High-order Volterra integro-differential equations are of great interest to many authors because of their important applications in physics and engineering, especially if they contain delay or pantograph terms that enable them to describe the memory effect. Providing an efficient numerical scheme for high-order Volterra integro-differential equations helps to explain many problems in mathematical biology and quantum mechanics. In this manuscript, we use shifted Jacobi polynomials as the basis for a spectral collocation approach to solve high-order one- and two-dimensional Volterra integro-differential equations with variable coefficients. A pantograph operational matrix, based on shifted Jacobi polynomials, is used for the first time, together with the Gauss-Jacobi quadrature rule, to reduce the problem to the problem of solving a system of algebraic equations. To ensure the validity of the proposed approach, we compare the numerical results with those of other numerical schemes in the literature.
Citation: Ali H. Tedjani, Sharifah E. Alhazmi, Samer S. Ezz-Eldien. An operational approach for one- and two-dimension high-order multi-pantograph Volterra integro-differential equation[J]. AIMS Mathematics, 2025, 10(4): 9274-9294. doi: 10.3934/math.2025426
High-order Volterra integro-differential equations are of great interest to many authors because of their important applications in physics and engineering, especially if they contain delay or pantograph terms that enable them to describe the memory effect. Providing an efficient numerical scheme for high-order Volterra integro-differential equations helps to explain many problems in mathematical biology and quantum mechanics. In this manuscript, we use shifted Jacobi polynomials as the basis for a spectral collocation approach to solve high-order one- and two-dimensional Volterra integro-differential equations with variable coefficients. A pantograph operational matrix, based on shifted Jacobi polynomials, is used for the first time, together with the Gauss-Jacobi quadrature rule, to reduce the problem to the problem of solving a system of algebraic equations. To ensure the validity of the proposed approach, we compare the numerical results with those of other numerical schemes in the literature.
| [1] |
L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
|
| [2] |
M. M. Alsuyuti, E. H. Doha, B. I. Bayoumi, S. S. Ezz-Eldien, Robust spectral treatment for time-fractional delay partial differential equations, Comput. Appl. Math., 42 (2023), 159. https://doi.org/10.1007/s40314-023-02287-w doi: 10.1007/s40314-023-02287-w
|
| [3] |
M. D. Buhmann, A. Iserles, Stability of the discretized pantograph differential equation, Math. Comp., 60 (1993), 575–-589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2
|
| [4] |
G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4 doi: 10.1016/S0377-0427(00)00468-4
|
| [5] |
Y. Wang, S. S. Ezz-Eldien, A. A. Aldraiweesh, A new algorithm for the solution of nonlinear two-dimensional Volterra integro-differential equations of high-order, J. Comput. Appl. Math., 364 (2020), 112301. https://doi.org/10.1016/j.cam.2019.06.017 doi: 10.1016/j.cam.2019.06.017
|
| [6] |
M. Dehghan, F. Shakeri, The use of the decomposition procedure of adomian for solving a delay differential equation arising in electrodynamics, Phys. Scr., 78 (2008), 065004. https://doi.org/10.1088/0031-8949/78/06/065004 doi: 10.1088/0031-8949/78/06/065004
|
| [7] |
A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
|
| [8] | Y. Kuang, Delay differential equations with applications in population dynamics, New York, NY, USA: Academic Press, 1993. |
| [9] | M. Abbaszadeh, M. A. Zaky, M. Dehghan, Virtual element approximation and BDF2 time-discrete scheme for a partial integro-differential equation with a singular Abel's kernel, Appl. Math. Comput., 2025, in press. |
| [10] |
M. A. Zaky, W. G. Alharbi, M. M. Alzubaidi, R. T. Matoog, A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations, AIMS Math., 10 (2025), 7067–7085. https://doi.org/10.3934/math.2025322 doi: 10.3934/math.2025322
|
| [11] |
M. Abdelhakem, Shifted Legendre fractional Pseudo-spectral integration matrices for solving fractional Volterra integro-differential equations and Abel's integral equations, Fractals, 31 (2023), 2340190. https://doi.org/10.1142/S0218348X23401904 doi: 10.1142/S0218348X23401904
|
| [12] |
A. Ghoreyshi, M. Abbaszadeh, M. A. Zaky, M. Dehghan, Finite block method for nonlinear time-fractional partial integro-differential equations: stability, convergence, and numerical analysis, Appl. Numer. Math., 214 (2025), 82–103. https://doi.org/10.1016/j.apnum.2025.03.002 doi: 10.1016/j.apnum.2025.03.002
|
| [13] |
B. Ghosh, J. Mohapatra, An iterative scheme for solving arbitrary-order nonlinear Volterra integro-differential equations involving delay, Iran. J. Sci., 47 (2023), 851–861. https://doi.org/10.1007/s40995-023-01446-2 doi: 10.1007/s40995-023-01446-2
|
| [14] |
M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
|
| [15] |
S. Behera, S. S. Ray, A novel numerical scheme based on Muntz–Legendre wavelets for solving pantograph Volterra delay-integro-differential equations, Mediterr. J. Math., 20 (2023), 46. https://doi.org/10.1007/s00009-022-02227-8 doi: 10.1007/s00009-022-02227-8
|
| [16] |
N. A. Elkot, M. A. Zaky, E. H. Doha, I. G. Ameen, On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterra–Fredholm integral equations, Commun. Theor. Phys., 73 (2021), 025002. https://doi.org/10.1088/1572-9494/abcfb3 doi: 10.1088/1572-9494/abcfb3
|
| [17] |
J. Zhao, Y. Cao, Y. Xu, Tau approximate solution of linear pantograph Volterra delay-integro-differential equation, Comp. Appl. Math., 39 (2020), 46. https://doi.org/10.1007/s40314-020-1080-5 doi: 10.1007/s40314-020-1080-5
|
| [18] |
S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
|
| [19] |
A. M. Bica, Z. Satmari, Iterative numerical method for pantograph type fuzzy Volterra integral equations, Fuzzy Sets Syst., 443 (2022), 262–285. https://doi.org/10.1016/j.fss.2021.12.002 doi: 10.1016/j.fss.2021.12.002
|
| [20] |
M. A. Zaky, I. G. Ameen, N. A. Elkot, E. H. Doha, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161 (2021), 27–45. https://doi.org/10.1016/j.apnum.2020.10.028 doi: 10.1016/j.apnum.2020.10.028
|
| [21] |
S. O. Khaleel, P. Darania, S. Pishbin, S. M. Bagomghaleh, Multistep collocation technique implementation for a pantograph-type second-kind Volterra integral equation, AIMS Math., 9 (2024), 30761–30780. https://doi.org/10.3934/math.20241486 doi: 10.3934/math.20241486
|
| [22] | S. S. Ezz-Eldien, A. Alalyani, Legendre spectral collocation method for one- and two-dimensional nonlinear pantograph Volterra-Fredholm integro-differential equations, Int. J. Mod. Phys. C, 2025, in press. https://doi.org/10.1142/S0129183125500615 |
| [23] |
M. A. Zaky, I. G. Ameen, A novel Jacobi spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions, Eng. Comput., 37 (2021), 2623–2631. https://doi.org/10.1007/s00366-020-00953-9 doi: 10.1007/s00366-020-00953-9
|
| [24] | J. Shen, T. Tang, L. Wang, Spectral methods: algorithms, analysis and applications, Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7 |
| [25] |
Y. Wang, J. Huang, T. Deng, H. Li, An efficient numerical approach for solving variable-order fractional partial integro-differential equations, Comput. Appl. Math., 41 (2022), 411. https://doi.org/10.1007/s40314-022-02131-7 doi: 10.1007/s40314-022-02131-7
|
| [26] |
E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 36 (2012), 4931–4943. https://doi.org/10.1016/j.apm.2011.12.031 doi: 10.1016/j.apm.2011.12.031
|
| [27] |
S. S. Ezz-Eldien, E. H. Doha, Y. Wang, W. Cai, A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105445. https://doi.org/10.1016/j.cnsns.2020.105445 doi: 10.1016/j.cnsns.2020.105445
|
| [28] |
S. Yuzbasi, Laguerre approach for solving pantograph-type Volterra integro-differential equations, Appl. Math. Comput., 232 (2014), 1183–1199. https://doi.org/10.1016/j.amc.2014.01.075 doi: 10.1016/j.amc.2014.01.075
|
| [29] |
M. Gulsu, M. Sezer, A collocation approach for the numerical solution of certain linear retarded and advanced integrodifferential equations with linear functional arguments, Numer. Methods Part. Differ. Equ., 72 (2011), 447–459. https://doi.org/10.1002/num.20532 doi: 10.1002/num.20532
|
| [30] |
S. S. Ezz-Eldien, E. H. Doha, Fast and precise spectral method for solving pantograph type Volterra integro-differential equations, Numer. Algor., 81 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
|