Research article

Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in $ H^1 $

  • Received: 13 January 2025 Revised: 17 February 2025 Accepted: 20 February 2025 Published: 23 April 2025
  • MSC : 35D30, 35A01

  • In this paper, we consider the incompressible Euler and Navier-Stokes equations in $ \mathbb{R}^2 $. It is well known that the Euler and Navier-Stokes equations are globally well-posed for initial data in $ H^s(s > 2) $. The main purpose of the present paper is to consider the case $ s = 1 $. We prove that, for initial data in $ H^1 $, the Euler and Navier-Stokes equations both have global solutions, and the solutions are uniformly bounded with respect to time. Moreover, the solution for the Navier-Stokes equations is unique. We also prove that, as the viscosity tends to zero, the solution of the Navier-Stokes equations converges to the one of the Euler equations.

    Citation: Shaoliang Yuan, Lin Cheng, Liangyong Lin. Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in $ H^1 $[J]. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428

    Related Papers:

  • In this paper, we consider the incompressible Euler and Navier-Stokes equations in $ \mathbb{R}^2 $. It is well known that the Euler and Navier-Stokes equations are globally well-posed for initial data in $ H^s(s > 2) $. The main purpose of the present paper is to consider the case $ s = 1 $. We prove that, for initial data in $ H^1 $, the Euler and Navier-Stokes equations both have global solutions, and the solutions are uniformly bounded with respect to time. Moreover, the solution for the Navier-Stokes equations is unique. We also prove that, as the viscosity tends to zero, the solution of the Navier-Stokes equations converges to the one of the Euler equations.



    加载中


    [1] J. Bourgain, D. Li, Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math., 201 (2007), 97–157. http://dx.doi.org/10.1007/s00222-014-0548-6 doi: 10.1007/s00222-014-0548-6
    [2] J. M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553–586. http://dx.doi.org/10.2307/2939269 doi: 10.2307/2939269
    [3] R. J. DiPerna, A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 40 (1987), 301–345. http://dx.doi.org/10.1002/cpa.3160400304 doi: 10.1002/cpa.3160400304
    [4] T. M. Elgindi, N. Masmoudi, $L^\infty$ ill-posedness for a class of equations arising in hydrodynamics, Arch. Rational. Mech. Anal., 235 (2020), 1979–2025. http://dx.doi.org/10.1007/s00205-019-01457-7 doi: 10.1007/s00205-019-01457-7
    [5] L. C. Evans, S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Amer. Math. Soc., 7 (1994), 199–219. http://dx.doi.org/10.1090/S0894-0347-1994-1220787-3 doi: 10.1090/S0894-0347-1994-1220787-3
    [6] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr., 4 (1950), 213–231. http://dx.doi.org/10.1002/mana.3210040121 doi: 10.1002/mana.3210040121
    [7] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [8] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, New York: Gordon and Breach, 1969. http://dx.doi.org/10.1137/1013008
    [9] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. http://dx.doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
    [10] J. L. Lions, Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Math. Acad. Sci. Paris, 248 (1959), 3519–3521.
    [11] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites Non-Linéaires, Dunod, 1969.
    [12] J. Liu, Z. Xin, Convergence of vortex methods for weak solutions to the 2-d Euler equations with vortex sheet data, Comm. Pure Appl. Math., 48 (1995), 611–628. http://dx.doi.org/10.1002/cpa.3160480603 doi: 10.1002/cpa.3160480603
    [13] A. J. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., 42 (1993), 921–939. http://dx.doi.org/10.1512/iumj.1993.42.42043 doi: 10.1512/iumj.1993.42.42043
    [14] A. J. Majda, A. L. Bertozzi, A. Ogawa, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55 (2001), 87–135. http://dx.doi.org/10.1115/1.1483363 doi: 10.1115/1.1483363
    [15] N. Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys., 270 (2007), 777–788. http://dx.doi.org/10.1007/s00220-006-0171-5 doi: 10.1007/s00220-006-0171-5
    [16] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. http://dx.doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
    [17] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér., 32 (1999), 769–812. http://dx.doi.org/10.1016/S0012-9593(00)87718-6 doi: 10.1016/S0012-9593(00)87718-6
    [18] V. I. Yudovich, Non-stationary flows of an ideal incompressible liquid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032–1066. http://dx.doi.org/10.1016/0041-5553(63)90247-7 doi: 10.1016/0041-5553(63)90247-7
    [19] V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27–38. http://dx.doi.org/10.4310/mrl.1995.v2.n1.a4 doi: 10.4310/mrl.1995.v2.n1.a4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1143) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog