)

)
dt =

n−1∑
k=1

Ix,Mn

Mk∑
q=0

(
p(xk,q)Uk(xk,q)

)
ω̃α−1

k,q (x)

=

n−1∑
k=1

Mk∑
q=0

Mn∑
p=0

p(xk,q)Uk(xk,q)ω̂k,α−1
p,q Ln,p(x)

=

Mn∑
p=0

n−1∑
k=1

Ak
pLn,p(x).

(3.12)

Using similar techniques, we can obtain

Ix,Mn

n−1∑
k=1

∫
Ik

(x − t)α−βIt,Mk

(
K(x, t)Uk(t)

)
dt =

n−1∑
k=1

Mk∑
q=0

Uk(xk,q)Ix,Mn K(x, xk,q)ω̃α−βk,q (x)

=

Mn∑
p=0

n−1∑
k=1

Mk∑
q=0

Uk(xk,q)̂vk,α−β
p,q Ln,p(x)

=

Mn∑
p=0

n−1∑
k=1

Ck
pLn,p(x)

(3.13)
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and

Ix,Mn

n−1∑
k=1

∫
Ik

(x − t)α−1It,Mkg(t)dt =
n−1∑
k=1

Ix,Mn

Mk∑
q=0

(
g(xk,q)

)
ω̃α−1

k,q (x)

=

n−1∑
k=1

Mk∑
q=0

Mn∑
p=0

g(xk,q)ω̂k,α−1
p,q Ln,p(x)

=

Mn∑
p=0

( n−1∑
k=1

Mk∑
q=0

g(xk,q)ω̂k,α−1
p,q

)
Ln,p(x)

=

Mn∑
p=0

n−1∑
k=1

Ek
pLn,p(x).

(3.14)

Using (2.2)–(2.4) and (3.11), we have

Ix,Mn

( x − xn−1

hn

)α ∫
In

(xn − λ)α−1Iλ,Mn p(ξ(λ, x))Un(ξ(λ, x))dλ

=
1
hαn

Mn∑
p=0

Mn∑
q=0

Bn
p,q

∫
In

(xn − λ)α−1Ln,q(λ)dλLn,p(x)

=

Mn∑
p=0

B
n
pLn,p(x)

(3.15)

and

Ix,Mn

( x − xn−1

hn

)α−β+1
∫

In

(xn − λ)α−βIλ,Mn K(x, ξ(λ, x))Un(ξ(λ, x))dλ

=
1

hα−β+1
n

Mn∑
p=0

Mn∑
q=0

Dn
p,qLn,p(x)

∫
In

(xn − λ)α−βLn,q(λ)dλ

=

Mn∑
p=0

D
n
pLn,p(x).

(3.16)

In addition

Ix,Mn

( x − xn−1

hn

)α ∫
In

(xn − λ)α−1Iλ,Mng(ξ(λ, x))dλ

=
1
hαn

Mn∑
p=0

Mn∑
q=0

Gn
p,qLn,p(x)

∫
In

(xn − λ)α−1Ln,q(λ)dλ

=

Mn∑
p=0

G
n
pLn,p(x).

(3.17)

One can easily verify that

ω̂k,α−1
p,q =

2p + 1
2

Mn∑
i=0

ω̃α−1
k,q (xn,i)Ln,p(xn,i)ωn,i,
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v̂k,α−β
p,q =

2p + 1
2

Mn∑
i=0

K(xn,i, xk,q)ω̃α−βk,q (xn,i)Ln,p(xn,i)ωn,i,

Ak
p =

Mk∑
q=0

p(xk,q)Uk(xk,q)ω̂k,α−1
p,q , Ck

p =

Mk∑
q=0

Uk(xk,q)̂vk,α−β
p,q , Ek

p =

Mk∑
q=0

g(xk,q)ω̂k,α−1
p,q ,

Bn
p,q =

(2p + 1)(2q + 1)
4

Mn∑
i=0

Mn∑
j=0

(xn,i − xn−1)αp(ξ(xn, j, xn,i))

×Un(ξ(xn, j, xn,i))Ln,p(xn,i)Ln,q(xn, j)ωn,iωn, j,

(3.18)

Dn
p,q =

(2p + 1)(2q + 1)
4

Mn∑
i=0

Mn∑
j=0

(xn,i − xn−1)α−β+1K(xn,i, ξ(xn, j, xn,i))

×Un(ξ(xn, j, xn,i))Ln,p(xn,i)Ln,q(xn, j)ωn,iωn, j,

B̄n
p =

1
2α

Mn∑
q=0

Bn
p,q

Mn∑
j=0

Ln,q(xα−1
n, j )ωα−1

n, j , D̄n
p =

1
2α−β+1

Mn∑
q=0

Dn
p,q

Mn∑
j=0

Ln,q(xα−βn, j )ωα−βn, j ,

Gn
p,q =

(2p + 1)(2q + 1)
4

Mn∑
i=0

Mn∑
j=0

(xn,i − xn−1)αg(ξ(xn, j, xn,i))Ln,p(xn,i)Ln,q(xn, j)ωn,iωn, j,

Ḡn
p =

1
2α

Mn∑
q=0

Gn
p,q

Mn∑
j=0

Ln,q(xα−1
n, j )ωα−1

n, j .

Next, using (3.10)–(3.17), we deduce that

Mn∑
p=0

Zn
pLn,p(x) =u0 +

1
Γ(α)

Mn∑
p=0

[ n−1∑
k=1

(Ak
p +Ck

p + Ek
p) + B

n
p + +D

n
p +G

n
p

]
Ln,p(x). (3.19)

Comparing the expansion coefficients on the two sides of (3.19), yields

Zn
p =

1
Γ(α)

[ n−1∑
k=1

(Ak
p +Ck

p + Ek
p) + B

n
p + D

n
p +G

n
p

]
, p = 1, 2, · · · ,Mn,

Zn
p = u0 +

1
Γ(α)

[ n−1∑
k=1

(Ak
p +Ck

p + Ek
p) + B

n
p + D

n
p +G

n
p

]
, p = 0.

(3.20)

The system (3.20) is obviously implicit, which always couldn’t be easily solved by a direct method.
Actually, we can employ an iterative method to solve out the expansion coefficients Zn

p. Here, we prefer
to using the successive substitution method for its simplicity and convenience. In short, we compute
the successive coefficients {Zn

p}
Mn
p=0 based on the previously obtained quantities {Zk

p}
Mk
p=0, k = 1, · · · , n−1.

4. Convergence analysis

4.1. Some useful results

In this part, some useful results are introduced, which are fundamental for the convergence analysis.
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For any given interval Λ, we denote by L2(Λ) the space of measurable functions whose square is
Lebesgue integrable on Λ. Let Hm(Λ) be the standard Sobolev space with the integer order m.

Lemma 1. ([22]) Assume that v ∈ Hm(In) is any given function with 1 ≤ m ≤ Mn + 1, there holds

∥v − Ix,Mnv∥
2
L2(In) ≤ ch2m

n M−2m
n ∥∂m

x v∥2L2(In).

Lemma 2. ([22]) Let the assumption in Lemma 1 holds. Then we have

∥v − I(xn−1,x]
ξ,Mn

v∥
2

L2(xn−1,x)
≤ ch2m

n M−2m
n ∥∂m

t v∥2L2(In).

In order to discuss the convergence of singular solutions, we next consider the error estimates for
Legendre-Gauss interpolation of xν-type functions which have singularity at the endpoint x = 0.

Lemma 3. ([21]) Let Mn = M ≥ 0 and hn ≈ h. Suppose that u(x) = xν with a non-integer ν satisfying
ν > 0. Then for α > −1, M > ν − 1,

∥u − Ix,Mu∥2L2(I1) ≤ ch2ν+1
1 (M + 1)−4ν−2.

In addition, since xν only has a singular point at the left end of the first interval, we have

n−1∑
k=1

∥u − Ix,Mu∥2L2
( Ik) ≤ ch2ν+1(M + 1)−4ν−2.

Lemma 4. ([19]) Given that {rk}, {qk} and {ρk} (k ≥ 0) are non-negative sequences. {en} is the sequence
satisfying e0 ≤ ρ0 and

en ≤ ρn +

n−1∑
k=0

qk +

n−1∑
k=0

rkek, n ≥ 1.

Then there holds that

en ≤ ρn +

n−1∑
k=0

(qk + rkρk) exp(
n−1∑
k=0

rk), n ≥ 1.

4.2. Error analysis under L2-norm

In this part, we shall analyze the error bounds in the L2(I) function space for smooth solutions.
Thus, the term ∥Un − Ix,Mnun(x)∥L2(In) would be estimated first. According to (3.8), one has

Ix,Mnun(x) = u0 +
1
Γ(α
Ix,Mn

[ n−1∑
k=1

∫
Ik

(x − t)α−1g(t)dt +
n−1∑
k=1

∫
Ik

(x − t)α−1 p(t)uk(t)dt

+

n−1∑
k=1

∫
Ik

(x − t)α−βK(x, t)uk(t)dt +
∫

In

(x − ξ)α−1g(ξ)dξ

+

∫
In

(x − ξ)α−1 p(ξ)un(ξ)dλ +
∫

In

(x − ξ)α−βK(x, ξ)un(ξ)dξ
]
.

(4.1)
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Subtracting (3.10) from (4.1) and using the inverse of transformation (2.5), we can obtain that

Un(x) − Ix,Mnun(x) =
1
Γ(α)

[
B1 + B2 + B3 + B4 + B5

]
, (4.2)

where

B1 =

n−1∑
k=1

Ix,Mn

∫
Ik

(x − t)α−1(It,Mk p(t)Uk(t) − p(t)uk(t)
)
dt,

B2 = Ix,Mn

∫ x

xn−1

(x − ξ)α−1
(
I

(xn−1,x]
ξ,Mn

p(ξ)Un(ξ) − p(ξ)un(ξ)
)
dξ,

B3 =

n−1∑
k=1

Ix,Mn

∫
Ik

(x − t)α−β
(
It,Mk K(x, t)Uk(t) − K(x, t)uk(t)

)
dt,

B4 = Ix,Mn

∫ x

xn−1

(x − ξ)α−β
(
I

(xn−1,x]
ξ,Mn

K(x, ξ)Un(ξ) − K(x, ξ)un(ξ)
)
dξ,

B5 = Ix,Mn

( n−1∑
k=1

∫
Ik

(x − t)α−1(It,Mkg(t) − g(t)
)
dt +
∫ x

xn−1

(x − ξ)α−1
(
I

(xn−1,x]
ξ,Mn

g(ξ) − g(ξ)
)
dξ
)
.

(4.3)

We estimate {B j}
5
j=1 one by one. For simplicity, we make the assumption (A) as follows:

• q(x, t) is continuous, for any given x ∈ I, q(x, t)|t∈Ik ∈ Hmk(Ik) with the integer 1 ≤ mk ≤ Mk + 1.
• g, p, u is continuous on I, g|t∈Ik , p|t∈Ik , uk ∈ Hmk(Ik) with the integer 1 ≤ mk ≤ Mk + 1.

It can be found that the first item of (A) implies the same result for K(x, t).

Lemma 5. Under the assumption (A). If α ∈
(1
2
, 1
)
, then for any 1 ≤ n ≤ N, we have

∥B1∥
2
L2(In) ≤ chn

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (pu)∥2L2(Ik) + ∥∂
mk
t u∥L2(Ik)

)
+ chn

n−1∑
k=1

∥U − u∥2L2(Ik). (4.4)

Proof. For the sake of convenience and simplification, we make the notation as follows:

V(t)
∣∣∣∣
t∈Ik

:= It,Mk p(t)Uk(t) − p(t)uk(t)).

Applying this formula and (2.2) to the first formula of (4.3), we have

∥B1∥
2
L2(In) =

∥∥∥∥Ix,Mn

∫ xn−1

0
(x − t)α−1(It,Mk p(t)Uk(t) − p(t)uk(t)

)
dt
∥∥∥∥2

L2(In)

=
hn

2

Mn∑
i=0

wn,i

( ∫ xn−1

0
(xn,i − t)α−1V(t)dt

)2
.

(4.5)

Using Cauchy-Schwarz inequality, we can easily get

∥B1∥
2
L2(In) ≤

hn

2

Mn∑
i=0

wn,i

∫ xn−1

0
(xn,i − t)2(α−1)dt

∫ xn−1

0
V2(t)dt. (4.6)
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Since α ∈
(1
2
, 1
)

and
Mn∑
i=0

ωn,i = 2, we can deduce that

∥B1∥
2
L2(In) ≤ cT 2α−1 hn

2

n−1∑
k=1

∫
Ik

(
It,Mk p(t)Uk(t) − p(t)uk(t))

)2
dt ≤ B11 + B12, (4.7)

where

B11 = cT 2α−1hn

n−1∑
k=1

∫
Ik

(
It,Mk p(t)(Uk(t) − uk(t))

)2
dt,

B12 = cT 2α−1hn

n−1∑
k=1

∫
Ik

(
(It,Mk − I)p(t)uk(t)

)2
dt.

(4.8)

Next, we shall estimate B1 by evaluating B11 and B12 one by one. Using (2.2) again, one has

B11 = chn

n−1∑
k=1

∫
Ik

(
It,Mk p(t)(Uk(t) − uk(t))

)2
dt

= chn

n−1∑
k=1

hk

2

Mk∑
j=0

(
p(xk, j)(Uk(xk, j) − uk(xk, j))

)2
wk, j

≤ chn

n−1∑
k=1

hk

2

Mk∑
j=0

(
(Uk(xk, j) − uk(xk, j))

)2
wk, j

≤ chn

n−1∑
k=1

∫
Ik

(
It,Mk(Uk(t) − uk(t))

)2
dt.

(4.9)

Clearly, by triangle inequality, the above becomes

B11 ≤ chn

n−1∑
k=1

∫
Ik

(
Uk(t) − uk(t))

)2
dt + chn

n−1∑
k=1

∫
Ik

((
It,Mk − I

)
uk(t)
)2

dt

≤ chn

n−1∑
k=1

(∥∥∥U − u
∥∥∥2

L2(Ik)
+
∥∥∥(It,Mk − I)u

∥∥∥2
L2(Ik)

)
.

(4.10)

By Lemma 1, we get

∥∥∥(It,Mk − I)u
∥∥∥2

L2(Ik)
≤ h2mk

k M−2mk
k ∥∂mk

t u∥L2(Ik), B12 ≤ chn

n−1∑
k=1

h2mk
k M−2mk

k ∥∂mk
t (pu)∥L2(Ik). (4.11)

Combining (4.7), (4.10) with (4.11), the desired estimate follows. □

Lemma 6. Under the assumption (A). If α ∈
(1
2
, 1
)
, then there holds that

∥B2∥
2
L2(In)
≤ ch2α

n ∥U − u∥2L2(In) + ch2mn+2α
n M−2mn

n

(
∥∂mn

x u∥2L2(In) + ∥∂
mn
x (pu)∥2L2(In)

)
.
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Proof. Using the Triangle Inequality to the second formula of (4.3), one has

∥B2∥
2
L2(In) ≤ chn

Mn∑
i=0

wn,i

( ∫ xn,i

xn−1

(xn,i − ξ)α−1(I(xn−1,xn,i]
ξ,Mn

p(ξ)Un(ξ) − p(ξ)un(ξ))dξ
)2

≤ B21 + B22,

(4.12)

where

B21 = chn

Mn∑
i=0

wn,i

( ∫ xn,i

xn−1

(xn,i − ξ)α−1I
(xn−1,xn,i]
ξ,Mn

p(ξ)(Un(ξ) − un(ξ))dξ
)2
,

B22 = chn

Mn∑
i=0

wn,i

( ∫ xn,i

xn−1

(xn,i − ξ)α−1(I(xn−1,xn,i]
ξ,Mn

− I)p(ξ)un(ξ))dξ
)2
.

(4.13)

Since α ∈
(1
2
, 1
)
, according to Cauchy-Schwarz inequality and (2.2), we obtain that

B21 ≤ chn

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(xn,i − ξ)2α−2dξ ·
∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

p(ξ)(Un(ξ) − un(ξ)
)2

dξ

≤ ch2α
n

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

p(ξ)(Un(ξ) − un(ξ))
)2

dξ

≤ ch2α
n

Mn∑
i=0

wn,i
xn,i − xn−1

2

Mn∑
j=0

(
p(ξn, j)(Un(ξn, j) − un(ξn, j))

)2
wn, j

≤ ch2α
n

Mn∑
i=0

wn,i
xn,i − xn−1

2

Mn∑
j=0

(
(Un(ξn, j) − un(ξn, j))

)2
wn, j

≤ ch2α
n

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

(Un(ξ) − un(ξ))
)2

dξ

≤ ch2α
n

Mn∑
i=0

wn,i

[ ∫ xn,i

xn−1

(Un(ξ) − un(ξ))2dξ +
∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)un(ξ)
)2

dξ
]
.

(4.14)

From Lemma 2, we deduce that

B21 ≤ ch2α
n ∥U − u∥2L2(In) + ch2mn+2α

n M−2mn
n ∥∂mn

x u∥2L2(In). (4.15)

Furthermore, applying the Cauchy-Schwarz inequality, we get

∥B22∥
2
L2(In) ≤ chn

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(xn,i − ξ)2α−2dξ
∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)p(ξ)un(ξ))
)2

dξ

≤ ch2α
n

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)p(ξ)un(ξ)
)2

dξ

≤ ch2mn+2α
n M−2mn

n ∥∂mn
ξ (pu)∥2L2(In).

(4.16)

Thus, by (4.15) and (4.16), the desired result is obtained. □
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Lemma 7. Under the assumption (A), suppose that α ∈
(1
2
, 1
)
, 0 < β < 1, then we have

∥B3∥
2
L2(In) ≤ chn

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (Ku)∥2L∞(In,L2(Ik) + ∥∂
mn
t u∥L2(Ik)

)
+ chn

n−1∑
k=1

∥∥∥U − u
∥∥∥2

L2(Ik)
. (4.17)

Proof. We define

W(x, t)
∣∣∣∣ := It,Mk K(x, t)Uk(t) − K(x, t)uk(t)), x ∈ In, t ∈ Ik.

Thus

∥B3∥
2
L2(In) =

∥∥∥∥Ix,Mn

∫ xn−1

0
(x − t)α−β

∫ xn−1

0
(x − t)α−βW(x, t)

∥∥∥∥2
L2(In)

=
hn

2

Mn∑
i=0

wn,i

( ∫ xn−1

0
(xn,i − t)α−βW(x, t)dt

)2
.

(4.18)

Since α ∈
(1
2
, 1
)

and 0 < β < 1, we easily deduce that −1 < 2(α − β) < 2. Using Cauchy-Schwarz
Inequality, we get

∥B3∥
2
L2(In) ≤

hn

2

Mn∑
i=0

wn,i

∫ xn−1

0
(xn,i − t)2(α−β)dt

∫ xn−1

0
W2(xn,i, t)dt

≤ cT 2α−2β+1 hn

2

Mn∑
i=0

wn,i

n−1∑
k=1

∫
Ik

(
It,Mk K(xn,i, t)Uk(t) − K(xn,i, t)uk(t))

)2
dt

≤ B31 + B32,

(4.19)

where

B31 = chn

Mn∑
i=0

wn,i

n−1∑
k=1

∫
Ik

(
It,Mk K(xn,i, t)(Uk(t) − uk(t))

)2
dt,

B32 = chn

Mn∑
i=0

wn,i

n−1∑
k=1

∫
Ik

(
(It,Mk − I)K(xn,i, t)uk(t)

)2
dt.

(4.20)

Using (2.2) and triangle inequality again, we get

B31 = chn

Mn∑
i=0

wn,i

n−1∑
k=1

hk

2

Mk∑
j=0

(
K(xn,i, xk, j)(Uk(xk, j) − uk(xk, j))

)2
wk, j

≤ chn

Mn∑
i=0

wn,i max
x∈In
|K(x, t)|2

n−1∑
k=1

hk

2

Mk∑
j=0

(
(Uk(xk, j) − uk(xk, j))

)2
wk, j

≤ chn

n−1∑
k=1

∫
Ik

(
Uk(t) − uk(t)

)2
dt +

n−1∑
k=1

∫
Ik

((
It,Mk − I

)
uk(t)
)2

dt

≤ chn

n−1∑
k=1

(∥∥∥U − u
∥∥∥2

L2(Ik)
+ h2mk

k M−2mk
k ∥∂mk

t u∥L2(Ik)

)
.

(4.21)
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By Lemma 1, we get

B32 ≤ chn

Mn∑
i=1

wn,i

n−1∑
k=1

h2mk
k M−2mk

k ∥∂mk
t
(
K(xn,i, ·)u

)
∥L2(Ik)

≤ chn

n−1∑
k=1

h2mk
k M−2mk

k max
x∈In
∥∂mk

t
(
K(x, ·)u

)
∥L2(Ik).

(4.22)

Plugging (4.21) and (4.22) into (4.19), we complete the proof. □

Lemma 8. Under the assumption (A), suppose that α ∈
(1
2
, 1
)
, 0 < β < 1, then we have

∥B4∥
2
L2(In) ≤ ch2mn+2α−β+2

n M−2mn
n

(
∥∂mn
ξ u∥2L2(In) + ∥∂

mn
ξ (Ku)∥2L∞(In,L2(In))

)
+ ch2α−2β+2

n ∥U − u∥2L2(In). (4.23)

Proof. Since −1 < 2α − 2β < 2, using Cauchy-Schwarz inequality and (2.2), we obtain

∥B4∥
2
L2(In) ≤ chn

Mn∑
i=0

wn,i

( ∫ xn,i

xn−1

(xn,i − ξ)α−β(I
(xn−1,xn,i]
ξ,Mn

K(xn,i, ξ)Un(ξ) − K(xn,i, ξ)un(ξ))dξ
)2

≤ ch2α−2β+2
n

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(I(xn−1,xn,i]
ξ,Mn

K(xn,i, ξ)Un(ξ) − K(xn,i, ξ)un(ξ))dξ

≤ ch2α−2β+2
n (B41 + B42),

(4.24)

where

B41 = c
Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

K(xn,i, ξ)(Un(ξ) − un(ξ))
)2

dξ,

B42 = c
Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

− I)K(xn,i, ξ)un(ξ))
)2

dξ.

(4.25)

By computing directly, we obtain

B41 ≤ c
Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
I

(xn−1,xn,i]
ξ,Mn

K(xn,i, ξn, j)(Un(ξ) − un(ξ))
)2

dξ

≤ c
Mn∑
i=0

wn,i
xn,i − xn−1

2

Mn∑
j=0

(
K(xn,i, ξn, j)(Un(ξn, j) − un(ξn, j))

)2
wn, j

≤ c
Mn∑
i=0

wn,i
xn,i − xn−1

2

Mn∑
j=0

(
(Un(ξn, j) − un(ξn, j))

)2
wn, j

≤ c
Mn∑
i=0

wn,i

[ ∫ xn,i

xn−1

(Un(ξ) − un(ξ))2dξ +
∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)un(ξ)
)2

dξ
]

≤ c∥U − u∥2L2(In) + ch2mn
n M−2mn

n ∥∂mn
x u∥2L2(In).

(4.26)
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Furthermore, applying the Cauchy-Schwarz inequality, we get

∥B42∥
2
L2(In) ≤ c

Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)K(xn,i, ξn, j)un(ξ))
)2

dξ

≤ c
Mn∑
i=0

wn,i

∫ xn,i

xn−1

(
(I(xn−1,xn,i]
ξ,Mn

− I)K(xn,i, ξ)un(ξ)
)2

dξ

≤ ch2mn
n M−2mn

n max
x∈In
∥∂mn
ξ K(x, ·)u∥2L2(In)

Mn∑
i=0

wn,i ≤ ch2mn
n M−2mn

n ∥∂mn
ξ (Ku)∥2L∞(In,L2(In).

(4.27)

Thus, by (4.24), (4.26) and (4.27), the desired result is obtained. □

Using the same skills as above, we deduce the following estimates:

Lemma 9. Under the assumption (A), suppose that α ∈
(1
2
, 1
)
, 0 < β < 1, there holds

∥B5∥
2
L2(In) ≤ chn

n−1∑
k=1

h2mk
k M−2mk

k ∥∂mk
t g∥2L2(Ik) + ch2mn+2α

n M−2mn
n ∥∂mn

t g∥L2(In). (4.28)

Combining the above estimates for {B j}
5
j=1, we obtain local convergence as follows:

Theorem 1. Under the assumption (A), suppose that α ∈
(1
2
, 1
)
, 0 < β < 1, then for any 1 ≤ n ≤ N,

we have

∥Un − un∥
2
L2(In) ≤ chn exp(cT )

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (p · u)∥2L2(Ik)

+ ∥∂m
t u∥L2(Ik) + ∥∂

mk
t (K(x, ·)u)∥2L∞(In,L2(Ik) + ∥∂

mk
t g∥2L2(Ik)

)
+ ch2mn

n M−2mn
n

(
∥∂mn
ξ u∥2L2(In) + ∥∂

mn
ξ (pu)∥2L2(In) + ∥∂

mn
ξ g∥L2(In)

)
.

(4.29)

Proof. Obviously, it follows from the triangle inequality that

∥Un − un∥
2
L2(In) ≤ 2∥Un − Ix,Mnun∥

2
L2(In) + 2∥Ix,Mnun − un∥

2
L2(In). (4.30)

According to Lemma 1, one has

∥Ix,Mnun − un∥
2
L2(In) ≤ ch2mn

n M−2mn
n ∥∂mn

x u∥L2(In). (4.31)

The above formula along with (4.2), Lemmas 5–9 lead to

∥Un − un∥
2
L2(In) ≤ chn

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (pu)∥2L2(Ik) + ∥∂
mk
t u∥L2(Ik)

+ ∥∂mk
t (K(x, ·)u)∥2L∞(In,L2(Ik) + ∥∂

mk
t g∥2L2(Ik)

)
+ ch2mn

n M−2mn
n

(
∥∂mn
ξ u∥2L2(In) + ∥∂

mn
ξ (pu)∥2L2(In) + ∥∂

mn
ξ g∥L2(In)

)
+ chn

n−1∑
k=1

∥∥∥U − u
∥∥∥2

L2(Ik)
+ c
(
h2α

n + h2α−2β+2
n

)
∥U − u∥2L2(In).

(4.32)
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Assume that α ∈
(1
2
, 1
)
, 0 < β < 1 and hn is small enough, such that

c
(
h2α

n + h2α−2β+2
n

)
< 1.

Then we can obtain from (4.32) that

∥Un − un∥
2
L2(In) ≤ chn

n−1∑
k=1

∥∥∥U − u
∥∥∥2

L2(Ik)
+ chn

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (pu)∥2L2(Ik)

+ ∥∂mk
t u∥L2(Ik) + ∥∂

mk
t (K(x, ·)u)∥2L∞(In,L2(Ik) + ∥∂

mk
t g∥2L2(Ik)

)
+ ch2mn

n M−2mn
n

(
∥∂mn
ξ u∥2L2(In) + ∥∂

mn
ξ (pu)∥2L2(In) + ∥∂

mn
ξ g∥L2(In)

)
.

(4.33)

Using the Lemma 4, we can obtain that

∥Un − un∥
2
L2(In) ≤ chn exp(cT )

n−1∑
k=1

h2mk
k M−2mk

k

(
∥∂mk

t (pu)∥2L2(Ik)

+ ∥∂mk
t u∥L2(Ik) + ∥∂

mk
t (K(x, ·)u)∥2L∞(In,L2(Ik) + ∥∂

mk
t g∥2L2(Ik)

)
+ ch2mn

n M−2mn
n

(
∥∂mn
ξ u∥2L2(In) + ∥∂

mn
ξ (pu)∥2L2(In) + ∥∂

mn
ξ g∥L2(In)

)
.

(4.34)

This is the desired result. □

Summing (4.29) from n = 1 to N, we get the following L2-norm error estimate on the entire
interval I.

Theorem 2. Under the assumption (A), if α ∈
(1
2
, 1
)
, 0 < β < 1, then we have

∥U − u∥2L2(I) ≤ c exp(cT )
N∑

k=1

h2mK
k M−2mK

k

(
∥∂mK

t (pu)∥2L2(Ik) + ∥∂
mK
t u∥L2(Ik)

+ ∥∂mK
t g∥2L2(Ik) + ∥∂

mK
t (K(x, ·)u)∥2L∞(In,L2(Ik)

)
.

(4.35)

Remark 1. Theorem 2 established the hp-version error bounds for sufficiently smooth solutions.
However, for 0 < α < 1 in the Volterra integral Eq (3.7), smooth functions p, q, g result in the weakly
singular solution u(x) which typically has the form of u(x) = O(xα) near x = 0 (see [26]). Thus,
applying the Lemma 3 and executing the same procedure as above, we can obtain the following
results:

∥U − u∥L2(I) ≤ chα+
1
2 M−2α−1,

on the uniform meshes (hn = h) and uniform approximation degree (Mn = M).

Remark 2. For the sake of getting higher order methods to solve the problems with weakly singular
kernels, some special partitions (such as graded meshes or geometric meshes) are always considered.

Here we implemented the proposed method on the graded meshes of the form xn =
( i
N
)rT . Thus M

order convergence for h can be obtained under the condition r = (M + 1)/α, where M is the degree of
interpolation polynomials on In and M + 1 is the number of collocation points.
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5. Numerical experiments

To demonstrate the effectiveness of the proposed method and the validity of the theoretical results
derived in the previous sections, here we present some numerical experiments.

5.1. Problems with smooth solutions

Example 1. We first consider the following FIDE with sufficiently smooth solution:
C
0 D2/3

x u(x) = g(x) + p(x)u(x) +
∫ x

0
(x − t)−

5
6 q(x, t)u(t)dt, x ∈ (0, 1),

u(0) = 0,
(5.1)

where

g(x) =
Γ(22/3)
Γ(20/3)

x17/3 − x19/3e−x − B(1/6, 25/3)x51/6, p(x) = e−x, q(x, t) = xt.

The solution of this problem can be written as u(x) = x19/3, which is sufficiently smooth on the
interval [0, 1].We can transform this problem into the equivalent form:

u(x) = u(0)+
1

Γ(2/3)

[ ∫ x

0
(x− t)−1/3g(t)dt+

∫ x

0
(x− t)−1/3 p(x)u(t)dt+

∫ x

0
(x− t)−1/6K(x, t)u(t)dt

]
, (5.2)

where
K(x, t) = B(5/3, 1/6)t2 + B(2/3, 7/6)xt.

In Figure 1, we show the discrete L2-errors for decreasing h and fixed polynomial degree M =

1, 2, 3, 4. These approximately diagonal lines indicate that the h-version convergence is algebraic in
h. In Table 1, the discrete L2-norm errors in h-version and the order of convergence are summarized.
Results are agreement with the theoretical results of Theorem 2.

Figure 1. h-version convergence on uniform meshes for Example 1.
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Table 1. h-version errors on uniform meshes for Example 1.

h M L2−error order M L2−error order M L2−error order

1/64 9.89E-05 2.00 6.35E-07 3.00 2.42E-09 4.00
1/128 2.47E-05 2.00 7.94E-08 3.00 1.52E-10 4.00
1/256 1 6.18E-06 2.00 2 9.92E-09 3.00 3 9.47E-12 4.00
1/512 1.54E-06 2.00 1.24E-09 3.00 5.92E-13 4.00

1/1024 3.86E-07 2.00 1.55E-10 3.00 3.70E-14 4.00

In Figure 2, we show the discrete L2-errors of the p-version with increasing polynomial degree M
at fixed time step, h = 1, 1/2, 1/4, 1/8, respectively. We see that exponential convergence of p-version
is achieved, which confirms the results of Theorem 2.
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Figure 2. p-version convergence on uniform meshes for Example 1.

5.2. Problems with weakly singular solutions

Example 2. We use the proposed method to solve the following problem with weakly singular
solution: 

C
0 D2/3

x u(x) = g(x) + p(x)u(x) +
∫ x

0
(x − t)−

1
2 q(x, t)u(t)dt, x ∈ (0, 1),

u(0) = 0,
(5.3)

where

g(x) = Γ(5/3) − e−xx2/3 − B(1/2, 5/3)x7/6,

p(x) = e−x, q(x, t) = 1.
(5.4)

The above equation has the exact solution u(x) = x
2
3 , which has a weak singularity at the left endpoint

x = 0.
In Figure 3, we present the discrete L2-errors for various h and fixed polynomial degree

M = 1, 2, 3, 4, respectively. They indicates that the h-version convergence of the proposed method is
algebraic for decreasing h. In Table 2, we list the discrete L2-errors of the h-version and the
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convergence order. The convergence order is about 1.17, which corresponds to the theoretical results
about h-version predicted in Remark 1 (the h-version convergence rate is O(hα+

1
2 ) for singular

solutions).

Figure 3. h-version convergence on uniform meshes for Example 2.

Table 2. h-version errors on uniform meshes for Example 2.

h M L2−error order M L2−error order M L2−error order

1/64 2.79E-04 1.19 1.04E-04 1.18 5.38E-05 1.18
1/128 1.23E-04 1.18 4.62E-05 1.17 2.39E-05 1.17
1/256 1 5.47E-05 1.17 2 2.05E-05 1.17 3 1.06E-05 1.17
1/512 2.43E-05 1.17 9.12E-06 1.17 4.72E-06 1.17

1/1024 1.08E-05 1.17 4.06E-06 1.17 2.10E-06 1.17

In Figure 4, the discrete L2-errors in the p-version for Example 2 are shown. The mode M is
increasing for each fixed time step h = 1, 1/2, 1/4, 1/8. This means that the p-version convergence for
different h is algebraic and the convergence orders are similar since the solution is weakly singular.

Figure 4. p-version convergence for Example 2.
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In Table 3, p-version error bounds and convergence order are presented in details. The convergence
order for the L2-errors is about 2.3, which coincides with the p-version results predicted in Remark 1
(p-version convergence rate is O(M−2α−1)) and is twice as fast as the h-version results.

Table 3. p-version errors on uniform meshes for Example 2.

M h L2−error order h L2−error order

6 2.56E-03 2.36 9.84E-04 2.13
7 1.79E-03 2.32 7.07E-04 2.15
8 1 1.31E-03 2.33 1/2 5.28E-04 2.18
9 9.98E-04 2.33 4.07E-04 2.21

10 7.79E-04 2.36 3.22E-04 2.24

To obtain higher convergence order and improve the effectiveness of our method, we make use of
graded meshes xi = (i/N)r for i = 0, 1, · · · ,N with r = (M + 1)/α, where the spectral collocation
method uses shifted Legendre polynomials of degree M. The value M = 1, 2, 3 are examined in our
experiments. In Figure 5, we plot the discrete L2-errors against the degrees of freedom. In Table 4,
the discrete L2-errors in h-version and the corresponding convergence order are listed in details, for
increasing grid points number N for each fixed mode M = 1, 2, 3, 4, respectively. Clearly, M + 1-order
convergence is achieved, as predicted in Remark 2.

Figure 5. Convergence on graded meshes for Example 2.

Table 4. Error on graded meshes for Example 2.

N M L2−error order M L2−error order M L2−error order

64 1.82E-05 2.00 3.24E-07 3.00 1.06E-08 4.00
128 4.55E-06 2.00 4.06E-08 3.00 6.62E-10 4.00
256 1 1.14E-06 2.00 2 5.07E-09 3.00 3 4.14E-11 4.00
512 2.84E-07 2.00 6.34E-10 3.00 2.59E-12 4.00

1024 7.11E-08 2.00 7.92E-11 3.00 1.62E-13 4.00
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5.3. Numerical comparison

Example 3. We apply the proposed method to solve the following problem with weakly singular
solution in [7]:


C
0 D1/3

x u(x) = g(x) + p(x)u(x) +
∫ x

0
(x − t)−

1
2 q(x, t)u(t)dt, x ∈ (0, 1),

u(0) = 0,
(5.5)

where

g(x) =
6x8/3

Γ(11/3)
+
(32
35
−
Γ(1/2)Γ(7/3)
Γ(17/6)

)
x11/6 + Γ(7/3)x,

p(x) = −
32
35

x1/2, q(x, t) = 1.
(5.6)

The exact solution is u(x) = x3 + x
4
3 , which has weak singularity at the left endpoint x = 0.

Figures 6 and 7 show that the discrete L2-error in both h and p-version converges algebraically as
they behaved in Example 2, when the problem is solved on the uniform meshes. In Figure 8, one can
find that the discrete L2-errors on graded meshes converge approximately exponentially. We compare
the maximum errors on uniform meshes of our method and the h-version collocation method (45)
in [7]. Table 5 indicates that the accuracy of our method are higher than those of the method (45) in [7].
Moreover, the time step h and polynomial degree M in our hp-version spectral collocation method may
be chosen arbitrarily, according to the demands of users. Thus hp-version spectral collocation method
is much more convenient and flexible to be implemented.

Figure 6. h-version convergence on uniform meshes for Example 3.
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Figure 7. p-version convergence on uniform meshes for Example 3.

Figure 8. Convergence on graded meshes for Example 3.

Table 5. The absolute errors of Example 3 on uniform meshes.

N M [7] our method M [7] our method

16 7.81E-05 5.00E-06 3.98E-05 1.45E-06
32 2 1.53E-05 1.12E-06 3 8.05E-06 3.20E-07
64 2.99E-06 2.50E-07 1.62E-06 7.11E-08

128 5.89E-07 5.55E-08 3.23E-07 1.58E-08

6. Conclusions

In this paper, we have addressesed an hp-version spectral collocation method for FIDEs (1.1)
and (1.2) with singular kernels. We have converted the problem into a piece-wised Volterra integral

AIMS Mathematics Volume 8, Issue 8, 19816–19841.



19839

equations and then presented a multi-step Legendre-Gauss spectral collocation scheme for the
problem. The L2-norm error bounds have been established for α ∈

(1
2 , 1
)
. Numerical experiments has

demonstrated the effectiveness of the suggested approach and the validity of the theoretical results. As
a matter of fact, theoretical and numerical results expected to hold for α ∈

(
0, 1). In the further

research, we will analyze the convergence for α ∈
(
0, 1
)

and the design of corresponding numerical
methods for efficiently solve nonlinear FIDEs.
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