Research article

Some results on circulant matrices involving Fibonacci polynomials

  • Received: 30 November 2024 Revised: 20 March 2025 Accepted: 07 April 2025 Published: 22 April 2025
  • MSC : 11C08, 11C20, 15A09, 15A15, 15A60

  • In this study, we considered circulant matrices whose elements are Fibonacci polynomials. Then, we computed their determinants in two ways. In this content, we initially benefited from Chebyshev polynomials of the second kind. In the second way, we utilized some basic matrix operations. Moreover, we computed the inverse of these matrices in a general form. Furthermore, we found some kind of norms such as the Euclidean norm, upper and lower bounds for $ \|\mathcal{C}_n\|_2 $. In addition, we added some illustrative examples to make the results clear for the readers. In addition to these, we provide a MATLAB-R2023a code that writes the circulant matrix with the Fibonacci polynomial inputs, as well as computes Euclidean norms and bounds for their spectral norms.

    Citation: Fatih Yılmaz, Aybüke Ertaş, Samet Arpacı. Some results on circulant matrices involving Fibonacci polynomials[J]. AIMS Mathematics, 2025, 10(4): 9256-9273. doi: 10.3934/math.2025425

    Related Papers:

  • In this study, we considered circulant matrices whose elements are Fibonacci polynomials. Then, we computed their determinants in two ways. In this content, we initially benefited from Chebyshev polynomials of the second kind. In the second way, we utilized some basic matrix operations. Moreover, we computed the inverse of these matrices in a general form. Furthermore, we found some kind of norms such as the Euclidean norm, upper and lower bounds for $ \|\mathcal{C}_n\|_2 $. In addition, we added some illustrative examples to make the results clear for the readers. In addition to these, we provide a MATLAB-R2023a code that writes the circulant matrix with the Fibonacci polynomial inputs, as well as computes Euclidean norms and bounds for their spectral norms.



    加载中


    [1] P. J. Davis, Circulant matrices, New York: Wiley, 1979.
    [2] F. Zhang, Matrix theory, basic results and techniques, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-1099-7
    [3] Z. L. Jiang, Z. X. Zhou, Circulant matrices, Chengdu: Chengdu Technology University Publishing Company, 1999.
    [4] D. Bozkurt, C. M. Da Fonseca, F. Yılmaz, The determinants of circulant and skew-circulant matrices with Tribonacci numbers, Math. Sci. Appl. E-Notes, 2 (2014), 67–75.
    [5] D. Bozkurt, F. Yılmaz, On the determinants and inverses of circulant matrices with Pell and Pell-Lucas numbers, arXiv Prep., 2012.
    [6] D. Bozkurt, T. Y. Tam, Determinants and Inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers, Appl. Math. Comput., 219 (2012), 544–551. https://doi.org/10.1016/j.amc.2012.06.039 doi: 10.1016/j.amc.2012.06.039
    [7] E. Kırklar, F. Yılmaz, A general formula for determinants and inverses of r-circulant matrices with third order recurrences, Math. Sci. Appl. E-Notes, 7 (2019), 1–8. https://doi.org/10.36753/mathenot.559232 doi: 10.36753/mathenot.559232
    [8] Z. Jiang, H. Xin, F. Lu, Gaussian Fibonacci circulant type matrices, Abst. Appl. Anal., 2014 (2014), 10. https://doi.org/10.1155/2014/592782 doi: 10.1155/2014/592782
    [9] R. M. Gray, Toeplitz and circulant matrices: A review, Found. Trends Commun. Inf. Theory, 2 (2006), 155–239. https://doi.org/10.1561/0100000006 doi: 10.1561/0100000006
    [10] D. A. Lind, A fibonacci circulant, Fibonacci Quart., 8 (1970), 449–455.
    [11] F. Yılmaz, A. Ertaş, S. Yamaç Akbıyık, Determinants of circulant matrices with Gaussian Nickel Fibonacci numbers, Filomat, 37 (2023), 8683–8692. https://doi.org/10.2298/FIL2325683Y doi: 10.2298/FIL2325683Y
    [12] S. Solak, On the norms of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 160 (2005), 125–132. https://doi.org/10.1016/j.amc.2003.08.126 doi: 10.1016/j.amc.2003.08.126
    [13] S. Q. Shen, J. M. Cen, Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 217 (2011), 9790–9797. https://doi.org/10.1016/j.amc.2011.04.072 doi: 10.1016/j.amc.2011.04.072
    [14] L. Liu, Z. Jiang, Explicit form of the inverse matrices of tribonacci circulant type matrices, Abst. Appl. Anal., 2015 (2015), 10. https://doi.org/10.1155/2015/169726 doi: 10.1155/2015/169726
    [15] R. A. Horn, The hadamard product, Proc. Symp. Appl. Math., 40 (1990), 87–169. https://doi.org/10.1090/psapm/040
    [16] G. Visick, A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product, Linear Algebra Appl., 304 (2000), 45–68. https://doi.org/10.1016/S0024-3795(99)00187-1 doi: 10.1016/S0024-3795(99)00187-1
    [17] R. Mathias, The spectral norm of a nonnegative matrix, Linear Algebra Appl., 131 (1990), 269–284. https://doi.org/10.1016/0024-3795(90)90403-Y doi: 10.1016/0024-3795(90)90403-Y
    [18] A. F. Horadam, E. M. Horadam, Roots of recurrence-generated polynomials, Fibonacci Quart., 20 (1982), 219–226. https://doi.org/10.1080/00150517.1982.12429991 doi: 10.1080/00150517.1982.12429991
    [19] M. Asci, E. Gurel, Bivariate gaussian fibonacci and lucas polynomials, Ars Combin., 109 (2013), 461–472.
    [20] T. Koshy, Fibonacci and lucas numbers with applications, New York: Toronto, 2001. https://doi.org/10.1002/9781118033067
    [21] T. Koshy, Fibonacci and lucas numbers with applications, New York: John Wiley, Sons, 2011.
    [22] M. N. S. Swamy, Problem B-74, Fibonacci Quart., 3 (1965), 236.
    [23] V. E. Jr. Hoggatt, H. T. Jr. Leonard, J. W. Philips, Twenty four master identities, Fibonacci Quart., 9 (1971), 1–17. https://doi.org/10.1080/00150517.1971.12431028 doi: 10.1080/00150517.1971.12431028
    [24] A. Lupas, A guide of fibonacci and lucas polynomial, Octagon Math. Magazine, 7 (1999), 2–12.
    [25] S. Falcon, A. Plaza, On $k$-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons, Fractals, 39 (2009), 1005–1019. https://doi.org/10.1016/j.chaos.2007.03.007 doi: 10.1016/j.chaos.2007.03.007
    [26] A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos Sol. Fract, 42 (2009), 3179–3186. https://doi.org/10.1016/j.chaos.2009.04.048 doi: 10.1016/j.chaos.2009.04.048
    [27] P. F. Bryd, Expansion of analytic functions in polynomials associated with Fibonacci numbers, Fibonacci Quart., 1 (1963), 16–29. https://doi.org/10.1080/00150517.1963.12431595 doi: 10.1080/00150517.1963.12431595
    [28] Jr. V. E. Hoggatt, M. Bicknell, Generalized Fibonacci polynomials, Fibonacci Quart., 11 (1973), 457–465. https://doi.org/10.1080/00150517.1973.12430785 doi: 10.1080/00150517.1973.12430785
    [29] Y. K. Panwar, B. Singh, V. K. Gupta, Generalized Fibonacci polynomials, Turkish J. Anal. Number Theory, 1 (2013), 43–47. https://doi.org/10.12691/tjant-1-1-9 doi: 10.12691/tjant-1-1-9
    [30] E. Kilic, Sums of the squares of terms of sequence $u_n$, Indian Acad. Sci., 118 (2008), 27–41. https://doi.org/10.1007/s12044-008-0003-y doi: 10.1007/s12044-008-0003-y
    [31] S. Q. Shen, J. M. Cen, On the spectral norms of $r$-circulant matrices with the $k$-Fibonacci and $k$-Lucas numbers, Int. J. Contemp. Math. Sciences, 5 (2010), 569–578.
    [32] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC Press Company, 2003. https://doi.org/10.1201/9781420036114
    [33] C. M. Da Fonseca, On the location of the eigenvalues of Jacobi matrices, Appl. Math. Lett., 19 (2006), 1168–1174. https://doi.org/10.1016/j.aml.2005.11.029 doi: 10.1016/j.aml.2005.11.029
    [34] Z. Pucanovic, M. Pesovic, Chebyshev polynomials and $r$-circulant matrices, Appl. Math. Comput., 2023,437. https://doi.org/10.1016/j.amc.2022.127521
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(900) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog