In this paper, we consider the incompressible Euler and Navier-Stokes equations in $ \mathbb{R}^2 $. It is well known that the Euler and Navier-Stokes equations are globally well-posed for initial data in $ H^s(s > 2) $. The main purpose of the present paper is to consider the case $ s = 1 $. We prove that, for initial data in $ H^1 $, the Euler and Navier-Stokes equations both have global solutions, and the solutions are uniformly bounded with respect to time. Moreover, the solution for the Navier-Stokes equations is unique. We also prove that, as the viscosity tends to zero, the solution of the Navier-Stokes equations converges to the one of the Euler equations.
Citation: Shaoliang Yuan, Lin Cheng, Liangyong Lin. Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in $ H^1 $[J]. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428
In this paper, we consider the incompressible Euler and Navier-Stokes equations in $ \mathbb{R}^2 $. It is well known that the Euler and Navier-Stokes equations are globally well-posed for initial data in $ H^s(s > 2) $. The main purpose of the present paper is to consider the case $ s = 1 $. We prove that, for initial data in $ H^1 $, the Euler and Navier-Stokes equations both have global solutions, and the solutions are uniformly bounded with respect to time. Moreover, the solution for the Navier-Stokes equations is unique. We also prove that, as the viscosity tends to zero, the solution of the Navier-Stokes equations converges to the one of the Euler equations.
| [1] |
J. Bourgain, D. Li, Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math., 201 (2007), 97–157. http://dx.doi.org/10.1007/s00222-014-0548-6 doi: 10.1007/s00222-014-0548-6
|
| [2] |
J. M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553–586. http://dx.doi.org/10.2307/2939269 doi: 10.2307/2939269
|
| [3] |
R. J. DiPerna, A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 40 (1987), 301–345. http://dx.doi.org/10.1002/cpa.3160400304 doi: 10.1002/cpa.3160400304
|
| [4] |
T. M. Elgindi, N. Masmoudi, $L^\infty$ ill-posedness for a class of equations arising in hydrodynamics, Arch. Rational. Mech. Anal., 235 (2020), 1979–2025. http://dx.doi.org/10.1007/s00205-019-01457-7 doi: 10.1007/s00205-019-01457-7
|
| [5] |
L. C. Evans, S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Amer. Math. Soc., 7 (1994), 199–219. http://dx.doi.org/10.1090/S0894-0347-1994-1220787-3 doi: 10.1090/S0894-0347-1994-1220787-3
|
| [6] |
E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr., 4 (1950), 213–231. http://dx.doi.org/10.1002/mana.3210040121 doi: 10.1002/mana.3210040121
|
| [7] |
T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
|
| [8] | O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, New York: Gordon and Breach, 1969. http://dx.doi.org/10.1137/1013008 |
| [9] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. http://dx.doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
|
| [10] | J. L. Lions, Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Math. Acad. Sci. Paris, 248 (1959), 3519–3521. |
| [11] | J. L. Lions, Quelques méthodes de résolution des problèmes aux limites Non-Linéaires, Dunod, 1969. |
| [12] |
J. Liu, Z. Xin, Convergence of vortex methods for weak solutions to the 2-d Euler equations with vortex sheet data, Comm. Pure Appl. Math., 48 (1995), 611–628. http://dx.doi.org/10.1002/cpa.3160480603 doi: 10.1002/cpa.3160480603
|
| [13] |
A. J. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., 42 (1993), 921–939. http://dx.doi.org/10.1512/iumj.1993.42.42043 doi: 10.1512/iumj.1993.42.42043
|
| [14] |
A. J. Majda, A. L. Bertozzi, A. Ogawa, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55 (2001), 87–135. http://dx.doi.org/10.1115/1.1483363 doi: 10.1115/1.1483363
|
| [15] |
N. Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys., 270 (2007), 777–788. http://dx.doi.org/10.1007/s00220-006-0171-5 doi: 10.1007/s00220-006-0171-5
|
| [16] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. http://dx.doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
|
| [17] |
M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Éc. Norm. Supér., 32 (1999), 769–812. http://dx.doi.org/10.1016/S0012-9593(00)87718-6 doi: 10.1016/S0012-9593(00)87718-6
|
| [18] |
V. I. Yudovich, Non-stationary flows of an ideal incompressible liquid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032–1066. http://dx.doi.org/10.1016/0041-5553(63)90247-7 doi: 10.1016/0041-5553(63)90247-7
|
| [19] |
V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27–38. http://dx.doi.org/10.4310/mrl.1995.v2.n1.a4 doi: 10.4310/mrl.1995.v2.n1.a4
|