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Abstract: In this study, we considered circulant matrices whose elements are Fibonacci polynomials.
Then, we computed their determinants in two ways. In this content, we initially benefited from
Chebyshev polynomials of the second kind. In the second way, we utilized some basic matrix
operations. Moreover, we computed the inverse of these matrices in a general form. Furthermore, we
found some kind of norms such as the Euclidean norm, upper and lower bounds for ||C,||,. In addition,
we added some illustrative examples to make the results clear for the readers. In addition to these,
we provide a MATLAB-R2023a code that writes the circulant matrix with the Fibonacci polynomial
inputs, as well as computes Euclidean norms and bounds for their spectral norms.
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1. Introduction

1.1. A brief review on the development circulant matrices

A circulant matrix (see [1]) is represented as follows:

Co Cit ... Cup—2 Cu
Cp-1 C0 ... Cp3 Cup
Co=| + &+ = S E (1.1)
C Ccy ... Co C1
C1 Cry ... Cp—1 Co

where c,’s are real numbers.

It is seen that any circulant matrix is a particular kind of Toeplitz matrix. Numerous papers
(see references [2—10]) that support this argument show the importance of circulant matrices and
their applications in a wide range of fields. The authors examined circulant matrices with Gaussian
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Nickel Fibonacci number entries in [11]. Moreover, Solak presented norms of circulant matrices with
Fibonacci and Lucas numbers in [12]. In addition, the authors computed the determinants and inverses
of circulant matrices with Fibonacci and Lucas numbers in [13]. In [14], Liu and Jiang presented the
determinants and inverses of circulant-type matrices with Tribonacci entries.

Let C = (¢;;) and D = (d;;) be n X n real matrices, then the Hadamard product of these matrices is
defined by C o D = [c;;d;;] see [15]. For n = 3, we give the following example:

11 C12 Ci3 dy dy di cndy cidiy ci3dis
c1 € cp|oldy dn dy|=|cady cndn cxdy|.
C31 C3 (33 dyi dyn ds cidy1 c3pdyn c3dss

A matrix’s norm is a nonnegative real integer. There are multiple ways for calculating a matrix
norm; however, all the methods have the same features. Let A = (a;;) be a n X n matrix. Then, the
maximum column length norm (shortly, ¢;(.)) and the maximum row length norm (shortly, r;(.)) are
defined as follows:

ci(Ad) = m;@ /Z laj;1?
and
r(A) = max Z |aij|2-
‘ 7
The Euclidean norm of matrix A is
1
n n 2
Al = ( |aij|2)
=1 j=1

and the spectral norm of matrix A is

Al = ‘/gn,ax A(ATA),
<i<n

where 4, is the eigenvalue of matrix AA; here, A” is a conjugate transpose of A. Thus, the following
inequalities hold:

1
—IlAlle < [IAll2 < [|Alle,
\n (1.2)

IAlL < llAlle < VallAll.
Let A, B, and C be m X n matrices. According to [16, 17], the following inequalities are well known:

o If A= BoC,then
lAll2 < ri(B)c1(C).

e If||.|| is arbitrary norm on n X m matrices, then

A o Bl| < [IAllllBI.
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1.2. Some notes on Fibonacci and Chebyshev polynomials

The Fibonacci polynomials have a wide range of applications in mathematics. In 1883, Eugene
Charles Catalan and E. Jacobsthal studied the Fibonacci polynomials [18, 19]. The well-known
Fibonacci polynomials have the following recurrence relation:

Fri2(X) = xFpi1(x) + F(x), n > 1,

where F1(x) = 1, F,(x) = x. Moreover, we give some initial values for Fibonacci polynomials
in Table 1.

Table 1. Some of the Fibonacci Polynomials.

Fn(x)
1

n

1

2 by
3 1+ x?
4 2x + x°
5

1 +3x%+x*

A Fibonacci-like recurrence relation can be used to define large classes of polynomials, yielding
Fibonacci numbers [20]. Note that ¥,(1) = F,, which is the nth Fibonacci number. In [21], the
generating function G (1) of the Fibonacci polynomials is defined as follows:

Grid) = Y T’ = —
Also, the characteristic equation of the sequence ¥,(x) is
2 -x1-1=0, (1.3)
where x is a real number. The roots of the characteristic Eq (1.3) are @ = # and 8 = %’m.
Considera+8 =x,aB =—-landa—-f = Vx2 + 4. Thus, Binet’s formula for every integer n as follows:
o — B
7o = L

In [22], Swamy studied the Fibonacci polynomials and investigated several other properties for
these polynomials. The authors obtain more properties utilizing Fibonacci polynomials in [23]. A.
Lupas presented many remarkable characteristics of Fibonacci polynomials in [24]. For more details,
see references [25-28] and therein. In addition to these properties, in [29], Panwar et.al. presented the
sum of Fibonacci polynomials as follows:

Fir1(X) + Fj(x) -1

X

Fix) = (1.4)

J
i=0

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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In [30,31], the authors investigated the sums of squares of the Fibonacci polynomials and the sums of
products of consecutive Fibonacci polynomials with the help of the following formulas:

J
Fi Fi
Z 7:1.2()() _ +1(x) ](x)' (1.5)
i=1 X
The Chebyshev polynomials of the second kind, denoted by {U;(x)};0, are defined by
Ui1(x) = 2xUr(x) = Ui (%), k=1, (1.6)

where Uy(x) = 1 and U,(x) = 2x, (see [32]). In the literature, there is an interesting application of
Chebyshev polynomials in the determinant computation of tridiagonal matrices. In other words, it is

well-known that
a b

w © (v ),

kxk
for more details, see [33, 34].

Lemma 1. [4] Consider the following matrix form

€ € €3 - €1 €y
y
Z X
En: s
Z
Z X y

then

det(E,) = Ze]y” (- \/_)J 'u Uj-i

j=1

5

where U (x) is the j™ Chebyshev polynomial of the second kind.

The relationship between circulant matrices and Fibonacci polynomials has not been investigated,
despite the fact that they are widely used in many applications. Our main motivation for this paper is to
fill this gap in the literature. For this purpose, we consider the entries of circulant matrices as Fibonacci
polynomials. It sounds interesting to consider circulant matrices with Fibonacci polynomials as entries.
As a result, numerous important questions inevitably arise. In this paper, we answer basic questions
about determinants, inverses, some linear algebraic characteristics, and matrix norms.

The following is scheduled for the rest of this paper: In Section 2, some matrix norms,
determinants, and inverses for the circulant matrix associated with the Fibonacci polynomials are
computed. Subsequently, some illustrative examples are added to help readers understand our paper in
Section 3. Finally, MATLAB-R2023a code is provided to compute our results.

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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2. Main results

In this section, we present the n-square circulant matrix C, associated with the Fibonacci
polynomials. That is,

Fi(x) Fo(x) ... Fuu(x)  Fulx)
Fax) Fi1(x) ... Far(x) Fuor(x)
C, = circe(F1(x), F2(x), ..., Fu(x)) = : o : : , (2.1)
F3(x) Falx) ... Fx)  Fx)
Folx) F3(x) ... Fulx)  Fix)

where 7,(x) is the nth Fibonacci polynomial. We investigate some linear algebraic and combinatorial
results for this type of matrix.

2.1. On circulant matrices involving the Fibonacci polynomials

We initially obtain the determinant of the matrix C, by exploiting spectacular properties of
Chebyshev polynomials of the second kind and some basic matrix operations. Furthermore, using the
well-know property, which claims that the inverse of a circulant matrix is also a circulant matrix, we
compute the inverse of C,. In addition to these, we support the results by illustrative examples.

First, let us define n-square matrices S, and M,, as below:

1 0 O 0O 0 O
0O 0 O 0O 0 1
-1 0 O 0O 1 —x
S,,:OOO . =1
0
0O 1 —-x -1 O 0
and
1 0 0 . 00
00 0 . 1 1
00 0 . 10
Mn:OOO 0
011 . 00
010 .00

In this case, we get the following lemma.

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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Lemma 2. The following equalities hold:
-1,
det(S,) = det(M,) =
1,

Proof. By using Laplace expansion on the first row, the proof can be seen.

n = 3(mod 4)
n = 0(mod 4)
n = 1(mod 4)
n = 2(mod 4)

O

In the following theorem, we characterize the determinant of the circulant matrix given in (2.1)
by utilizing magnificent properties of Chebyshev polynomials. Moreover, we add an example to make

it more comprehensible for the readers.

Theorem 1. For n > 3, the following equality holds:

det(C,)

n—1

n—1
—x D () + FaaZ (- VZX) ™ Ui (
k=1

+ 3 (F0) + Fen ()22 (- VZX) ™ U (
k=2

Y
2\/Z_X)

Y
1+ F,(x)]2"2,
2 \/Z_X) 7]

where
n—1
Y = —x) i),
i=0
Z = Fuoa(x) = xFp3(x) = Fra (),
X = Y-Z

Proof. For n > 3, let us multiply the matrices as below:
T, =S8,C.M,.

Thus, we obtain T, matrix, as below:

[ F1(x) Fu1(0) + Fu(x) Froa(x) + Fro1(x) Fa(x) + F3(x) Falx) |
Fa(x)  Fax)+F1(x)  Fuor(x) + Fu(x) F3(x) + Falx) Fz(x)
0 Y Z 0 0
L=l X y 0
: .. .. .. 0
0 0 X Y Z

Then, by adding the first column to the nth column, we get the matrix shown below:

[ F1(x) Fu1(0) + Fu(x) Froa(x) + Fro1 ()
Farlx)  Fax)+F1(x)  Fror(x) + Fu(x)
" 0 Y 4
Lo=1 o X Y
0 0
AIMS Mathematics

Fa(x) + F3(x) Fa(x) + Fi(x) |
F3(x) + Falx)  F3(x) + Fa(x)
0 0
0 .

0
Z

Volume 10, Issue 4, 9256-9273.



9262

By adding a multiple of a column to another column, the determinant of the matrix is unchanged, and
the determinant of a product of two matrices is just the product of the determinants, so we have

det(T,) det(T'") = det(S,C,M,)

det(S,)det(C,)det(M,).

By exploiting Lemma 2, it is seen that
det(T,) = det(C),).

Keeping this equality in mind, we can characterize the determinant of the matrix C,, as follows:

n—1

n—k— Y
det(C,) = —x - [Fr(x) + 7:k+1(x)]Zk_l (‘ \/Z_X) ! U,—1—1 (2 \/Z_X)

n—1
3 ) + Faar (012 (- VZX) ™ Ut (

k=2

Y
1 ﬁ Zn—2,
2VZX ) L7l

where Uy(x) 1s the kth Chebyshev polynomial of the second kind. O

Example 1. The determinant of the matrix Cs is

det(Cs)

Y
2\/Z_X)

)+ [1+ Fs(x)]2°

4
IR + a2 (- VZX) U4_k(
k=1

4
+ 3 IF) + Fun (0122 (- VZX)  Us.y (

Y

k=2 2VZX

= 3 —15x+55x* — 95x° +210x* — 312x° + 445x° — 520x" + 730x* — 445x° + 879x'°
—200x" + 685x'% — 45x" + 330x" — 4x" + 95x'¢ + 15x'% + x*°

= det(K5s).

In Theorem 2, we compute the determinant of the matrix C, in a simpler form by utilizing some
fundamental matrix operations. In addition, we support it with an example to increase the intelligibility
of this result.

Theorem 2. For n > 3, the determinant of the matrix C, is

n-2 ?d (X) n—(k+1) )
det(C,) = |1-xF, ‘ 1 — Frr (]2
et(Cy) XFu(x) + ; Fil(x) (ﬂ R (x)) ) [1 = Frr (0]

Proof. It can be seen that det(C3) = 2 — 3x + 3x> — 2x> + 3x* + x° for n = 3. Let us suppose that n > 3.
We obtain only a matrix with nonzero values on the main diagonal and subdiagonal of the first two
rows if we multiply C, by Q on the right side and J on the left. In other words,

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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and

where H, = ¥,,(x) and P, = F1(x)

T,

where

AIMS Mathematics

1 0 0 0
—x 0 0 0
-1 0 0 0
j-l o o o 3

o

S o O =
—

~— <
|
w

S O O O

—
J|E J|E =

—

JC,Q
[ F1(x) W, Fo(x) Fra(x)
0 W, Fualx) Frs(x)
0 0 P, 0
0 0 -H, P,
. ) , _H,
0 0
4 n—(k+1)
H,
Z k+1(X) ( ) ,
k=1

)

oS = O O

0

Fn-3(x)
F n-4(x)
0
0

n

SO -

S O = O

n-2 H n—(k+1)
Wy = F1(0) = XF0(x) + > Fix) (P—) :
k=1

Fa(x) |

F1(x)

—Fnr1(x). By utilizing these matrices, we get the following equality:

Volume 10, Issue 4, 9256-9273.
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Thus, we get

det(C,) det(J)det(T,)det(Q)
det(JT,0)

W FLCOLF () = Fr (D)2
n-2 n—(k+1)

{1 SXF 0+ Y ﬂ(x)( 7a() ) ) (1= Fon (DI,
k=1

F1(x) = Fo1 (%)

Example 2. The determinant of matrix Cs is

3 5-(k+1)
(1 — xFs(x) + Zﬁ(X)( F5(1) ) )[1 — Fo(0)T?
k=1

det(Cs) I——?E(X)

3 — 15x+ 55x2 — 95x° 4+ 210x* — 312x° + 445x° — 520x7 + 730x% — 445x° + 879x'°
—200x" + 685x'2 — 45x"3 + 330x! — 4x" + 95x'% + 15x'8 + X%
= det(T5).

In the following lemma, we show the characterization given for the invertibility of an arbitrary
circulant matrix, which we use later.
Lemma 3. [13] If we consider A = circ(a, ay, ..., a,) to be a circulant matrix, we get
(i) A is invertible if and only if f(W*) # 0 (k = 0,1,2,...,n — 1) where f(x) = ';:1 ajxj‘1 and
w = exp(%).
(ii) A~' is a circulant matrix, if A is invertible.

In the following lemma, we express and prove the inverse of a lower triangular matrix denoted by

U. Thus, with the help of these lemmas we have presented, we prepare a background for the theory
that we present in the rest of our paper.

Lemma 4. Let the matrix U = [u; j]”‘z be of the form

i,j=1
Fi(0) = Funn(0) i=]
Ujj = —Fu(x) . i=j+1l
0 , otherwise
then the inverse U™ = [u] j]?;:zl of the matrix U is equal to
F(x)i—I . .
W, = Fo-Fare o L2
J 0 , i<j

AIMS Mathematics Volume 10, Issue 4, 9256-9273.



9265

Proof. Assume that P := (p;;) = UU". Tt is a well-known fact that p; = ZZ;IZ uiku,’q.. The proof is split
into all possible cases considering the relationships of the indices i and ;.
Case 1. Let i = j, then

1
. =1
[F1(x) = Fr1(0)]

Pii = Miiufi = [F1(x) = Fur1(0)]

Case 2. Leti > j, then

n-2
’

— ’ _ ’
pPij = E Wikl ; = Wi Uy + Wiill;;
k=1

_ﬂ(x)gjni_j_l(X) + [T] ()C) — ﬁ+l(x)]ﬁ_j(x) _
7100~ Frmt Ol (D)~ Frm T

The proof of the case i < j can be done from a similar point of view to Case 2. Therefore, we verify
that UU~' = I,_, where I,_, is a unit matrix. Likewise, we may show that U~'U = I,_,. Thus, the
proof is done. O

After giving the proof matrix C, in (2.1) is an invertible matrix below, we answer the question of
how to characterize the inverse of the circulant matrix whose entries are the Fibonacci polynomials for
the case where n > 2 in Theorem 4.

Theorem 3. Let C, = circ(Fi(x), F2(x),..., Fu(x)) be circulant matrix, if n > 3, then C, is an
invertible matrix.

Proof. By Theorem 2, we know that det(C3) = 2 — 3x + 3x* — 2x> + 3x* + x° # 0 and det(C,) = —x'* -
8x'0-21x3~16x°+7x*+4x? # 0. Hence, C, is an invertible matrix for n = 3,4. Now, let us suppose that

n > 5. The Binet formula for the Fibonacci polynomials is characterized by F,(x) = “;—:gn. Keeping
this in mind, the proof can be seen using Lemma 3 and the mathematical induction method. m|

Theorem 4. For n > 2, the inverse of C, is given as below:

fl f2 fn—l fn
o i Sz fum

cl=|: : -. )
/R T
L B oo f A
where
_ 1 XFr30) D FakOFF (%)
/ Wn[“ Ty LT wy )
1 S Foi1 (0FF (%)
L= Wn[_“; (P} )
I A
fi = —W, i=3,4,..,n,

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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for

P,

n—-2
W, = Fi(0) - xFux)+ ) ﬂ(x)(
k=1

Py

F1(x) = Fre1 ().

Proof. Let us take into account a matrix of the form

H )n—(k+1)

1 =W, 3 Faa() = Far(0) 52F0s(0) = Foua®) - 32F1(x) - Fa(x) |
0 1 —Fn2(0) =Fn3(0) —F1(x)
W, Wha Wy
0 O 1 0 0
V=0 O 0 1 0
0 O 0 0 0
|0 O 0 0 1
where
n-2 H n—(k+1)
W, = ﬁ(x)—xﬁ(xHZﬁ(x)(—”) :
k=1 Py
n—1 n—(k+1)
, H,
W, = ;m(x)(l,—n) .

Then, we can write

JC,QV =E®H,

where E = diag(1(x), W,) is a diagonal matrix. Let us assume that V = QV. Hence, we obtain

C,'=V(E'eH".

Given that C, 1s a circulant matrix, its inverse is a circulant from Lemma 2. Let

C.' = circ(fi, for s fo)-

Because the last row of the matrix V is

[0.1.-

AIMS Mathematics

9 *ey

Fr() Fas(® o _ﬂ(x))
w, w, w, W,/

Volume 10, Issue 4, 9256-9273.
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The following equations, by means of Lemma 4, give the last row elements:

ho= Win[—mgﬂ—k—l((;?“(x) |
ko= _W:P,,’
R
: - 2 _
oo (S T 3 T S T )
fi = WLH (1 + )C(?I;”:—;E;C) + :Zj ﬁ-k((x;?f_l(@]’

where P, = F1(x) — Fpr1(x). If

r — - /cr—k+l (x)ank—l ()C)

G
" L)~ Fre )

(r=12,...,n-2),

then, we get

Fn(x)
G(Z) - xGO = n
" T (Fi1(x) = Faei(0)?
and
r+1
G,(1r+2) _ xGEIrH) _ Gglr) — Jm”+ (x) (r =1,2,....n— 4)

() = Fun (1) +

Hence, we have

1
—circ (1 +xG"? + GV —x + G2 -GV, -G? + xGV,GY — xGP - G

n

C—l

_Xqun_S) _ Ggqn—4))
_1 W O Fa0F @ A Faa 0T 0
A BT T +; Py AT

1 RW FW _fﬁ(@)
PP TPy R

k=1

Thus, the proof is completed.

With the following instance, we shed light on the conclusions acquired above.

.....

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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Example 3. The inverse of the matrix Cs is

2 - 3 —
ol 1 cire| 1+ xFL(x) N Fs—k()FE (%) s Far(OF L1 (x)
: Ws (Fi1(x) = Fo(0))* & (Fi(x) = Fo(x)* = (F1(x) = Fo()
I D - N |
(Fi1(x) = Fo(x)" (F1(x) = F6(x))?" (F1(x) = Fo(x))?
= Circ (a,l’a,27 a3z, A4, a’S)’
where
2 —9x + 19x2 = 3023 + 54x* — 72x° + 55x% — 1207 + 22x8 — 105x° + 3x10 — 48x! — 11x13 — x5
a = ,
! det(Cs)
o = 2 — 6x + 22x% —38x% + 70x* — 81x° + 147x% — 68x7 + 195x8 — 24x° + 144x10 — 3x!1 + 58x12 + 12x14 + x16
T det(Cs) ’
—146x—9x% +8x3 — 24x* +2x° = 22x% — 8x% — 10
a3 = ,
’ det(Cs)
o = —14+3x=3x2+ 1383 = x* + 160 +7x7 + X°
$ det(Cs) ’
—1—6x2—11x* —6x° =8
as =

det(Cs)

2.2. Some norms of circulant matrix with the Fibonacci polynomials

In this section, we present spectacular results for some matrix kid of norms such as the Euclidean
norm and the bounds of the spectral norm.

Theorem 5. Assume x is a real value and n > 3 is an integer, then C, be an n X n circulant matrix. In
the circumstances, the following expression is correct:

1 _ [T F a1 (%)
%ch”E— —

(ii) The bounds for the spectral norm of C, are

LTt <y, < L a7 00
X X

Proof. (i) The matrix C, is of the form
Cy = cire(Fi(x), Fa(x), F3(x), ..., Fu(x)).

Hence, considering of the definition of the Euclidean norm, we obtain the desired equality as follows:

2 _ C 28 Fn(X)F ni1(X) L _ Fn(X)F ni1(x)
IC.ll = n;Fk(x) - "(—x ):: \/ﬁucnnE - \/—x .

(ii) We obtain the wanted lower bound for the matrix C, using (i) and (1.2). That is,

/7'71()6)7'71+1(X)<”C I
X -

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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In addition to this, let matrices ‘A and D be

Aij = Fonod(j-inp(X), 12 ]
A = (a;j) =
aij = 1, i< ]

and
dij = Fonod(j-imp(X), <]
D=(dy) =
dij = 1, l Z j,

such that C, = A o D. Hence, we get an upper bound for the spectral norm by exploiting (1.5)
and (1.2), i.e.,

1
ICall> < — \/ﬂ-l(X)ﬂz(X)ﬂu(X)
X

3. Numerical examples with coding applications for norms

In this section, we show a few illustrative numerical examples for the bounds of the spectral norm
and Euclidean norm of C,. In addition, we give a Matlab code to calculate the results we get in the
section before more easily and more accurately obtaining faster results in the computer environment.

In Table 2, we give some results obtained manually. These results may be easily validated for any
desired n number utilizing the Matlab code shown in Table 3.

Table 2. Some upper and lower bounds for ||C,||>.

n Lower bounds Upper bounds

3 V2 + 322 + x4 2 +3x% + x*

4 V2 + 7x% + 5x% + x5 2+ 7x* + 5x* + &8

5 VA +x)3 + )1+ 3x2 + %) (1+x)B+ )1 +3x7 +x)

6 V3 +22x2 + 40x* + 29x6 + 9x8 + x10 3+ 22x% + 40x* + 29x5 + 9x3 + x!°

7 V4 +34x2 + 86x* + 91x0 + 46x8 + 11x10 + x12 4 +34x% + 86x* + 91x° + 46x% + 11x'0 + x2

4. Conclusions

In this study, we consider the circulant matrices C, whose components are the Fibonacci
polynomials. Then, we examine a few linear algebraic properties of them. To sum up, we investigate
the following properties:

(1) We compute its determinant in two ways. For this purpose, we benefit from the Chebyshev
polynomials and exploit some matrix operations.

AIMS Mathematics Volume 10, Issue 4, 9256-9273.
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(2) We characterize the inverse of the matrix in a general form.
(3) We present some bounds for some norm of them.

Furthermore, we provide a MATLAB-R2023a code for the matrix C, as well as norm
computations for this matrix (refer to Table 3). Thus, we are building a novel method in MATLAB-
R2023a code that is not available in the regular Matlab libraries. For the provided value n, the algorithm
generates the matrix, which aids in the verification of the following norm types:

i. To calculate the row norm r(A).
ii. To calculate the column norm c{(D).
iii. To compute an upper bound for the spectral norm |[|C,||,.
iv. To compute a lower bound for the spectral norm ||C,,||».
v. To compute ||C,||£.

We anticipate that all this will help shed light on future research of the circulant matrix and
Fibonacci polynomials. In this content, we expect applications of our results in several branches of
mathematics. Moreover, these results can be extended to the generalizations of some kind of circulant
matrices such as g-circulant, geometric circulant, RFMLR, RLMFL, RFPrLrR, and RLPrFrL circulant
matrices.
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Appendix

Table 3. MATLAB-R2023a code for the matrix C,, and for the norm computations of this.

clc; clear all;

1
2 n=input (’Enter the value of n=’); % n is the input for the size of circulant matrix C_n
3 syms X y;

4 F(1) = y; % Define the initial values for the Fibonacci polynomials

5 F(2) = x;

6 for i = 3: n % Generate the all values for the Fibonacci polynomials

7 F(i)=subs(x*F(i-1) + F(i-2),y,1);

8 F(i);

9 end

11 % Write the entries of the circulant matrix with Fibonacci polynomials
12 for i=1:n
13 for j=1:n

=3

if i==j
a(i,j)=subs(F(1),F(1),1);
elseif i<j
a(i,j)=subs(F(mod(j-i,n)+1),F(1),1);
elseif i>j

19 a(i,j)=subs(F(mod(j-i,n)+1),F(1),1);
end

S S
Q. m
H B
n Q.
ho]

~

[}

"Circulant matrix involving Fibonacci polynomials for n’)
subs(simplify(F(1:n)),F(1),1); % Create a subvector for the row norm
c = simplify(b."2); % Square each component of the vector b

rownorm_1 = cumsum(c); % Compute the cumulative sum of the vector c
row_norm = simplify((rownorm_1(n)) " (1/2)) % Write the row norm

WO RN NN NN
E & ®» 2 & & £ ¢
R R
o o
1 1

simplify(F(2:n)); % Create a subvector for the column norm
simplify(d."2); % Square each component of the vector d

columnnorm_2 = cumsum(e)+1; % Compute the cumulative sum of the vector e
column_norm = simplify((columnnorm_2(n-1))"(1/2)) % Write the column norm

wWow W W
E O Q=
R
M
1

B R A B OB A B OB A W W W oW WL
0 N N kR W NN = O O N R

% Compute upper and lower bounds for the spectral norm of C_n
spectral_norm_less_than = simplify(row_norm*column_norm)
spectral_norm_greater_than = simplify(row_norm)

Euclidean_norm = simplify(sqrt(n)*row_norm) % Compute the Euclidean norm

%Example usage in command window

Enter the value of n=3
%Circulant matrix involving Fibonacci polynomials for n =

%[ 1, X, X2 + 1]

%[x"2 + 1, 1, x]

%[ X, X2 + 1, 1]

%spectral_norm_less_than = x4 + 3*x"2 + 2
%spectral_norm_greater_than = (x4 + 3*x"2 + %2)°(1/2)

AIMS Mathematics

Volume 10, Issue 4, 9256-9273
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