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Abstract: High-order Volterra integro-differential equations are of great interest to many authors
because of their important applications in physics and engineering, especially if they contain delay or
pantograph terms that enable them to describe the memory effect. Providing an efficient numerical
scheme for high-order Volterra integro-differential equations helps to explain many problems in
mathematical biology and quantum mechanics. In this manuscript, we use shifted Jacobi polynomials
as the basis for a spectral collocation approach to solve high-order one- and two-dimensional Volterra
integro-differential equations with variable coefficients. A pantograph operational matrix, based on
shifted Jacobi polynomials, is used for the first time, together with the Gauss-Jacobi quadrature rule,
to reduce the problem to the problem of solving a system of algebraic equations. To ensure the validity
of the proposed approach, we compare the numerical results with those of other numerical schemes in
the literature.
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1. Introduction

High-order pantograph Volterra integro-differential equations provide a vital framework for
describing a number of natural phenomena in physics and engineering [1–3]. With the integral form,
the pantograph Volterra integro-differential equation has the ability to model systems with memory
influence, and the pantograph term adds to the equation’s capacity to study scaling properties. These
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attributes ensure the appearance of pantograph Volterra integro-differential equations in diverse fields,
including wave propagation and quantum mechanics [4–6]. It has an essential value in studying
systems where the scaled spatial or temporal variables and past states help in obtaining the behavior
of the wave, for instance, quantum transitions, scattering processes, wave propagation in non-classical
structures, and optical interference and diffraction [7, 8].

On the other hand, the pantograph term as well as the differential and integral terms make it
uneasy to find the exact solution of pantograph Volterra integro-differential equations, so many authors
are interested in finding valid and accurate analytical and numerical solutions for different kinds of
such equations. Abbaszadeh et al. [9] developed a virtual element framework for nonlinear partial
integro-differential equations, proposing two temporal strategies (uniform and graded meshes) to
address integral term singularity establishing a fully discrete scheme with rigorous error estimates,
unconditional stability, convergence proofs, and validation through numerical experiments on varied
physical domains. Zaky et al. [10] proposed a spectral tau approach to approximate the solution
of high-order pantograph Volterra-Fredholm integro-differential equations in both one- and two-
dimensions. Abdelhakem [11] utilized the Pseudo-spectral integration matrices for fractional Volterra
integro-differential equations and Abel’s integral equations. Ghoreyshi et al. [12] investigated a
nonlinear time-fractional partial integro-differential equation by combining the weighted and shifted
Grünwald–Letnikov formula for temporal discretization of the Caputo fractional derivative, the
fractional trapezoidal rule for the Volterra integral, and Chebyshev spectral-collocation methods for
spatial approximation. Ghosh and Mohapatra [13] applied an iterative technique for nonlinear delay
Volterra integro-differential equations, where the integral term is approximated using the composite
trapezoidal rule, and the Daftardar-Gejji and Jafari technique is used to solve the resulting implicit
algebraic equation. Alsuyuti et al. [14] extended the application of the Galerkin spectral method for
pantograph integro-differential and systems of pantograph differential equations of arbitrary order.
Behera and Ray [15] carried out an operational scheme based on Bernoulli and müntz–Legendre
wavelets (BMLW) for the solution of pantograph Volterra delay-integro-differential equations. Elkot
et al. [16] presented the multi-variate Legendre-collocation spectral scheme for multi-dimensional
nonlinear Volterra–Fredholm integral equations. Zhao et al. [17] utilized the Lagrange interpolation
(LIT) and Bernstein tau (BT) methods, respectively, to deal with linear pantograph Volterra delay-
integro-differential equations. The author in [18] applied the Jacobi spectral tau approach for systems
of multi-pantograph equations. Bica and Satmari [19] employed an iterative approach based on the
Bernstein composite quadrature and fuzzy Bernstein spline interpolation methods for the approximate
solution of pantograph fuzzy Volterra integral equations. In [20], the spectral collocation technique is
implemented, where the integral terms are approximated via the Gauss quadrature rule, for systems of
multi-dimensional integral equations. In [21], the multistep collocation method is carried out for the
pantograph second-kind Volterra integral equation. Other numerical methods include [22, 23].

This manuscript aims to provide a numerical solution for the high-order multi-pantograph Volterra
integro-differential equation

s∑
i=0

f (i)(x) = g(x) +
s∑

i=0

µi(x) f (i)(cix) +
s∑

i=0

∫ di x

0
νi(x) f (i)(w)dw +

∫ x

0
ξ(w) f (w)dw,

f (i)(0) = θi, i = 0, 1, · · · , s − 1, 0 ≤ x ≤ α,

(1.1)

where ξ(x), g(x), µi(x), νi(x) and γi(x) (0 < i < s) are known functions and θi, ci and di (0 < i < s)
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are real numbers with 0 < ci, di < 1. In this regard, we use the operational matrix of differentiation and
derive another one of pantograph, based on shifted Jacobi polynomials, that are utilized in conjunction
with the spectral collocation approach to simplify the problem to an equivalent one of solving a system
of algebraic equations. In addition, we study the application of the considered numerical technique to
the system of high-order multi-pantograph Volterra integro-differential equations. On the other hand,
we aim to extend the constructed numerical technique to solve the two-dimensional high-order multi-
pantograph Volterra integro-differential equation

∂s+q f (x, y)
∂xs∂yq =g(x, y) +

s∑
i=0

q∑
j=0

∫ ci x

0

∫ d jy

0
ξi, j(t, u)

∂i+ j f (t, u)
∂ti∂u j dtdu

+

∫ y

0

∫ x

0
ν(t, u) f (t, u)dtdu +

s∑
i=0

q∑
j=0

µi, j(x, y)
∂i+ j f (cix, d jy)
∂xi∂y j ,

∂i f (0,y)
∂xi = θi(y), i = 0, 1, · · · , s − 1, 0 ≤ y ≤ β,
∂ j f (x,0)
∂y j = ϑ j(x), j = 0, 1, · · · , q − 1, 0 ≤ x ≤ α,

(1.2)

where µi, j(x, y), ξi, j(x, y), ν(x, y), θi(y) and ϑ j(x) (0 < i < s, 0 < j < q) are known functions with
0 < ci, d j < 1.

The paper is outlined as follows: Section 2 investigates the existence and uniqueness of the high-
order multi-pantograph Volterra integro-differential equation (1.1). Section 3 provides some important
properties of shifted Jacobi polynomials. Section 4 presents the application of operational matrices
of pantograph and differentiation in conjunction with the Jacobi spectral collocation method to solve
high-order multi-pantograph Volterra integro-differential equations. Section 5 studies the application
of the considered numerical approach to the system of high-order multi-pantograph Volterra integro-
differential equations. Section 6 discusses the extension of the numerical approach discussed in the
previous section to solve the two-dimensional high-order multi-pantograph Volterra integro-differential
equation. Section 7 introduces several test problems with their numerical solutions and comparisons
with other spectral methods in the literature. Concluding remarks are displayed in Section 8.

2. Existence and uniqueness

In this section we study the existence and uniqueness of the solution of the high-order multi-
pantograph Volterra integro-differential equation (1.1).

Theorem 1. ( [24] Gronwall inequality) Let f (x) be a non-negative integrable function over (0, α],
and let g(x) and E(x) be continuous functions on [0, α]. If E(x) satisfies

E(x) ≤ g(x) +
∫ x

0
f (w)E(w)dw, ∀x ∈ [0, α], (2.1)

then we have

E(x) ≤ g(x) +
∫ x

0
f (t)g(t)exp

(∫ x

t
f (w)dw

)
dt, ∀x ∈ [0, α]. (2.2)

If g(x) is non-decreasing, then

E(x) ≤ g(x)exp
(∫ x

0
f (w)dw

)
dt, ∀x ∈ [0, α]. (2.3)
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Theorem 2. Assume f (x) is a continuous function in [0, α]; then the pantograph Volterra integro-
differential equation (1.1) has a unique solution.

Proof. Firstly, we transform high-order multi-pantograph Volterra integro-differential equation (1.1)
into its equivalent integral form as follows:

f (x) −
s−1∑
i=0

θi
xi

i!
=

s times︷            ︸︸            ︷∫ x

0

∫ x

0
· · ·

∫ x

0
K (x, f (x))

s times︷       ︸︸       ︷
dx · · · dxdx, (2.4)

where

K (x, f (x)) = g(x) +
s∑

i=0

µi(x) f (i)(cix) +
s∑

i=0

∫ di x

0
νi(w) f (i)(w)dw +

∫ x

0
ξ(w) f (w)dw +

s−1∑
i=0

γi(x) f (i)(x).

Suppose that for any continuous functions f (x), h(x), ξ(x), µi(x), γi(x) and νi(x) (0 ≤ i ≤ s), in [0, α],
and ci (0 ≤ i ≤ s), with 0 < ci, di < 1, the following inequalities hold:∥∥∥ f (i)(x) − h(i)(x)

∥∥∥
∞
≤ A ∥ f (x) − h(x)∥∞ , ∀0 ≤ i ≤ s,

∥ f (cix) − h(cix)∥∞ ≤ B ∥ f (x) − h(x)∥∞ , ∀0 ≤ i ≤ s,

∥ξ(x)∥∞ ≤ C, ∥µi(x)∥∞ ≤ D, ∥νi(x)∥∞ ≤ E, ∥γi(x)∥∞ ≤ F, ∀0 ≤ i ≤ s.

(2.5)

Now, we prove that K (x, f (x)) satisfies the Lipschitz condition. For any two continuous functions
f (x), h(x), we have

∥∥∥K (x, f (x)) − K (x, h(x))
∥∥∥
∞
=

∥∥∥∥∥∥ s∑
i=0

µi(x)
(

f (i)(cix) − h(i)(cix)
)
+

s−1∑
i=0

γi(x)
(

f (i)(x) − h(i)(x)
)

+

s∑
i=0

∫ di x

0
νi(w)

(
f (i)(w) − h(i)(w)

)
dw +

∫ x

0
ξ(w) ( f (w) − h(w)) dw

∥∥∥∥∥∥
∞

≤

s∑
i=0

|µi(x)|
∥∥∥ f (i)(cix) − h(i)(cix)

∥∥∥
∞
+

s−1∑
i=0

|γi(x)|
∥∥∥ f (i)(x) − h(i)(x)

∥∥∥
∞

+

s∑
i=0

∫ di x

0
|νi(w)|

∥∥∥ f (i)(w) − h(i)(w)
∥∥∥
∞

dw +
∫ x

0
|ξ(w)| ∥ f (w) − h(w)∥∞ dw

≤ L ∥ f (x) − h(x)∥∞ ,

where L = ABD + AEα +Cα + AF is a positive constants. Consequently, Eq (2.4) can be rewritten as

f (x) −
s−1∑
i=0

θi
xi

i!
=

1
(s − 1)!

∫ x

0
(x − t)s−1K (t, f (t)) dt. (2.6)

Assume there are two solutions f (x) and h(x) of the pantograph Volterra integro-differential
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equation (1.1) satisfying f (i)(0) = h(i)(0) = θi, i = 0, 1, · · · , s. This, along with Eq (2.6), yields

∥ f (x) − h(x)∥∞ =
∥∥∥∥∥ 1

(s − 1)!

∫ x

0
(x − t)s−1 (K (t, f (t)) − K (t, h(t))) dt

∥∥∥∥∥
∞

≤
1

(s − 1)!

∫ x

0

∣∣∣(x − t)s−1
∣∣∣ ∥K (t, f (t)) − K (t, h(t))∥∞ dt

≤
L

(s − 1)!

∫ x

0

∣∣∣(x − t)s−1
∣∣∣ ∥ f (x) − h(x)∥∞ dt,

(2.7)

and then, it follows from Theorem 1 that ∥ f (x) − h(x)∥∞ = 0. Now, we consider

fl(x) −
s−1∑
i=0

θi
xi

i!
=

1
(s − 1)!

∫ x

0
(x − t)s−1K (t, fl−1(t)) dt, (2.8)

and define El+1 = fl+1(x) − fl(x). Following the proof in ( [25], Section 3), we get

∥El+1∥∞ =

∥∥∥∥∥ 1
(s − 1)!

∫ x

0
(x − t)s−1 (K (t, fl+1(t)) − K (t, fl(t))) dt

∥∥∥∥∥
∞

≤ L ∥El∥∞ → 0, L < 1. (2.9)

Thus, for n,m→ 0, we have

∥ fn(x) − fm(x)∥∞ ≤ ∥En∥∞ + ∥En−1∥∞ + · · · + ∥Em−1∥∞ → 0, n > m, (2.10)

which implies that there is only one solution of (1.1). □

3. Shifted Jacobi polynomials

Denote S (a,b)
α,l (x), for l = 0, 1, · · · , by the shifted Jacobi polynomials defined in Λx = [0, α], then it

can be given analytically by

S (a,b)
α,l (x) =

l∑
i=0

El,i xi =

l∑
i=0

(−1)l−iΓ(l + b + 1)Γ(l + i + a + b + 1)
Γ(i + b + 1)Γ(l + a + b + 1)l!(l − i)!αi xi,

and satisfy
dq

dxq S (a,b)
α,l (0) = (−1)l−q Γ(l + b + 1)(l + a + b + 1)

Γ(l − q + 1)Γ(q + b + 1)αq .

Shifted Jacobi polynomials satisfy the orthogonality relation∫ α

0
S (a,b)
α,l (x)S (a,b)

α,m (x)w(a,b)
α dx = h(a,b)

α,l δlm,

where w(a,b)
α = xb(α − x)a , h(a,b)

α,l =
αa+b+1Γ(l + a + 1)Γ(l + b + 1)

(2l + a + b + 1)l!Γ(l + a + b + 1)
and δlm is the well-known

Kronecker delta function.
Any function f ∈ L2(Λx) can be expanded based on shifted Jacobi polynomials by:

f (x) =
∞∑

l=0

flS
(a,b)
α,l (x); fl =

1

h(a,b)
α,l

∫ α

0
f (x)S (a,b)

α,l (x)w(a,b)
α dx. (3.1)
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The shifted Jacobi-Gauss quadrature rule satisfies∫ α

0
f (x)w(a,b)

α (x) dx =
α

2

L∑
j=0

w(a,b)
L, j f

(
α

2

(
1 + x(a,b)

L, j

))
, (3.2)

where
{
x(a,b)
L, j

}L
j=0

are the zeros of S (a,b)
L+1(x), and

{
w(a,b)
L, j

}L
j=0

are their corresponding weights.
If we denote Pα

L
by the orthogonal projection:

PαL : L2(Λ)→ SαL; SαL = Span{S (a,b)
α,l (x) : 0 ≤ l ≤ L},

then, we have

PαL f = fL(x) =
L∑

l=0

flS
(a,b)
α,l (x) = F T

LS
α
L(x), (3.3)

where
FL = [ fl, 0 ≤ l ≤ L]T , S

α
L(x) = [S a,b

α,l (x), 0 ≤ l ≤ L]T . (3.4)

Similarly, for f ∈ L2(Λx × Λy), Λx = [0, α], Λy = [0, β], we have

fL,M(x, y) =
L∑

l=0

M∑
m=0

fl,mS a,b
α,l (x)S a,b

β,m(y) = F T
L,MS

α,β

L,M
(x, y), (3.5)

where F T
L,M

and Sα,β
L,M

(x, y) are defined by:

F T
L,M = [ fl,m, 0 ≤ l ≤ L, 0 ≤ m ≤ M]T ,

S
α,β

L,M
(x, y) = [S a,b

α,l (x)S a,b
β,m(y), 0 ≤ l ≤ L, 0 ≤ m ≤ M]T ,

(3.6)

and

fl,m =
1

h(a,b)
α,l h(a,b)

β,m

∫ α

0

∫ β

0
f (x, y)S a,b

α,l (x)S a,b
β,m(y)w(a,b)

α (x)w(a,b)
β (y)dxdy. (3.7)

4. Multi-pantograph Volterra integro-differential equations

In this section, we apply the Jacobi spectral collocation method to solve the following high-order
multi-pantograph Volterra integro-differential equation (1.1).

The Jacobi spectral collocation approach for (1.1) is to find fL ∈ SαL, such that
s∑

i=0

f (i)
L

(x) = gL(x) +
s∑

i=0

µi(x) f (i)
L

(cix) +
s∑

i=0

∫ di x

0
νi(x) f (i)

L
(w)dw +

∫ x

0
ξ(x) fL(w)dw. (4.1)

Denote fL(x) and gL(x) by
fL(x) = F T

LS
α
L(x), (4.2)

gL(x) = GT
LS
α
L(x), (4.3)

with

GL =
[
g0, g1, · · · , gL

]T ; gi =
αa+b+1

2a+b+1ha,b
α,i

L∑
i=0

w(a,b)
L, j S (a,b)

α,i

(
α

2

(
x(a,b)
L, j + 1

))
g
(
α

2

(
x(a,b)
L, j + 1

))
.

The following two theorems will be of great use later.
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Theorem 3. [26] The ith derivative of the vector Sα
L

(x) is given by:

di

dxiS
α
L(x) = D(i)

S
α
L(x); D(i) = (D(1))i, (4.4)

with

D(1) = (di, j)0≤i, j≤L; di, j =

C1(i, j), j < i,

0, Otherwise,

and

C1(i, j) =
αa+b(i + a + b + 1)(i + a + b + 2) j( j + a + 2)i− j−1Γ( j + a + b + 1)

(i − j − 1)!Γ(2 j + a + b + 1)

× 3F2


−i + 1 + j, i + j + a + b + 2, j + a + 1

; 1
j + a + 2, 2 j + a + b + 2

 .
Theorem 4. For 0 ≤ c ≤ 1, the pantograph operational matrix Pc is given by

S
α
L(cx) = PcS

α
L(x), (4.5)

where

Pc = (pc
l, j)0≤l, j≤L; pc

l, j =

l∑
i=0

El,iciqi, j.

Proof. We start by expressing S a,b
α,l (cx) by:

S (a,b)
α,l (cx) =

l∑
i=0

El,i cixi. (4.6)

Expanding xi in terms of S a,b
α, j(x), j = 0, 1, · · · ,L, by

xi =

L∑
j=0

qi, jS a,b
α, j(x); qi, j =

1

h(a,b)
α, j

∫ α

0
xiS a,b
α, j(x)wa,b

α (x)dx. (4.7)

A combination of (4.6) and (4.7) then yields

S (a,b)
α,l (cx) =

l∑
i=0

El,ici

 L∑
j=0

qi, jS a,b
α, j(x)

 = L∑
j=0

S a,b
α, j

 l∑
i=0

El,iciqi, j


=

 l∑
i=0

El,iciqi,0,

l∑
i=0

El,iciqi,1, · · · ,

l∑
i=0

El,iciqi,L

T

S
α
L(x),

(4.8)

which completes the proof. □
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Application of (4.2) with Theorems 3 and 4, we have

di fL(x)
dxi = F T

L

di

dxi

(
S
α
L(x)

)
= F T

LD(i)
S
α
L(x), (4.9)

di fL(cx)
dxi = F T

L

di

dxi

(
S
α
L(cx)

)
= F T

LD(i)PcS
α
L(x). (4.10)

Substitution from (4.2), (4.3), (4.9), and (4.10) into (4.1); one gets
s∑

i=0

F T
LD(i)

S
α
L(x) =

s∑
i=0

µi(x)F T
LD(i)PciS

α
L(x) +

∫ x

0
ξ(x)F T

LS
α
L(w)dw

+

s∑
i=0

∫ di x

0
νi(x)F T

LD(i)
S
α
L(w)dw + GT

LS
α
L(x).

(4.11)

Thanks to (4.11), the residual RL(x) can be given by

RL(x) =
s∑

i=0

F T
LD(i)

S
α
L(x) −

s∑
i=0

µi(x)F T
LD(i)PciS

α
L(x) −

s∑
i=0

∫ di x

0
νi(x)F T

LD(i)
S
α
L(w)dw

−

∫ x

0
ξ(x)F T

LS
α
L(w)dw − GT

LS
α
L(x).

(4.12)

Finally, the spectral solution of (1.1) is transformed to a problem of solving the following algebraic
equations system:

RL(
α

2
(x(a+b)
L,i + 1)) = 0, 0 ≤ i ≤ L − s,

F T D(i)
S
α
L(0) = θi, i = 0, 1, · · · , s − 1.

(4.13)

5. System of multi-pantograph Volterra integro-differential equations

Here, the operational approach discussed in the previous section is carried out to get a numerical
solution for the system of high-order multi-pantograph Volterra integro-differential equations:

r∑
k=1

γl,k(x) f (s)
k (x) =gl(x) +

r∑
k=1

s∑
i=0

µl,k,i(x) f (i)
k (ci,lx) +

r∑
k=1

s∑
i=0

∫ di,l x

0
νl,k,i(x) f (i)

k (w)dw

+

∫ x

0
ξl(x) fl(w)dw, x,w ∈ [0, α], 1 ≤ l ≤ r,

(5.1)

with
f (i)
l (0) = θl,i, i = 0, 1, · · · , s − 1, 1 ≤ l ≤ r, (5.2)

where r, s, 0 ≤ ci, di ≤ 1 (0 ≤ i ≤ s) are real numbers and gl(x), γk,i(x), µk,i(x), νk,i(x), ξl(x) (0 ≤ k ≤
r, 1 ≤ i ≤ s) are known functions defined in 0 ≤ x ≤ α.

First, the system (5.1) may be written in the following way:
A

dsF(x)
dxs = G(x) +

∑s
i=0 Bi

diF(ci,lx)
dxi +

∑s
i=0

∫ di,l x

0
Ci

diF(w)
dwi dw +

∫ x

0
E F(w)dw,

diF(0)
dxi = Θi, 0 ≤ i ≤ s − 1,

(5.3)
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where

F(x) = [ f1(x), f2(x), · · · , fr(x)]T ,

G(x) = [g1(x), g2(x), · · · , gr(x)]T ,

Θi = [θ1,i, θ2,i, · · · , θr,i]T ,

A = (γl,k)1≤l≤r,1≤k≤r, Bi = (µl,k,i)1≤l≤r,1≤k≤r, Ci = (νl,k,i)1≤l≤r,1≤k≤r,

E = (el,k)1≤l≤r,1≤k≤r, el,l = ξl, el,k = 0 if l , k.

Now, we aim to find the vector F(x) such that:

A
dsFL(x)

dxs = GL(x) +
s∑

i=0

Bi
diFL(ci,lx)

dxi +

s∑
i=0

∫ di,l x

0
Ci

diFL(w)
dwi dw +

∫ x

0
E FL(w)dw, (5.4)

in this regard, we suppose

FL(x) = FL,lSαL(x); FL,l = (fl, j)1≤l≤r,0≤ j≤L,

GL(x) = GL,lSαL(x); GL,l = (gl, j)1≤l≤r,0≤ j≤L,
(5.5)

where fl, j (1 ≤ l ≤ r, 0 ≤ j ≤ L) are the unknowns need to be determined later, while gl, j (1 ≤ l ≤ r, 0 ≤
j ≤ L) can be given using the shifted Jacobi Gauss quadrature rule as follows:

g j,l =
αa+b+1

2a+b+1ha,b
α,i

L∑
i=0

w(a+b)
L,i S (a,b)

α,i

(
α

2

(
x(a+b)
L,i + 1

))
gl

(
α

2

(
x(a+b)
L,i + 1

))
, 1 ≤ l ≤ r.

Then one gets from (5.5) that

diFL(x)
dxi = FL,l

di

dxi

(
S
α
L(x)

)
= FL,lD(i)

S
α
L(x), 1 ≤ l ≤ r, 0 ≤ i ≤ s, (5.6)

diFL(cx)
dxi = FL,l

di

dxi

(
S
α
L(cx)

)
= FL,lPcD(i)

S
α
L(x), 1 ≤ l ≤ r, 0 ≤ i ≤ s. (5.7)

A combination of (5.5)–(5.7), Eq (5.4) can be approximated as:

AFL,lD(s)
S
α
L(x) =

s∑
i=0

BiFL,lPci,lD
(i)
S
α
L(x) +

s∑
i=0

∫ di,l x

0
CiFL,lD(i)

S
α
L(w)dw

+

∫ x

0
E FL,lSαL(w)dw + GL,lSαL(x).

(5.8)

Application of the spectral collocation method leads to the following system of r(L + 1) algebraic
equations:

AFL,lD(s)
S
α
L

(
α

2

(
x(a+b)
L,i + 1

))
= GL,lS

α
L

(
α

2

(
x(a+b)
L,i + 1

))
+

s∑
i=0

∫ di,l
α
2

(
x(a+b)
L,i +1

)
0

CiFL,lD(i)
S
α
L(w)dw

+

s∑
i=0

BiFL,lPci,lD
(i)
S
α
L

(
α

2

(
x(a+b)
L,i + 1

))
+

∫ α
2

(
x(a+b)
L,i +1

)
0

E FL,lSαL(w)dw, 1 ≤ l ≤ r,

FL,lD(i)
S
α
L(0) = Θi, 0 ≤ i ≤ s − 1, 1 ≤ l ≤ r.
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6. Two-dimensional case

We utilize the Jacobi spectral collocation technique to solve the two-dimensional high-order multi-
pantograph Volterra integro-differential equation (1.2).

As a spectral collocation scheme, we have to find fL,M ∈ SαL × S
β

M
, such that

∂s+q fL,M(x, y)
∂xs∂yq = gL,M(x, y) +

s∑
i=0

q∑
j=0

µi, j(x, y)
∂i+ j fL,M(cix, d jy)

∂xi∂y j

+

∫ y

0

∫ x

0
ν(t, u) fL,M(t, u)dtdu +

s∑
i=0

q∑
j=0

∫ ci x

0

∫ d jy

0
ξi, j(t, u)

∂i+ j fL,M(t, u)
∂ti∂u j dtdu.

(6.1)

In this regard, we suppose

fL,M(x, y) = F T
L,MS

α,β

L,M
(x, y),

gL,M(x, y) = GT
L,MS

α,β

L,M
(x, y),

(6.2)

where FL,M is an unknown vector, while

GL,M = [gl,m, 0 ≤ l ≤ L, 0 ≤ m ≤ M]T ,

gl,m =
αa+b+1βa+b+1

22a+2b+2ha,b
α,l h

a,b
β,m

L∑
l=0

M∑
m=0

w(a+b)
L,l w(a+b)

M,m S (a,b)
α,l

(
α

2

(
x(a+b)
L,l + 1

))
S (a,b)
β,m

(
β

2

(
x(a+b)
M,m + 1

))
× g

(
α

2

(
x(a+b)
L,l + 1

)
,
α

2

(
x(a+b)
M,m + 1

))
.

Definition 1. [27] The kronecker product of any two l × m and n × o dimensional matrices P and Q,
respectively, is denoted by the ln × mo matrix P ⊗ Q and is given by:

P ⊗ Q =


p11Q p12Q · · · p1mQ
p21Q p22Q · · · p2mQ
...

...
. . .

...

pl1Q pl2Q · · · plmQ

 .
Theorem 5. Assume IL and IM are the identity matrices of orders L + 1 andM + 1, respectively;
then

∂i

∂xiS
α,β

L,M
(x, y) = D(i)

x S
α,β

L,M
(x, y), (6.3)

∂ j

∂y jS
α,β

L,M
(x, y) = D( j)

y S
α,β

L,M
(x, y), (6.4)

∂i

∂xiS
α,β

L,M
(cx, y) = D(i)

x Px,cS
α,β

L,M
(x, y), (6.5)

∂ j

∂y jS
α,β

L,M
(x, dy) = D( j)

y Py,dS
α,β

L,M
(x, y), (6.6)

whereD(i)
x = D(i) ⊗ IL, D

( j)
y = IM ⊗ D( j), Px,c = Pc ⊗ IM, and Py,d = IL ⊗ Pd.
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In virtue of (6.2)–(6.6), we have

∂i

∂xi fL,M(x, y) = F T
L,MD

(i)
x S

α,β

L,M
(x, y),

∂ j

∂y j fL,M(x, y) = F T
L,MD

( j)
y S

α,β

L,M
(x, y),

∂i+ j

∂xi∂y j fL,M(x, y) = F T
L,MD

(i)
x D

( j)
y S

α,β

L,M
(x, y),

fL,M(cx, y) = F T
L,MPx,cS

α,β

L,M
(x, y),

fL,M(x, dy) = F T
L,MPy,dS

α,β

L,M
(x, y),

fL,M(cx, dy) = F T
L,MPx,cPy,dS

α,β

L,M
(x, y).

(6.7)

Then, the residual of (6.1) can be given by

RL,M(x, y) = F T
L,MD

(s)
x D

(q)
y S

α,β

L,M
(x, y) − GT

L,MS
α,β

L,M
(x, y)

−

s∑
i=0

q∑
j=0

µi, j(x, y)F T
L,MD

(i)
x D

( j)
y Px,cPy,dS

α,β

L,M
(x, y) −

∫ y

0

∫ x

0
ν(x, y)F T

L,MS
α,β

L,M
(t, u)dtdu

−

s∑
i=0

q∑
j=0

∫ ci x

0

∫ d jy

0
ξi, j(x, y)F T

L,MD
(i)
t D

( j)
u S

α,β

L,M
(t, u)dtdu.

Finally, we generate a system of (L + 1)(M + 1) algebraic equations as follows:

RL,M

(
α

2

(
x(a+b)
L,i + 1

)
,
β

2

(
x(a+b)
M, j + 1

))
= 0, 0 ≤ i ≤ L − s, 0 ≤ j ≤ M− q,

F T
L,MD

(i)
x S

α,β

L,M

(
0,
β

2

(
x(a+b)
M, j + 1

))
= θi

(
β

2

(
x(a+b)
M, j + 1

))
, 0 ≤ i ≤ s − 1, 0 ≤ j ≤ M,

F T
L,MD

( j)
y S

α,β

L,M

(
α

2

(
x(a+b)
L,i + 1

)
, 0

)
= ϑ j

(
α

2

(
x(a+b)
L,i + 1

))
, 0 ≤ j ≤ q − 1, 0 ≤ i ≤ L.

7. Test problems

The current section provides some test problems to ensure the validity of the numerical approaches
presented in Sections 3–5. The programs used in this paper are performed using the PC machine,
with CPU Intel(R) Core(TM) i3-2350M 2 Duo CPU 2.30 GHz and 6.00 GB of RAM. We also
used the arithmetic symbolic program known as (Mathematica 12) to perform intermediate arithmetic
operations and arithmetic tables, as well as illustrations in the paper as a whole.

7.1. Stability test

First, we consider the pantograph Volterra integro-differential equation [28, 29]:

f (2)(x)+ f
(
1
2

x
)
−

3
4

f (x) −
∫ x

0
t f (t)dt = −

11
4

sin(x) + x cos(x) + sin
( x
2

)
,

f (0) = 0, f ′(0) = 1, 0 ≤ x ≤ 1,
(7.1)
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with an exact solution f (x) = sin(x).
To evaluate the stability of our proposed scheme, we introduce controlled perturbations into both the

source term and the initial condition of Eq (7.1). This allows us to analyze how sensitive the method is
to variations in input parameters. Consider the perturbed version of (7.1):

g(2)(x)+u
(
1
2

x
)
−

3
4

g(x) −
∫ x

0
tg(t)dt = −

11
4

sin(x) + x cos(x) + sin
( x
2

)
+ ϵs,

g(0) = 0, g′(0) = 1,
(7.2)

h(2)(x) + u
(
1
2

x
)
−

3
4

h(x) −
∫ x

0
th(t)dt = −

11
4

sin(x) + x cos(x) + sin
( x
2

)
,

h(0) = ϵi, h′(0) = 1 + ϵi,
(7.3)

where ϵs and ϵi are perturbations to the source term and the initial conditions, respectively. The exact
solution remains g(x) = h(x) = sin(x).

The numerical stability of the proposed scheme is analyzed by introducing perturbations to the
source term (ϵs) in (7.2) and initial conditions (ϵi) in (7.3). Tables 1 and 2 show that both perturbations
exhibit linear error propagation:

• For ϵs, reducing the perturbation magnitude by a factor of 10 (e.g., 0.1 → 0.01 → 0.001)
decreases the maximum absolute errors (MAEs), | fL(x) − gL(x)|, by the same factor.
• Similarly, for ϵi, the MAEs, | fL(x) − hL(x)|, scale linearly with the perturbation size.

This linear behavior indicates the method’s robustness against small perturbations in the source term
or the initial condition.

Table 1. MAEs for the perturbed Problem (7.2) with source term perturbations.

L ϵs = 0.1 ϵs = 0.01 ϵs = 0.001
6 0.05255861 0.00525315 0.00052261
8 0.05256080 0.00525608 0.00052561

10 0.05256079 0.00525607 0.00052560

Table 2. MAEs for the perturbed Problem (7.3) with initial condition perturbations.

L ϵi = 0.1 ϵi = 0.01 ϵi = 0.001
6 0.19715309 0.01971260 0.00196855
8 0.19715418 0.01971542 0.00197154

10 0.19715416 0.01971541 0.00197154

Previous studies by Yüzbasi [28] (Laguerre operational matrix, LOM) and Gülsu & Sezer [29]
(Taylor collocation method, TCM) provided approximate solutions. Table 3 compares the numerical
results of the absolute error function of f (x) using the numerical method presented in Section 3 against
those given using the LOM [28] and TCM [29]. Figure 1 plots the absolute errors of f (x) with L = 10
and the logarithmic function of MAEs for f (x) at (a, b) = (0, 0).
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Table 3. Absolute errors of f (x) with (a, b) = (1, 0) for Problem (7.1).

LOM [28] TCM [29] Our scheme
x N = 7 N = 10 N = 7 N = 10 L = 7 L = 10

0.0 0.00 0.00 0.00 0.00 5.55 × 10−17 5.55 × 10−17

0.2 2.34 × 10−9 3.04 × 10−13 2.35 × 10−7 7.00 × 10−10 4.05 × 10−10 9.99 × 10−15

0.4 5.13 × 10−9 6.63 × 10−13 5.27 × 10−7 1.50 × 10−9 6.29 × 10−10 1.90 × 10−14

0.6 8.33 × 10−9 1.03 × 10−12 9.32 × 10−7 2.40 × 10−9 6.07 × 10−10 7.66 × 10−15

0.8 1.15 × 10−8 1.43 × 10−12 5.60 × 10−7 3.00 × 10−9 5.86 × 10−10 2.14 × 10−14

1.0 3.64 × 10−9 3.48 × 10−12 3.37 × 10−5 1.06 × 10−7 9.27 × 10−12 3.33 × 10−16
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-15

-10

-5

0

ℒ

L
o
g
M
A
E

0.2 0.4 0.6 0.8 1.0
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-14

2.×10
-14
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-14

3.×10
-14

3.5×10
-14

error

Figure 1. The logarithmic function of MAEs and absolute errors of f (x) with (a, b) = (0, 0)
and L = 10 for Problem (7.1).

7.2. Convergence test

To rigorously evaluate the convergence properties of the proposed method, we analyze the Volterra
integro-differential equation:

f (1)(x) − 3 f (x) − f
(
1
2

x
)
−

∫ x

0
2x f (t)dt + 8

∫ 1
2 x

0
ex cos(t) f (t)dt = g(x), 0 ≤ x ≤ 1, (7.4)

with f (0) = 0 and exact solution f (x) = sin(x)e2x−1. This benchmark problem, previously studied
in [15, 17], allows direct comparison of convergence rates.

Table 4 demonstrates the exponential convergence of our method compared to those achieved using
the BMLW presented in [15], while Table 5 compares the absolute errors of f (x) with those given using
the BT and LIT methods introduced in [17]. Figure 2 plots the absolute errors of f (x) with L = 16 and
the logarithmic function of MAEs for f (x) at (a, b) = (1, 1).

Table 4. MAEs of f (x) for Problem (7.4).

l = 3 l = 4 l = 5 l = 6
BMLW (M = 3) [15] 6.563 × 10−4 8.508 × 10−5 1.080 × 10−5 1.359 × 10−6

L = 6 L = 8 L = 10 L = 12
Our method (a, b) = (2, 2) 4.507 × 10−4 4.831 × 10−6 1.137 × 10−8 9.835 × 10−12
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Table 5. Absolute errors of f (x) at x = 0.5 and 1 with (a, b) = (2, 0) for Problem (7.4).

BT [17] LIT [17] Our method
L x = 0.5 x = 1 x = 0.5 x = 1 x = 0.5 x = 1
6 2.75 × 10−2 3.17 × 10−1 1.85 × 10−5 4.20 × 10−3 2.47 × 10−6 6.79 × 10−5

8 1.99 × 10−2 2.46 × 10−1 2.00 × 10−7 2.30 × 104 2.08 × 10−8 7.09 × 10−7

10 1.56 × 10−2 2.06 × 10−1 2.37 × 10−9 6.68 × 10−6 3.77 × 10−11 1.64 × 10−9

12 1.29 × 10−2 1.80 × 10−1 5.66 × 10−11 7.75 × 10−7 2.47 × 10−14 1.82 × 10−12
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-15
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Figure 2. The logarithmic function of MAEs and absolute errors of f (x) with (a, b) = (1, 1)
and L = 16 for Problem (7.4).

7.3. Irregular solution test

To test the validity of the numerical approach presented in Section 3 for pantograph Volterra integro-
differential equations with irregular solutions, we consider the following problem:

d2 f (x)
dx2 +

d f (x)
dx

= sin(x) f (x) − f
(
1
3

x
)
+

∫ 1
2 x

0
t f (t) dt −

∫ x

0

√
t f (t) dt + g(x), 0 ≤ x ≤ 1, (7.5)

where f (0) = d f
dx (0) = 0 and g(x) is chosen such that the exact solution is f (x) = x

7
2 .

To solve this problem, we apply the numerical scheme introduced in Section 3 with various choices
of L. Table 6 displays the MAEs of fL(x) at (a, b) = (0, 0) with L = 4, 8, 12, 16, and 20.

Table 6. MAEs of fL(x) for Problem (7.5).

L 4 8 12 16 20
MAE 1.1425 × 10−3 7.3101 × 10−6 1.0095 × 10−6 2.7518 × 10−7 9.8240 × 10−8
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7.4. System of equations

Consider the system of pantograph equations:



f (1)
1 (x) = sin(x) f1(x) − f2(x) + 2 f1(cx) + cos(x) f2(cx) +

∫ x

0
f1(t) dt −

∫ x

0
f2(t) dt

+

∫ cx

0
x f1(t) dt +

∫ cx

0
f2(t) dt + g1(x),

f (1)
2 (x) = x f1(x) − 4 f2(x) + f1(cx) + ex f2(cx) +

∫ x

0
x2 f1(t) dt −

∫ x

0
sin(x) f2(t) dt

+

∫ cx

0
3 f1(t) dt +

∫ cx

0
f2(t) dt + g2(x),

f1(0) = 1, f2(0) = 0, 0 ≤ x ≤ 1.

(7.6)

The exact solutions are given by f1(x) = ex and f2(x) = x3.
In [30], shifted Chebyshev polynomials were used as basis functions for the collocation spectral

approach (CCS) to solve (7.6) with c = 0.8. Table 7 compares the MAEs of our method (using the
numerical approach from Section 4 with (a, b) = (0, 0) against the CCS results. Figure 3 shows the
absolute error distributions for both components with L = 12, along with the logarithmic MAE plots
for (a, b) = (1, 0) with c = 0.1.
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Figure 3. The logarithmic functions of MAEs and absolute errors of f1(x) and f2(x) with
(a, b) = (1, 0) and L = 12 for Problem (7.6).
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Table 7. MAEs of f1(x) and f2(x) for Problem (7.6).

CCS [30] Our scheme
L f1(x) f2(x) f1(x) f2(x)
2 6.0777 × 10−2 1.1843 × 10−1 6.5075 × 10−2 4.8397 × 10−2

4 9.2227 × 10−4 8.2963 × 10−4 3.9735 × 10−5 6.6931 × 10−5

6 7.3973 × 10−7 1.8431 × 10−6 5.4490 × 10−8 2.8398 × 10−9

8 9.5045 × 10−10 6.6164 × 10−10 4.7068 × 10−11 1.9821 × 10−12

7.5. Two-dimensional case

Consider the two-dimensional pantograph equation:

∂3 f (x, y)
∂x2∂y

+ f (x, y) − f
(
x, 1

3y
)
=

∫ y

0

∫ x

0
f (s1, s2) ds1ds2 +

∫ y

0

∫ 1
2 x

0
f (s1, s2) ds1ds2

−

∫ 1
2 y

0

∫ 1
2 x

0

∂2 f (s1, s2)
∂x2 ds1ds2 + g(x, y),

(7.7)

defined on the domain 0 ≤ x, y ≤ 1, with exact solution f (x, y) = (x + 1) sin(y).

To validate the numerical scheme from Section 5, Table 8 presents the absolute errors of f (x, y) for
different values of L andM with (a, b) = (2, 2). Figure 4 shows the error distribution for L =M = 10
at (a, b) = (3, 3), while Figure 5 displays corresponding contour plots for various values of L andM.

Table 8. Absolute errors of f (x, y) with (a, b) = (2, 2) for Problem (7.7).

(x1, x2) (L,M) = (2, 2) (L,M) = (4, 4) (L,M) = (6, 6) (L,M) = (8, 8) (L,M) = (10, 10)

(0.1,0.1) 4.7780 × 10−3 7.5011 × 10−6 8.7689 × 10−8 1.8082 × 10−10 1.8707 × 10−13

(0.2,0.2) 1.0733 × 10−3 4.6338 × 10−5 1.7930 × 10−7 3.0610 × 10−10 2.7519 × 10−13

(0.3,0.3) 4.8745 × 10−3 6.9301 × 10−5 2.4872 × 10−7 3.6300 × 10−10 2.8521 × 10−13

(0.4,0.4) 7.1270 × 10−3 9.2293 × 10−5 2.8985 × 10−7 3.7009 × 10−10 3.0797 × 10−13

(0.5,0.5) 8.6790 × 10−3 1.1553 × 10−4 2.9407 × 10−7 3.9560 × 10−10 3.2218 × 10−13

(0.6,0.6) 1.0695 × 10−2 1.2945 × 10−4 2.9661 × 10−7 4.1656 × 10−10 3.3228 × 10−13

(0.7,0.7) 1.4623 × 10−2 1.2567 × 10−4 3.2109 × 10−7 4.1231 × 10−10 3.4572 × 10−13

(0.8,0.8) 2.2154 × 10−2 1.1240 × 10−4 3.2223 × 10−7 4.3780 × 10−10 3.4061 × 10−13

(0.9,0.9) 3.5178 × 10−2 1.3403 × 10−4 2.8893 × 10−7 4.0347 × 10−10 3.5038 × 10−13
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Figure 4. Absolute error function of f (x, y) with (a, b) = (3, 3) and L = M = 10 for
Problem (7.7).
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Figure 5. The contour plot of absolute errors of f (x, y) with (a, b) = (3, 3) for Problem (7.7).
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8. Conclusions

This paper dealt with a problem of great importance in physics and engineering, namely, high-order
multi-pantograph Volterra integro-differential equations with variable coefficients. The pantograph
and integral terms enable the equation to study complex systems with memory effects and scaling. We
investigated the existence and uniqueness, for the first time, of the solution to the high-order multi-
pantograph Volterra integro-differential equation. We introduced the pantograph operational matrix,
for the first time based on shifted Jacobi polynomials, and employed it with the operational matrix of
differentiation to convert the studied problem into a system of algebraic equations with the aid of the
spectral collocation method. The studied numerical approach is also applied for the system of high-
order multi-pantograph Volterra integro-differential equations and for high-order two-dimensional
multi-pantograph Volterra integro-differential equations with variable coefficients. Comparing the
numerical results of five test problems with the exact solution and with other spectral methods applied
to the same problems confirms the superiority of the new one. The studied numerical approach is shown
to be more accurate than the Laguerre operational matrix, Taylor collocation, Chebyshev collocation
spectral, Bernoulli müntz–Legendre wavelet, Lagrange interpolation, and Bernstein tau methods. At
the end, we note that the presented approach can be extended to more complex integro-differential
equations. This will be the subject of our future research.
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