Research article Special Issues

Physical vs mathematical origin of the extended KdV and mKdV equations

  • Received: 13 February 2025 Revised: 02 April 2025 Accepted: 16 April 2025 Published: 23 April 2025
  • MSC : 35B20, 35B40, 35C08, 35Q51, 35Q53, 35Q55, 76X05

  • The higher-order Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are derived from a physical model describing a three-component plasma composed of cold fluid ions and two species of Boltzmann electrons at different temperatures. While the higher-order KdV equation is well established, the corresponding mKdV equation is typically derived using the system's integrability properties. In this work, we present the extended mKdV equation, derived directly from the physical system, offering a fundamentally different form from its integrable counterpart. We explore the connections between the two equations via Miura transformations and analyze their solutions within the framework of asymptotic integrability.

    Citation: Saleh Baqer, Theodoros P. Horikis, Dimitrios J. Frantzeskakis. Physical vs mathematical origin of the extended KdV and mKdV equations[J]. AIMS Mathematics, 2025, 10(4): 9295-9309. doi: 10.3934/math.2025427

    Related Papers:

  • The higher-order Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are derived from a physical model describing a three-component plasma composed of cold fluid ions and two species of Boltzmann electrons at different temperatures. While the higher-order KdV equation is well established, the corresponding mKdV equation is typically derived using the system's integrability properties. In this work, we present the extended mKdV equation, derived directly from the physical system, offering a fundamentally different form from its integrable counterpart. We explore the connections between the two equations via Miura transformations and analyze their solutions within the framework of asymptotic integrability.



    加载中


    [1] M. J. Ablowitz, Nonlinear dispersive waves: asymptotic analysis and solitons, Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511998324
    [2] G. B. Whitham, Linear and nonlinear waves, New York: J. Wiley and Sons, 1974.
    [3] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and nonlinear wave equations, London: Academic Press, 1982.
    [4] M. Remoissenet, Waves called solitons: concepts and experiments, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-03790-4
    [5] R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations, Ⅱ: existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204–1209.
    [6] M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8
    [7] F. Verheest, C. P. Olivier, W. A. Hereman, Modified korteweg-de vries solitons at supercritical densities in two-electron temperature plasmas, J. Plasma Phys., 82 (2016), 905820208. https://doi.org/10.1017/S0022377816000349 doi: 10.1017/S0022377816000349
    [8] F. Verheest, W. A. Hereman. Collisions of acoustic solitons and their electric fields in plasmas at critical compositions, J. Plasma Phys., 85 (2019), 905850106. https://doi.org/10.1017/S0022377818001368 doi: 10.1017/S0022377818001368
    [9] H. Leblond, D. Mihalache, Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying envelope-approximation models, Phys. Rev. A, 79 (2009), 063835. https://doi.org/10.1103/PhysRevA.79.063835 doi: 10.1103/PhysRevA.79.063835
    [10] H. Leblond, D. Mihalache, Optical solitons in the fewcycle regime: recent theoretical results, Rom. Rep. Phys., 63 (2011), 1254–1266.
    [11] Z. P. Li, Y. C. Liu, Analysis of stability and density waves of traffic flow model in an its environment, Eur. Phys. J. B, 53 (2006), 367–374. https://doi.org/10.1140/epjb/e2006-00382-7 doi: 10.1140/epjb/e2006-00382-7
    [12] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, Philadelphia: Society for Industrial and Applied Mathematics, 1981. https://doi.org/10.1137/1.9781611970883
    [13] R. M. Miura, Korteweg-de Vries equation and generalizations, Ⅰ: a remarkable explicit nonlinear transformation, J. Math. Phys., 9 (1968), 1202–1204. https://doi.org/10.1063/1.1664700 doi: 10.1063/1.1664700
    [14] M. Ito, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Jpn., 49 (1980), 771–778. https://doi.org/10.1143/JPSJ.49.771 doi: 10.1143/JPSJ.49.771
    [15] J. F. Gomes, G. S. Franca, A. H. Zimerma, Nonvanishing boundary condition for the mKdV hierarchy and the Gardner equation, J. Phys. A: Math. Theor., 45 (2012), 015207. https://doi.org/10.1088/1751-8113/45/1/015207 doi: 10.1088/1751-8113/45/1/015207
    [16] T. R. Marchant, N. F. Smyth, The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography, J. Fluid Mech., 221 (1990), 263–287. https://doi.org/10.1017/S0022112090003561 doi: 10.1017/S0022112090003561
    [17] Y. Matsuno, Bilinearization of nonlinear evolution equations, Ⅱ: higher-order modified Korteweg-de Vries equations, J. Phys. Soc. Jpn., 49 (1980), 787–794. https://doi.org/10.1143/JPSJ.49.787 doi: 10.1143/JPSJ.49.787
    [18] T. R. Marchant, Asymptotic solitons for a higher-order modified Korteweg-de Vries equation, Phys. Rev. E, 66 (2002), 046623. https://doi.org/10.1103/PhysRevE.66.046623 doi: 10.1103/PhysRevE.66.046623
    [19] T. P. Horikis, D. J. Frantzeskakis, N. F. Smyth, Extended shallow water wave equations, Wave Motion, 112 (2022), 102934. https://doi.org/10.1016/j.wavemoti.2022.102934 doi: 10.1016/j.wavemoti.2022.102934
    [20] C. G. Hooper, P. D. Ruiz, J. M. Huntley, K. R. Khusnutdinova, Undular bores generated by fracture, Phys. Rev. E, 104 (2021), 044207. https://doi.org/10.1103/PhysRevE.104.044207 doi: 10.1103/PhysRevE.104.044207
    [21] S. Baqer, D. J. Frantzeskakis, T. P. Horikis, C. Houdeville, T. R. Marchant, N. F. Smyth, Nematic dispersive shock waves from nonlocal to local, Appl. Sci., 11 (2021), 4736. https://doi.org/10.3390/app11114736 doi: 10.3390/app11114736
    [22] P. Chatterjee, B. Das, G. Mondal, S. V. Muniandy, C. S. Wong, Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma, Phys. Plasmas, 17 (2010), 103705. https://doi.org/10.1063/1.3491101 doi: 10.1063/1.3491101
    [23] Y. Kodama, T. Taniuti, Higher order approximation in the reductive perturbation method, Ⅰ: the weakly dispersive system, J. Phys. Soc. Jap., 45 (1978), 298–310. https://doi.org/10.1143/JPSJ.45.298 doi: 10.1143/JPSJ.45.298
    [24] G. A. El, M. A. Hoefer, Dispersive shock waves and modulation theory, Physica D, 333 (2016), 11–65. https://doi.org/10.1016/j.physd.2016.04.006 doi: 10.1016/j.physd.2016.04.006
    [25] K. R. Khusnutdinova, Y. A. Stepanyants, M. R. Tranter, Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves, Phys. Fluids, 30 (2018), 022104. https://doi.org/10.1063/1.5009965 doi: 10.1063/1.5009965
    [26] T. R. Marchant, N. F. Smyth, Soliton interaction for the extended Korteweg-de Vries equation, IMA J. Appl. Math., 56 (1996), 157–176. https://doi.org/10.1093/imamat/56.2.157 doi: 10.1093/imamat/56.2.157
    [27] T. R. Marchant, N. F. Smyth, An undular bore solution for the higher-order Korteweg-de Vries equation, J. Phys. A: Math. Gen., 39 (2006), L563. https://doi.org/10.1088/0305-4470/39/37/L02 doi: 10.1088/0305-4470/39/37/L02
    [28] S. Baqer, N. F. Smyth, Whitham shocks and resonant dispersive shock waves governed by the higher order korteweg-de vries equation, Proc. R. Soc. A, 479 (2023), 20220580. https://doi.org/10.1098/rspa.2022.0580 doi: 10.1098/rspa.2022.0580
    [29] T. P. Horikis, D. J. Frantzeskakis, T. R. Marchant, N. F. Smyth, Higher-dimensional extended shallow water equations and resonant soliton radiation, Phys. Rev. Fluids, 6 (2021), 104401. https://doi.org/10.1103/PhysRevFluids.6.104401 doi: 10.1103/PhysRevFluids.6.104401
    [30] A. S. Fokas, Q. M. Liu, Asymptotic integrability of water waves, Phys. Rev. Lett., 77 (1996), 2347. https://doi.org/10.1103/PhysRevLett.77.2347 doi: 10.1103/PhysRevLett.77.2347
    [31] A. S. Fokas, R. H. J. Grimshaw, D. E. Pelinovsky, On the asymptotic integrability of a higher‐order evolution equation describing internal waves in a deep fluid, J. Math. Phys., 37 (1996), 3415–3421. https://doi.org/10.1063/1.531572 doi: 10.1063/1.531572
    [32] Y. Kodama, On integrable systems with higher order corrections, Phys. Lett. A, 107 (1985), 245–249. https://doi.org/10.1016/0375-9601(85)90207-5 doi: 10.1016/0375-9601(85)90207-5
    [33] T. Kakutani, H. Ono, T. Taniuti, C. C. Wei, Reductive perturbation method in nonlinear wave propagation Ⅱ: application to hydromagnetic waves in cold plasma, J. Phys. Soc. Jpn., 24 (1968), 1159–1166. https://doi.org/10.1143/JPSJ.24.1159 doi: 10.1143/JPSJ.24.1159
    [34] R. A. Kraenkel, J. G. Pereira, M. A. Manna, The reductive perturbation method and the Korteweg-de Vries hierarchy, Acta Appl. Math., 39 (1995), 389–403. https://doi.org/10.1007/BF00994645 doi: 10.1007/BF00994645
    [35] R. Carretero-González, D. J. Frantzeskakis, P. G. Kevrekidis, Nonlinear waves in Hamiltonian systems: from one to many degrees of freedom, from discrete to continuum, Oxford: Oxford University Press, 2024. https://doi.org/10.1093/oso/9780192843234.001.0001
    [36] G. El, N. F. Smyth, Radiating dispersive shock waves in non-local optical media, Proc. Roy. Soc. Lond. A, 472 (2016), 20150633. https://doi.org/10.1098/rspa.2015.0633 doi: 10.1098/rspa.2015.0633
    [37] P. Sprenger, M. A. Hoefer, Shock waves in dispersive hydrodynamics with nonconvex dispersion, SIAM J. Appl. Math., 77 (2017), 26–50. https://doi.org/10.1137/16M1082196 doi: 10.1137/16M1082196
    [38] T. R. Marchant, Asymptotic solitons of the extended Korteweg-de Vries equation, Phys. Rev. E, 59 (1999), 3745. https://doi.org/10.1103/PhysRevE.59.3745 doi: 10.1103/PhysRevE.59.3745
    [39] M. J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19 (1978), 2180–2186. https://doi.org/10.1063/1.523550 doi: 10.1063/1.523550
    [40] H. Airault, H. P. McKean, J. Moser, Rational and elliptic solutions of the kdv equation and related many-body problems, Commun. Pur. Appl. Math., 30 (1977), 95–148. https://doi.org/10.1002/cpa.3160300106 doi: 10.1002/cpa.3160300106
    [41] M. Adler, J. Moser, On a class of polynomials associated with the Korteweg-de Vries equation, Commun. Math. Phys., 61 (1978), 1–30. https://doi.org/10.1007/BF01609465 doi: 10.1007/BF01609465
    [42] P. A. Clarkson, Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations, Comput. Methods Funct. Theory, 6 (2006), 329–401. https://doi.org/10.1007/BF03321618 doi: 10.1007/BF03321618
    [43] A. Ankiewicz, M. Bokaeeyan, N. Akhmediev, Shallow-water rogue waves: an approach based on complex solutions of the Korteweg-de Vries equation, Phys. Rev. E, 99 (2019), 050201. https://doi.org/10.1103/PhysRevE.99.050201 doi: 10.1103/PhysRevE.99.050201
    [44] D. Levi, Levi-Civita theory for irrotational water waves in a one-dimensional channel and the complex Korteweg-de Vries equation, Theor. Math. Phys., 99 (1994), 705–709. https://doi.org/10.1007/BF01017056 doi: 10.1007/BF01017056
    [45] D. Levi, M. Sanielevici, Irrotational water waves and the complex Korteweg-de Vries equation, Physica D, 98 (1996), 510–514. https://doi.org/10.1016/0167-2789(96)00109-1 doi: 10.1016/0167-2789(96)00109-1
    [46] Y. Kemataka, On rational similarity solutions of KdV and mKdV equations, Proc. Japan Acad. Ser. A Math. Sci., 59 (1983), 407–409. https://doi.org/10.3792/pjaa.59.407 doi: 10.3792/pjaa.59.407
    [47] Y. Sun, D. Zhang, Rational solutions with non-zero asymptotics of the modified Korteweg-de Vries equation, Commun. Theor. Phys., 57 (2012), 923–929. https://doi.org/10.1088/0253-6102/57/6/03 doi: 10.1088/0253-6102/57/6/03
    [48] A. Chowdury, A. Ankiewicz, N. Akhmediev, Periodic and rational solutions of modified Korteweg-de Vries equation, Eur. Phys. J. D, 70 (2016), 104. https://doi.org/10.1140/epjd/e2016-70033-9 doi: 10.1140/epjd/e2016-70033-9
    [49] J. Chen, D. E. Pelinovsky, Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background, J. Nonlinear Sci., 29 (2019), 2797–2843. https://doi.org/10.1007/s00332-019-09559-y doi: 10.1007/s00332-019-09559-y
    [50] A. V. Slunyaev, E. N. Pelinovsky, Role of multiple soliton interactions in the generation of rogue waves: the modified Korteweg-de Vries equation, Phys. Rev. Lett., 117 (2016), 214501. https://doi.org/10.1103/PhysRevLett.117.214501 doi: 10.1103/PhysRevLett.117.214501
    [51] A. Ankiewicz, N. Akhmediev, Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions, Nonlinear Dyn., 91 (2018), 1931–1938. https://doi.org/10.1007/s11071-017-3991-2 doi: 10.1007/s11071-017-3991-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1135) PDF downloads(48) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog