Research article Special Issues

Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling

  • A topological index is a real number obtained from the chemical graph structure. It can predict the physicochemical and biological properties of many anticancer medicines like blood, breast and skin cancer. This can be done through degree-based topological indices.. In this article, the drugs, azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, etc. which are used in order to cure blood cancer are discussed and the purpose of the QSPR study is to determine the mathematical relation between the properties under investigation (eg, boiling point, flash point etc.) and different descriptors related to molecular structure of the drugs. It is found that topological indices (TIs) applied on said drugs have a good correlation with physicochemical properties in this context.

    Citation: Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen. Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling[J]. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660

    Related Papers:

    [1] Fozia Bashir Farooq . Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer. AIMS Mathematics, 2024, 9(6): 15119-15131. doi: 10.3934/math.2024733
    [2] Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262
    [3] Jianwei Du, Xiaoling Sun . On symmetric division deg index of trees with given parameters. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384
    [4] Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107
    [5] Ali N. A. Koam, Ali Ahmad, Yasir Ahmad . Computation of reverse degree-based topological indices of hex-derived networks. AIMS Mathematics, 2021, 6(10): 11330-11345. doi: 10.3934/math.2021658
    [6] Ali Al Khabyah, Haseeb Ahmad, Ali Ahmad, Ali N. A. Koam . A uniform interval-valued intuitionistic fuzzy environment: topological descriptors and their application in neural networks. AIMS Mathematics, 2024, 9(10): 28792-28812. doi: 10.3934/math.20241397
    [7] Hakeem A. Othman, Mohammed M. Al-Shamiri, Amin Saif, Santanu Acharjee, Tarik Lamoudan, Rashad Ismail . Pathless directed topology in connection to the circulation of blood in the heart of human body. AIMS Mathematics, 2022, 7(10): 18158-18172. doi: 10.3934/math.2022999
    [8] R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably . Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379
    [9] R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179
    [10] Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230
  • A topological index is a real number obtained from the chemical graph structure. It can predict the physicochemical and biological properties of many anticancer medicines like blood, breast and skin cancer. This can be done through degree-based topological indices.. In this article, the drugs, azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, etc. which are used in order to cure blood cancer are discussed and the purpose of the QSPR study is to determine the mathematical relation between the properties under investigation (eg, boiling point, flash point etc.) and different descriptors related to molecular structure of the drugs. It is found that topological indices (TIs) applied on said drugs have a good correlation with physicochemical properties in this context.



    Cancer is a dangerous disease and belongs to the family of genetic diseases. It is the uncontrolled magnification of abnormal blood cells in the body that stops normal functions and is prone to infection. The cancer that affects blood cells is known as blood cancer. Leukemia is an example of blood cancer and a mutation in the DNA of blood cells is its main cause, resulting in abnormal behavior of blood cells. This will not only prone to infection but also in some cases becomes chronic and creates tumors in bones. Throughout the world, nearly 1.24 million people are affected by blood cancer annually. Medicos and scientists are always probing for better ways to care for people fighting cancer. One way to do this is to develop and study incipient drugs. Drug revelation is not an easy task, as it is expensive, time consuming, and challenging in some cases. Numerous ways have been discovered to treat cancer. Drug therapy is one of them. Drug therapy is used to stop the growth of cancer cells and eliminate them from the body, as well as to restore healthy cells. Anticancer drugs are also used to kill and halt this malignant disease and many drugs test are accompanied to fight the fatal disease. This requires timely diagnosis, screening, and medication that benefits patients to control the deadly disease in the future. For further detail see [1,2,3,14].

    Topological Indices (TIs) are termed as numeric descriptors that are obtained from molecular graphs to describe chemical system and are mostly used to investigate the physiochemical properties of several drugs. There are several kinds of polynomials and topological indices which are extensively calculated, represent chemical structure and have vital position in chemical graph theory. Among these classes, degree-based topological indices are of great importance and particularly in chemistry. The use of graph invariants (TIs) in QSPR and QSAR studies has been of key interest in recent years. Topological indices have application in various areas of biology, mathematics, bioinformatics, mathematics, informatics, biology etc., but their utmost significant use to date is in the non-empirical Quantitative Structure- Property Relationships (QSPR) and Quantitative Structure -Activity Relationships (QSAR) [5,18,26]. The ABC index, Wiener index and Randic index are helpful for predicting the bioactivity of drugs. The QSPR models help to determine the optimal relationship between the topological indices and psychochemical characteristic. These psychochemical qualities are being studied because they have a big impact on bioactivity and drug transit in the human body. In this paper, we compute degree-based TIs related to blood cancer drugs. In the same way, anticancer drugs represent chemical compounds on which given topological indices are well defined and discussed in QSPR analysis. The corresponding characteristic calculated in this way is highly correlated with characteristic of blood cancer drugs by the use of linear regression.

    In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Graph G (V, E) is considered as simple, finite, and connected, whereas V and E represented in chemical graph are termed as vertex and edge sets, respectively. Degree of vertex in graph G is number of vertices adjacent to it and is denoted by du. Valence of a compound in chemistry and the degree of vertex in the graph are closely related concepts, for more details see [4,10,11,13]. Degree-based topological indices used are defined below:

    Def. 2.1 The ABC index [13] of a molecular graph G is defined as

    ABC(G)=uvE(G)du+dv+2dudv

    Def. 2.2 The first-degree-based topological index is Randic index X(G) introduced by Milan Randic in 1975 [15]. Randic index is defined as:

    RA(G)=uvE(G)1dudv

    Def. 2.3 The sum connectivity index [16] of a molecular graph G is defined as

    S(G)=uvE(G)1du+dv

    Def. 2.4 The GA index [17] of a molecular graph G is defined as:

    GA(G)=uvE(G)2dudvdu+dv

    Def. 2.5 The first and second Zagreb indices [19] of a molecular graph G are defined as follows:

    M1(G)=uvE(G)(du+dv)
    M2(G)=uvE(G)(dudv)

    Def. 2.6 The harmonic index [20] of a molecular graph G is defined as:

    H(G)=uvE(G)2du+dv

    Def. 2.7 The hyper Zagreb index [21] of a molecular graph G is defined as:

    HM(G)=uvE(G)(du+dv)2

    Def. 2.8 The forgotten index [23] of a molecular graph G is defined as:

    F(G)=uvE(G)[(du)2+(dv)2]

    The values of physical properties are taken from Chem Spider. It is observed from data Tables 2 and is found these data values are normally distributed. So, linear regression model is most adequate to test and adopt for said analysis. For more information on degree-based topological indices, we refer the reader to visit the following articles [4,5,6,7,8,9,22,27,28].

    The molecular formula for bulasan is C8H14N6S2. Busulfan is an antineoplastic alkylating agent and is used for many kinds of cancer. Alkylating agents have the ability to add alkyl groups to several electronegative groups under conditions present in cells. They prohibit tumor development by crosslinking guanine bases in DNA double-helix strands, directly attacking DNA. The strands are unable to separate and uncoil. It is mandatory in DNA replication and cells are no longer divide. The molecular formula of clofarabine is C10H11ClF N5 O5. Clofarabine interfere in growth of cancer cells. Clofarabine prevents cells from making DNA and RNA by interfering with the synthesis of nucleic acids, thus stopping the growth of cancer cells. The chemical formula of azacitidine is C8H12N4O5. Azacytidine has been used as an antineoplastic agent. The molecular formula of meracptopurine is C5H4N4S. Mercaptopurine is one of a large series of purine analogues that interfere with nucleic acid biosynthesis and have been found active against human leukemias. The molecular formula of Tioguanine is C5H5N5S. Antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia.

    The molecular formula of nelarabine is C11H15N5 S5. Nelarabine is a purine nucleoside analog and antineoplastic agent used for the treatment of acute T-cell lymphoblastic leukemia and T cell lymphoblastic lymphoma with inadequate clinical response to prior chemotherapeutic treatments. The molecular formula of cytarabine is C11H15N5 S5. Cytarabine is an antineoplastic antimetabolite used in the treatment of several forms of leukemia, including acute myelogenous leukemia and meningeal leukemia. The molecular formula of bosutinib is C26H29Cl2N5 O5. It is used to treat a certain type of chronic myeloid leukemia (a cancer of white blood cells). The molecular formula of dasatinib is C22H26ClN7S.Dasatinib is a tyrosine kinase inhibitor used for the treatment of lymphoblastic or chronic myeloid leukemia. The molecular formula of melphala is C13H18Cl2N2 O2. Melphalan is an antineoplastic in the class of alkylating agents and is used to treat various forms of cancer. Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. They stop tumor growth by crosslinking guanine bases in DNA. The molecular formula of dexamethasone is C22H29FO5. Dexamethasone is a glucocorticoid available in various modes of administration that is used for the treatment of various inflammatory conditions, including bronchial asthma, as well as endocrine and rheumatic disorders. The molecular formula of doxorubicine is C27H29NO11. Doxorubicin is an antineoplastic in the anthracycline class. Anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. The molecular formula of carbopalatin is C6H12N2O4Pt. Carboplatin is a alkylating agent used to treat advanced ovarian cancer.

    In this section, degree-based TIs are imposed on blood cancer drugs. The relation between QSPR analysis and topological indices depicts that they are highly correlated as regards physicochemical properties use to cure blood cancer. The thirteen medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin are used for this analysis of said disease. The chemical structure for given drugs is shown in Figure 1. In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Hence, the study used regression analysis for the calculation purpose.

    Figure 1.  Molecular structure of drugs.

    In this article, quantitative structure analysis about nine topological indices is calculated for QSPR modeling purpose. Five physical properties, boiling point (BP), molar volume (MV), molar refractivity (R), complexity and flash point (FP), for 13 medicines arranged in Figure 1, are investigated. We execute the regression analysis for the drugs and tested linear regression model is tested with the help of equation as under:

    P=A+b(TI) (1)

    Here, P is the physicochemical property of the candidate drug. The TI, A, and b represent topological index, constant and regression coefficient, respectively. All data tables are calculated by the use of SPSS software version-26 to obtain accurate results. The nine TIs of candidate blood cancer drugs and their physical property are investigated with the help of linear QSPR model. By applying Eq 1, we calculate linear regression model for degree based TIs of candidate drugs given as under.

    Theorem 1. Let G1 be the graph of Azacitidine, the various topological indices of G are given as follows.

    i) ABC(G1)=22.04

    ii) RA(G1)=13.12

    iii) S(G1)=13.46

    iv) GA(G1)=27.72

    v) M1(G1)=162

    vi) M2(G1)=209

    vii) F(G1)=516

    viii) H(G1)=11.95

    ix) HM(G1)=934.00

    Proof. Let G1 be the graph of Azacitidine with edge set E, Let Em,n represents the class of edges of G joining vertices of degrees m and n. With |E1,2|=3, |E1,3|=4, |E1,4|=6, |E2,3|=4, |E2,4|=5, |E3,3|=3, |E3,4|=1, |E4,4|=4.

    i) By using definition 2.1 and above given edge partitions Em,n we get,

    (G1)==31+221×2+41+321×3+61+421×4+42+322×352+422×4+33+323×3+13+423×4=22.04.

    ii) By using Definition 2.2 and above given edge partitions Em,n we get,

    RA(GG1)==311×2+411×3+611×4+412×3512×4+313×3+113×4+414×4=13.12.

    iii) By using Definition 2.3 and above given edge partitions Em,n we get,

    S(G1)==311+2+411+3+611+4+412+3512+4+313+3+113+4+414+4=13.46.

    iv) By using definition 2.4 and above given edge partitions Em,n we get,

    GA(G1)==61×21+2+81×31+3+121×41+4+82×32+3+102×42+4+63×33+3+23×43+4+84×44+4=27.72

    v) By using Definition 2.5 and above given edge partitions Em,n we get,

    M1(G1)=uvE(G1)(su+sv)=3(1+2)+4(1+3)+6(1+4)+4(2+3)+5(2+4)+3(3+3)+1(3+4)+4(4+4)=162.

    vi) By using Definition 2.5 and above given edge partitions Em,n we get,

    M2(G1)=3(1×2)+4(1×3)+6(1×4)+4(2×3)+5(2×4)+3(3×3)+1(3×4)+4(4×4)=209.

    vii) By using definition 2.6 and above given edge partitions Em,n we get,

    H(G1)=6(11+2)+8(11+3)+12(11+4)+8(12+3)+10(12+4)+6(13+3)+2(13+4)+8(14+4)=11.95

    viii) By using definition 2.7 and above given edge partitions Em,n we get,

    HM(G1)=3(1+2)2+3(1+3)2+6(1+4)2+4(2+3)2+5(2+4)2+3(3+3)2+1(3+4)2+4(4+4)2=934

    ix) By using definition 2.8 and above given edge partitions Em,n we get,

    F(G1)=3(1+4)+4(1+9)+6(1+16)+4(4+9)+5(4+16)+3(9+9)+1(9+16)+4(16+16)=516.

    Theorem2. Let G2 be the graph of Buslfan, The various Topological indices of G2 are given as follows.

    i) ABC(G2)=20.77

    ii) RA(G2)=11.31

    iii) S(G2)=11.04

    iv) GA(G2)=22.23

    v) M1(G2)=148

    vi) M2(G2)=176

    vii) F(G2)=526

    viii) H(G2)=9.45

    ix) HM(G2)=878.00

    Proof. Let G2 be the graph of Buslfan with edge set E, Let E(m,n) represents the class of edges of G2 joining vertices of degrees m and n. With |E(1,4)|=18, |E(2,4)|=3, |E(4,4)|=5.

    i) By using definition 2.1 and edge partitions E(m,n) we get,

    (G2)==181+421×4+32+422×4+54+424×4=20.77.

    ii) By using def 2.2 and edge partition E(m,n) we get,

    RA(G2)=1811×4+312×4+514×4=11.31

    iii) Definition 2.3 and edge partition E(m,n) gives

    S(G2)=1811+4+312+4+514+4=11.04.

    iv) Using def 2.4 and edge partition E(m,n) we get,

    GA(G2)=361×41+4+62×42+4+104×44+4=22.23

    v) Using def 2.5 and edge partition E(m,n) we get,

    M1(G2)=18(1+4)+3(2+4)+5(4+4)=148

    vi) Using def 2.5 and edge partition E(m,n) we get,

    M2(G2)=18(1×4)+3(2×4)+5(4×4)=176

    vii) Using def 2.6 and edge partition E(m,n) we get,

    H(G2)=36(11+4)+6(12+4)+10(14+4)=9.45

    viii) Using def 2.7 and edge partition E(m,n) we get,

    HM(G)=18(1+4)2+3(2+4)2+5(4+4)2=878

    ix) By using def 2.8 and edge partition E(m,n) we get,

    F(G2)=18(1+16)+3(4+16)+5(16+16)=526

    One can calculate the topological indices of the remaining drugs by adopting a similar procedure applied in Theorem 1, Theorem 2 and using definitions 2.1 to 2.8. Also, the calculated values of all drugs are listed in Table 2.

    Using (1), we have calculated the following diverse linear models for all degree-based topological index, which are given as under:

    1. Regression models for atom bond connectivity index ABC (G):

    Boiling point = 395.921 + 5.802 [ABC (G)]

    Refractive index = 6.034 + 2.468 [ABC (G)]

    FP = 197.699 + 3.486 [ABC (G)]

    MV = -10.083 + 7.258 [ABC (G)]

    Complexity = -107.244 + 18.352 [ABC (G)]

    2. Regression models for the atom-bond connectivity index RA (G)]:

    Boiling point = 385.002+ 10.833[RA (G)]

    Refractive index = 4.535 + 4.408 [RA (G)]

    FP = 191.561+ 6.451[RA (G)]

    MV = -14.889 + 12.947 [RA (G)]

    Complexity = -125.985+ 33.119 [RA (G)]

    3. Regression models for atom bond connectivity index S (G):

    Boiling point = 384.612+ 10.664 [S (G)]

    Refractive Index = 5.102 + 4.293 [S (G)]

    FP = 191.365+ 6.348 [S (G)]

    MV = -11.972 + 12.540 [S (G)]

    Complexity = -125.538 + 32.402 [S (G)]

    4. Regression models for atom bond connectivity index GA (G):

    Boiling point = 386.718+ 5.013 [GA (G)]

    Refractive Index = 6.258 + 2.010 [GA (G)]

    FP = 192.642 + 2.985 [GA (G)]

    MV = -7.333 + 5.841 [GA (G)]

    Complexity = 121.577 + 15.270 [GA (G)]

    5. Regression models for atom bond connectivity index M1 (G):

    Boiling point = 405.004+.738 [M1 (G)]

    Refractive Index = 9.310 +.318[M1 (G)]

    FP = 202.599 + 0.448 [M1 (G)]

    MV = 1.253 +.932 [M1 (G)]

    Complexity = -97.937 + 2.432 [M1 (G)]

    6. Regression models for atom bond connectivity index HM (G):

    Boiling point = 419.068 +.115 [HM (G)]

    Refractive index = 13.368 + 0.052 [HM (G)]

    FP = 210.170 + 0.071 [HM (G)]

    MV = 13.491 +.151 [HM (G)]

    Complexity = -78.956 +.404 [HM (G)]

    7. Regression models for atom bond connectivity index M2 (G):

    Boiling point = 414.903+.535 [M2 (G)]

    Refractive index = 13.461 +.233 [M2 (G)]

    FP = 208.190 +.327 [M2 (G)]

    MV = 15.185 +.677 [M2 (G)]

    Complexity = -87.855 + 1.849 [M2 (G)]

    8. Regression models for the atom-bond connectivity index F (G):

    Boiling point = 422.835+.200 [F (G)]

    Refractive Index = 13.494 +.092 [F (G)]

    FP = 212.010 +.124 [F (G)]

    MV = 13.736 +.273 [F (G)]

    Complexity = -71.482 +.717 [F (G)]

    9. Regression models for atom bond connectivity index H (G):

    Boiling point = 377.349 + 12.647 [H (G)]

    Refractive Index = 4.240 + 4.943 [H (G)]

    FP = 187.144+ 7.500 [H (G)]

    MV = -14.817 + 14.434 [H (G)]

    Complexity = -136.607 + 37.543 [H (G)]

    The physicochemical properties of 13 blood cancer drugs are presented in Table 2. Their TI values are listed in Table 1 and computed from their molecular structure. The correlation coefficient between five physicochemical properties and TIs is listed in Table 3. The graph between the correlation coefficient of the physicochemical properties of the drug and the topological index is drawn in Figure 2.

    Table 1.  The TI values of candidate drugs.
    Name of drug ABC(G) RA(G) S(G) GA(G) M1(G) M2(G) F(G) H(G) HM(G)
    Azacitidine 22.04 13.12 13.46 27.72 162 209 516 11.95 934.00
    Buslfan 20.77 11.31 11.04 22.23 148 176 526 9.45 878.00
    Mercaptopurine 10.91 6.52 6.74 14.25 76 93 210 6.10 396.00
    Tioguanine 12.39 7.43 7.65 16.12 86 105 238 6.93 448.00
    Nelarabine 27.99 16.29 16.67 35.13 206 262 652 14.85 1176.00
    Cytarabine 22.77 13.55 13.68 28.62 168 218 536 12.32 972.00
    Clofarabine 24.24 14.04 14.43 30.59 180 233 570 12.82 1036.00
    Bosutinib 51.18 28.73 29.39 61.92 374 467 1198 25.39 2132.00
    Dasatinib 45.50 25.95 26.60 56.11 330 412 1028 23.43 1852.00
    Melphala 28.12 16.18 16.15 33.33 202 252 656 14.28 1160.00
    Dexamethasone 44.81 24.85 25.37 54.14 354 493 1242 21.86 2228.00
    Doxorubicine 52.32 30.01 30.76 65.33 396 522 1288 27.11 2332.00
    Carboplatin 19.82 10.76 10.95 23.16 152 202 532 9.34 936.00

     | Show Table
    DownLoad: CSV
    Table 2.  Physical properties of drugs.
    Name of drug Molar volume (cm3) Boiling Point ℃ Refractive Index (m3 mol−1) Complexity Flash Point ℃
    Azacitidine 117.10 534.21 54.10 384.00 277.00
    Buslfan 182.40 464.00 50.90 234.40
    Mercaptopurine 94.20 491.00 41.00 19.00 250.50
    Tioguanine 80.20 460.70 46.89 225.00 232.00
    Nelarabine 149.90 721.00 65.80 377.00 389.90
    Cytarabine 128.40 547.70 52.60 383.00 283.80
    Clofarabine 143.10 550.00 63.60 370.00 286.40
    Bosutinib 388.30 649.70 142.12 734.00 346.70
    Dasatinib 366.40 133.08 642.00
    Melphala 231.20 473.00 78.23 265.00 239.00
    Dexamethasone 296.20 568.20 100.20 805.00 298.00
    Doxorubicine 336.60 216.00 134.59 977.00 443.80
    Carboplatin 366.40 60.04 177.00

     | Show Table
    DownLoad: CSV
    Table 3.  Correlation coefficients.
    Topological Index Correlation coefficient of complexity Correlation coefficient of refractive index Correlation coefficient of flash point Correlation coefficient of boiling point Correlation coefficient of molar volume
    ABC(G) 0.943 0.966 0.731 0.672 0.953
    RA(G) 0.947 0.965 0.751 0.7 0.946
    S(G) 0.949 0.966 0.759 0.708 0.942
    GA(G) 0.951 0.966 0.764 0.711 0.938
    M1(G) 0.953 0.952 0.728 0.66 0.939
    M2(G) 0.96 0.928 0.72 0.645 0.913
    HM(G) 0.954 0.927 0.705 0.625 0.822
    F(G) 0.949 0.925 0.692 0.609 0.927
    H(G) 0.95 0.965 0.772 0.725 0.936

     | Show Table
    DownLoad: CSV
    Figure 2.  Physicochemical properties and Tis.

    In this section, QSPR modeling is done to find a relation between physicochemical properties of blood cancer drugs such as medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin and their calculated degree based TIs. whereas TIs, b, r, and N are independent variable, regression model constant, correlation coefficient and sample size respectively. We perceive the correlation coefficient come to be one the experimental and theoretical calculation are close that are marked bold in tables. This type of test can helpful to compare and decide the improvement of model. It is noted the value of r is greater than 0.6 and p value is less than 0.05. Hence, it decides all properties are significant. Tables 412 Represent the Statistical parameters used in QSPR models of TIs.

    Table 4.  Statistical parameters used in the QSPR model of ABC (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 395.921 5.802 .672 .451 8.228 .017 Significant
    Refractive index 13 6.034 2.468 .966 .933 154.093 .000 Significant
    Flash point 11 197.699 3.486 .731 .535 10.343 .011 Significant
    Molar volume 12 −10.083 7.258 .953 .909 99.904 .000 Significant
    Complexity 12 −107.244 18.352 .943 .889 79.955 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 5.  Statistical parameters used in the QSPR model of RA (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 385.002 10.833 .700 .490 9.614 .011 Significant
    Refractive index 13 4.535 4.408 .965 .932 150.523 .000 Significant
    Flash point 11 191.561 6.451 .751 .564 11.648 .008 Significant
    Molar volume 12 −14.889 12.947 .946 .894 84.680 .000 Significant
    Complexity 12 −125.985 33.119 .947 .896 86.612 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 6.  Statistical parameters used in the QSPR model of S (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 384.612 10.664 .708 .501 10.027 .010 Significant
    Refractive index 13 5.102 4.293 .966 .934 155.042 .000 Significant
    Flash point 11 191.365 6.348 .759 .576 12.232 .007 Significant
    Molar volume 12 −11.972 12.540 .942 .887 78.511 .000 Significant
    Complexity 12 −125.538 32.402 .949 .900 90.006 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 7.  Statistical parameters used in the QSPR model of GA (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 386.718 5.013 .711 .505 10.202 .010 Significant
    Refractive index 13 6.258 2.010 .966 .933 152.002 .000 Significant
    Flash point 11 192.642 2.985 .764 .583 12.597 .006 Significant
    Molar volume 12 −7.333 5.841 .938 .879 72.917 .000 Significant
    Complexity 12 −121.577 15.270 .951 .905 95.147 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 8.  Statistical parameters used in the QSPR model of M1 (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 405.004 .738 .660 .436 7.721 .019 Significant
    Refractive index 13 9.310 .318 .952 .907 106.874 .000 Significant
    Flash point 11 202.599 .448 .728 .530 10.153 .011 Significant
    Molar volume 12 1.253 .932 .939 .882 74.603 .000 Significant
    Complexity 12 −97.937 2.432 .953 .908 98.435 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 9.  Statistical parameters used in the QSPR model of M2 (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 414.903 .535 .645 .416 7.127 .024 Significant
    Refractive index 13 13.461 .233 .928 .861 67.942 .000 Significant
    Flash point 11 208.190 .327 .720 .518 9.666 .013 Significant
    Molar volume 12 15.185 .677 .913 .834 50.072 .000 Significant
    Complexity 12 −87.855 1.849 .960 .922 118.593 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 10.  Statistical parameters used in the QSPR model of HM (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 419.068 .115 .625 .391 6.420 .030 Significant
    Refractive index 13 13.368 .052 .927 .859 67.002 .000 Significant
    Flash point 11 210.170 .071 .705 .497 8.876 .015 Significant
    Molar volume 12 13.491 .151 .822 .849 56.325 .000 Significant
    Complexity 12 −78.956 .404 .954 .911 102.026 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 11.  Statistical parameters used in the QSPR model of F (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 422.835 .200 .609 .370 5.882 .036 Significant
    Refractive index 13 13.494 .092 .925 .855 64.869 .000 Significant
    Flash point 11 212.010 .124 .692 .478 8.256 .018 Significant
    Molar volume 12 13.736 .273 .927 .859 64.032 .000 Significant
    Complexity 12 −71.482 .717 .949 .901 90.832 .000 Significant

     | Show Table
    DownLoad: CSV
    Table 12.  Statistical parameters used in the QSPR model of H (G).
    Physiochemical Property N A b r r2 F p Indicator
    Boiling Point 12 377.349 12.647 .725 .526 11.103 .008 Significant
    Refractive index 13 4.240 4.943 .965 .930 147.100 .000 Significant
    Flash point 11 187.144 7.500 .772 .596 13.299 .005 Significant
    Molar volume 12 −14.817 14.434 .936 .877 71.041 .000 Significant
    Complexity 12 −136.607 37.543 .950 .902 91.960 .000 Significant

     | Show Table
    DownLoad: CSV

    Measure of variation for an observation calculated around the computed regression line is said to be standard error estimate. It measures the amount of accuracy of predictions made around computed regression line and is mentioned in Table 13. We also compare the physicochemical properties of the experimental and theoretical calculated values of the models and are presented in Tables 1418.

    Table 13.  Standard error of estimate.
    Topological Index Std. Error of the estimate for boiling point Std. Error of the estimate for refractive index Std. Error of the estimate for flash point Std. Error of the estimate for molar volume Std. Error of the estimate for complexity
    ABC(G) 125.47771 9.78297 49.28724 34.98955 99.29113
    RA(G) 135.48910 9.89048 47.70434 3.69784 95.80944
    S(G) 135.49670 9.75496 47.04354 38.98953 94.16957
    GA(G) 135.48311 9.84552 46.64458 40.28320 91.83836
    M1(G) 135.40209 11.57777 49.53170 39.877986 90.43550
    M2(G) 135.28260 14.14755 50.17335 47.32703 83.04506
    HM(G) 135.30024 14.23249 51.27036 45.04104 88.97405
    F(G) 135.31481 14.43119 52.18328 43.52285 93.78305
    H(G) 135.48656 9.99697 45.90422 40.74687 93.26266

     | Show Table
    DownLoad: CSV
    Table 14.  Comparison of actual and computed values for molar volume from regression models.
    Name of drug Molar volume of drug Molar volume from regression model for
    ABC(G) Index
    Molar volume from regression model for
    RA(G) Index
    Molar volume from regression model for
    SCI(G) Index
    Molar volume from regression model for
    GA(G) Index
    Molar volume from regression model for
    M1(G) Index
    Molar volume from regression model for
    M2(G)Index
    Molar volume from regression model for
    F(G)Index
    Molar volume from regression model for H(G) Index Molar volume from regression model for
    HM(G)Index
    Azacitidine 117.1 cm3 149.883 139.827 156.816 154.579 152.237 156.678 154.604 157.669 154.525
    Buslfan 182.4 cm3 140.665 107.460 126.469 122.512 139.189 134.337 157.334 121.584 146.069
    Mercaptopurine 94.2 cm3 69.1017 64.0877 72.5476 75.9012 72.085 78.146 71.066 73.2304 73.287
    Tioguanine 80.2 cm3 79.8436 74.8337 83.959 86.8239 81.405 86.27 78.71 85.2106 81.139
    Nelarabine 149.9 cm3 193.068 177.374 197.069 197.861 193.245 192.559 191.732 199.527 191.067
    Cytarabine 128.4 cm3 155.181 144.618 159.575 159.836 157.829 162.771 160.064 163.009 160.263
    Clofarabine 143.1 cm3 165.850 151.091 168.980 171.343 169.013 172.926 169.346 170.226 169.927
    Bosutinib 388.3 cm3 361.381 313.835 356.578 354.341 349.821 331.344 340.79 351.662 335.423
    Dasatinib 366.4 cm3 320.156 288.459 321.592 320.405 308.813 294.109 294.38 323.371 293.143
    Melphala 231.2 cm3 194.012 169.994 190.549 187.347 189.517 185.789 192.824 191.300 188.651
    Dexamethasone 296.2 cm3 315.148 268.132 306.167 308.898 331.181 348.946 352.802 300.710 349.919
    Doxorubicine 336.6 cm3 369.655 336.104 373.758 374.259 370.325 368.579 365.36 376.488 365.623
    Carboplatin 133.770 106.036 125.341 127.944 142.917 151.939 158.972 119.996 154.827

     | Show Table
    DownLoad: CSV
    Table 15.  Comparison of actual and computed values for flash point from regression models.
    Name of drug Flash point of drug Flash point computed from regression model for ABC(G) Index Flash point computed from regression model for RA(G) Index Flash point computed from regression model for SCI(G) Index Flash point computed from regression model for GA(G) Index Flash point computed from regression model for M1(G) Index Flash point computed from regression model for M2(G)Index Flash point computed from regression model for F(G)Index Flash point computed from regression model for H(G) Index Flash point computed from regression model for HM(G)Index
    Azacitidine 277 ℃ 523.797 514.456 528.149 525.678 524.56 526.718 526.035 528.480 526.478
    Buslfan 234.4 ℃ 516.428 487.373 502.342 498.157 514.228 509.063 528.035 496.863 520.038
    Mercaptopurine 250.5 ℃ 459.220 451.083 456.487 458.153 461.092 464.658 464.835 454.495 464.608
    Tioguanine 232 ℃ 467.807 460.074 466.191 467.527 468.472 471.078 470.435 464.992 470.588
    Nelarabine 389.9 ℃ 558.319 545.872 562.380 562.824 557.032 555.073 553.235 565.157 554.308
    Cytarabine 283.8 ℃ 528.032 518.464 530.495 530.190 528.988 531.533 530.035 533.16 530.848
    Clofarabine 286.4 ℃ 536.561 523.881 538.493 540.065 537.844 539.558 536.835 539.483 538.208
    Bosutinib 346.7 ℃ 692.867 660.051 698.027 697.123 681.016 664.748 662.435 698.456 664.248
    Dasatinib 659.912 638.819 668.274 667.997 648.544 635.323 628.435 673.668 632.048
    Melphala 239 ℃ 559.073 539.697 556.835 553.801 554.08 549.723 554.035 557.948 552.468
    Dexamethasone 298 ℃ 655.908 621.811 655.157 658.12 666.256 678.658 671.235 653.812 675.288
    Doxorubicine 443.8 ℃ 699.481 678.684 712.636 714.217 697.252 694.173 680.435 720.209 687.248
    Carboplatin 5109166 486.182 501.382 502.819 517.18 522.973 529.235 495.472 526.708

     | Show Table
    DownLoad: CSV
    Table 16.  Comparison of actual and computed values for refractive index from regression models.
    Name of drug Refractive Index of drug Refractive Index computed from regression model for
    ABC(G) Index
    Refractive Index computed from regression model for
    RA(G) Index
    Refractive Index computed from regression model for
    SCI(G) Index
    Refractive Index computed from regression model for
    GA(G) Index
    Refractive Index computed from regression model for
    M1(G) Index
    Refractive Index computed from regression model for
    M2(G)
    Index
    Refractive Index computed from regression model for
    F(G)
    Index
    Refractive Index computed from regression model for H(G) Index Refractive Index computed from regression model for
    HM(G)
    Index
    Azacitidine 54.1 (m3 mol−1) 60.4287 57.2106 62.8857 61.9752 60.826 62.158 60.966 63.3088 61.936
    Buslfan 50.9 (m3 mol−1) 57.2943 46.1906 52.4967 50.9403 56.374 54.469 61.886 50.9513 59.024
    Mercaptopurine 41 (m3 mol−1) 32.9598 31.4238 34.0368 34.9005 33.478 35.13 32.814 34.3923 33.96
    Tioguanine 46.89 (m3 mol−1) 36.6125 35.0824 37.9434 38.6592 36.658 37.926 35.39 38.4949 36.664
    Nelarabine 65.8 (m3 mol−1) 75.1133 69.9938 76.6663 76.8693 74.818 74.507 73.478 77.6435 74.52
    Cytarabine 52.6 (m3 mol−1) 62.2303 58.8415 63.8302 63.7842 62.734 64.255 62.806 65.1377 63.912
    Clofarabine 63.6 (m3 mol−1) 65.8583 61.0455 67.0499 67.7439 66.55 67.75 65.934 67.6092 67.24
    Bosutinib 142.12 (m3 mol−1) 132.346 116.454 131.273 130.717 128.242 122.272 123.71 129.742 124.232
    Dasatinib 133.08 (m3 mol−1) 118.328 107.814 119.295 119.039 114.25 109.457 108.07 120.054 109.672
    Melphala 78.23 (m3 mol−1) 75.4341 67.4812 74.4339 73.2513 73.546 72.177 73.846 74.8260 73.688
    Dexamethasone 100.2 (m3 mol−1) 116.625 100.893 114.015 115.079 121.882 128.33 127.758 112.294 129.224
    Doxorubicine 134.59 (m3 mol−1) 135.159 124.035 137.154 137.571 135.238 135.087 131.99 138.244 134.632
    Carboplatin 60.04 (m3 mol−1) 54.9497 45.7057 52.1103 52.8096 57.646 60.527 62.438 50.4076 62.04

     | Show Table
    DownLoad: CSV
    Table 17.  Comparison of actual and computed values for complexity from regression models.
    Name of drug Complexity of drug Complexity computed from regression model for ABC(G) Index Complexity computed from regression model for RA(G) Index Complexity computed from regression model for SCI(G) Index Complexity computed from regression model for GA(G) Index Complexity computed from regression model for M1(G) Index Complexity computed from regression model for M2(G) Index Complexity computed from regression model for F(G) Index Complexity computed from regression model for H(G) Index Complexity computed from regression model for
    HM(G)Index
    Azacitidine 384 297.234 269.787 310.592 301.707 296.047 298.586 298.49 312.031 298.38
    Buslfan 273.927 186.989 232.180 217.875 261.999 237.569 305.66 218.174 275.756
    Mercaptopurine 190 92.9763 76.0409 92.8514 96.0205 86.895 84.102 79.088 92.4053 81.028
    Tioguanine 225 120.137 103.529 122.337 124.575 111.215 106.29 99.164 123.566 102.036
    Nelarabine 377 406.428 365.832 414.603 414.858 403.055 396.583 396.002 420.906 396.148
    Cytarabine 383 310.631 282.041 317.721 315.450 310.639 315.227 312.83 325.922 313.732
    Clofarabine 370 337.608 298.600 342.022 345.532 339.823 342.962 337.208 344.694 339.588
    Bosutinib 734 832.011 714.906 826.756 823.941 811.631 775.628 787.484 816.609 782.372
    Dasatinib 642 727.772 649.993 736.355 735.222 704.623 673.933 665.594 743.025 669.252
    Melphala 265 408.814 346.954 397.754 387.372 393.327 378.093 398.87 399.507 389.684
    Dexamethasone 805 715.109 597.996 696.500 705.140 762.991 823.702 819.032 684.083 821.156
    Doxorubicine 977 852.932 771.871 871.147 876.012 865.135 877.323 852.014 881.183 863.172
    Carboplatin 177 256.492 183.346 229.263 232.076 271.727 285.643 309.962 214.044 299.188

     | Show Table
    DownLoad: CSV
    Table 18.  Comparision of actural and computed values for boiling point from regression models.
    Name of drug Boiling Point of drug Boiling Point computed from regression model for ABC(G) Index Boiling Point computed from regression model for RA(G) Index Boiling Point computed from regression model for SCI(G) Index Boiling Point computed from regression model for GA(G) Index Boiling Point computed from regression model for M1(G) Index Boiling Point computed from regression model for M2(G)Index Boiling Point computed from regression model for
    F(G)Index
    Boiling Point computed from regression model for H(G) Index Boiling Point computed from regression model for
    HM(G)Index
    Azacitidine 534.2 ± 60 ℃ at 760 mm Hg 523.79 514.45 528.14 525.67 524.56 526.718 526.03 528.48 526.48
    Buslfan 464 ± 28 ℃ at 760 mm Hg 516.42 487.37 502.34 498.15 514.22 509.063 528.03 496.86 520.04
    Mercaptopurine 491 ± 25 ℃ at 760 mm Hg 459.22 451.08 456.48 458.15 461.09 464.658 464.83 454.49 464.61
    Tioguanine 460.7 ± 37 ℃ at 760 mm Hg 467.80 460.07 466.19 467.52 468.47 471.078 470.43 464.99 470.59
    Nelarabine 721 ± 70 ℃ at 760 mm Hg 558.31 545.87 562.38 562.82 557.0 555.073 553.23 565.15 554.31
    Cytarabine 547.7 ± 60 ℃ at 760 mm Hg 528.03 518.46 530.49 530.19 528.98 531.533 530.03 533.16 530.85
    Clofarabine 550 ± 60 ℃ at 760 mm Hg 536.56 523.88 538.49 540.06 537.84 539.558 536.83 539.48 538.21
    Bosutinib 649.7 ± 55 ℃ at 760 mm Hg 692.86 660.05 698.02 697.12 681.01 664.748 662.43 698.45 664.25
    Dasatinib 659.91 638.81 668.27 667.99 648.54 635.323 628.43 673.66 632.05
    Melphala 473 ± 45 ℃ at 760 mm Hg 559.07 539.69 556.83 553.80 554.08 549.723 554.03 557.94 552.47
    Dexamethasone 568.2 ± 5 ℃ at 760 mm Hg 655.90 621.81 655.15 658.12 666.25 678.658 671.23 653.81 675.29
    Doxorubicine 216 ± 65 ℃ at 760 mm Hg 699.48 678.68 712.63 714.21 697.25 694.173 680.43 720.20 687.25
    Carboplatin 366.4 ± 60 ℃ at 760 mm Hg 510.91 486.18 501.38 502.81 517.18 522.973 529.23 495.47 526.71

     | Show Table
    DownLoad: CSV

    It is obvious from statistical parameters used in linear QSPR models and topological indices that: ABC (G) index provides high correlated value for molar volume r = 0.953. HM index offers maximum correlated value of complexity i.e. r = 0.954. GA index depicts utmost correlation coefficient of refractive index r = 0.966. Harmonic H (G) provides maximum correlated value of flash point r = 0.772.

    In this paper, we have computed topological indices and relate it with linear QSPR model for the drugs used to cure blood cancer. The results obtained in this way will helpful for designing some new drugs to obtain preventive measure for the said disease in pharmaceutical industry. The correlation coefficient has significant contribution to the range of topological indices for these drugs. The results are an eye-opener for the researcher working on drugs science in pharmaceutical industry and provide a way to estimate physicochemical properties for novice discoveries of anticancer medicines to cure other specific cancer disease.

    We declare no conflict of interest.



    [1] B. Figuerola, C. Avila, The phylum bryozoa as a promising source of anticancer drugs, Mar. Drugs, 17 (2019), 477. https://doi.org/10.3390/md17080477 doi: 10.3390/md17080477
    [2] G. Genovese, A. K. Kähler, R. E. Handsaker, J. Lindberg, S. A. Rose, S. F. Bakhoum, et al., Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, New Eng. J. Med., 371 (2014), 2477-2487. https://doi.org/10.1056/NEJMoa1409405 doi: 10.1056/NEJMoa1409405
    [3] T. Terwilliger, M. J. B. C. J. Abdul-Hay, Acute lymphoblastic leukemia: A comprehensive review and 2017 update, Blood Cancer J., 7 (2017), e577-e577. https://doi.org/10.1038/bcj.2017.53 doi: 10.1038/bcj.2017.53
    [4] A. Aslam, Y. Bashir, S. Ahmad, W. Gao, On topological indices of certain dendrimer structures, Z. Naturforsch., 72 (2017), 559-566. https://doi.org/10.1515/zna-2017-0081 doi: 10.1515/zna-2017-0081
    [5] S. M. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled, S. Gavade, QSPR anlysis of certain degree based topological indices, J. Statis. Appl. Prob., 6 (2017), 1-11. https://doi.org/10.18576/jsap/060211 doi: 10.18576/jsap/060211
    [6] M. Randic, Comparative structure-property studies: regressions using a single descriptor, Croat. Chem. Acta, 66 (1993), 289-312.
    [7] M. Randic, Quantitative structure-propert relationship: boiling points and planar benzenoids, New J. Chem., 20 (1996) 1001-1009.
    [8] M. C. Shanmukha, N. S. Basavarajappa, K. N. Anilkumar, Predicting physico-chemical properties of octane isomers using QSPR approach, Malaya J. Math., 8 (2020) 104-116. https://doi.org/10.26637/MJM0801/0018 doi: 10.26637/MJM0801/0018
    [9] S. Hayat, M. Imran, J. Liu, Correlation between the Estrada index and Q-electronic energies for benzenoid hydrocarbons with applica-tions to boron nanotubes, Int. J. Quant. Chem., 2019. https://doi.org/10.1002/qua.26016 doi: 10.1002/qua.26016
    [10] A. Aslam, S. Ahmad, W. Gao, On topological indices of boron triangular nanotubes, Z. Naturforsch., 72 (2017), 711-716. https://doi.org/10.1515/zna-2017-0135 doi: 10.1515/zna-2017-0135
    [11] S. Hayat, S. Wang, J. Liu, Valency-based topological descrip-tors of chemical networks and their applications, Appl. Math. Model., 2018. https://doi.org/10.1016/j.apm.2018.03.016 doi: 10.1016/j.apm.2018.03.016
    [12] S. Hayat, M. Imran, J. Liu, An efficient computational technique for degree and distance based topological descriptors with applications, 2019. https://doi.org/10.1109/ACCESS.2019.2900500
    [13] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849-855.
    [14] T. Barbui, J. Thiele, H. Gisslinger, H. M. Kvasnicka, A. M. Vannucchi, P. Guglielmelli, et al., The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion, Blood Cancer J., 8 (2018), 1-11. https://doi.org/10.1038/s41408-018-0054-y doi: 10.1038/s41408-018-0054-y
    [15] M. Randic, On Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
    [16] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210-218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4
    [17] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376. https://doi.org/10.1007/s10910-009-9520-x doi: 10.1007/s10910-009-9520-x
    [18] M., Adnan, S. A. U. H. Bokhary, G. Abbas, T. Iqbal, Degree-based topological indices and QSPR analysis of antituberculosis drugs, J. Chem., 2022, Article ID 5748626. https://doi.org/10.1155/2022/5748626 doi: 10.1155/2022/5748626
    [19] I. Gutman, Degree based topological indices, Croat. Chem. Acta, 86 (2013), 351-361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294
    [20] S. Fajtlowicz, On conjectures of grafitti Ⅱ, Congr. Numerantium, 60 (1987), 189-197.
    [21] G. H. Shirdel, H. RezaPour, A. M. Sayadi, The hyper-zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213-220.
    [22] M. Imran, M. K. Siddiqui, A. Q. Baig, W. Khalid, H. Shaker, Topological properties of cellular neural networks, J. Intell. Fuzzy Syst., 37 (2019), 3605-3614. https://doi.org/10.3233/JIFS-181813 doi: 10.3233/JIFS-181813
    [23] B. Furtula, I. Gutman, A forgotton topological index, J. Math. Chem., 53 (2015), 213-220. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z
    [24] W. Gao, W. Wang, M. K. Jamil, M. R. FArhani, Electron energy studing of moleculer structurevia forgotten topological index computation, J. Chem., 2016. https://doi.org/10.1155/2016/1053183 doi: 10.1155/2016/1053183
    [25] I. B. M. Corp, Released. IBM SPSS Statistics for Windows, Version 24.0 (Armonk, NY: IBM Corp., 2016).
    [26] J. Liu, M. Arockiaraj, M. Arulperumjothi, S. Prabhu, Distance based and Bond additive topological indices of certain repurposed antiviral drug compounds tested for treating COVID- 19, Int. J. Quantum Chem., 121 (2021), e26617. https://doi.org/10.1002/qua.26617 doi: 10.1002/qua.26617
    [27] S. Prabhu, G. Murugan, M. Arockiaraj, M. Arulperumjothi, V. Manimozhi, Molecular topological characterization of three classes of polycyclic aromatic hydrocarbons, J. Mol. Struct., 1229 (2021), 129501. https://doi.org/10.1016/j.molstruc.2020.129501 doi: 10.1016/j.molstruc.2020.129501
    [28] S. Prabhu, Y. S. Nisha, M. Arulperumjothi, D. Sagaya Rani Jeba, V. Manimozhi, On detour index of Cycloparaphenylene and polyphenylene molecular structures, Sci. Rep-UK, 2021. https://doi.org/10.1038/s41598-021-94765-6 doi: 10.1038/s41598-021-94765-6
    [29] Y. Chu, K. Julietraja, P. Venugopal, M. K. Siddiqui, S. Prabhu, Degree- and irregularity-based molecular descriptors for benzenoid systems, Eur. Phys. J. Plus, 136 (2021), 78. https://doi.org/10.1140/epjp/s13360-020-01033-z doi: 10.1140/epjp/s13360-020-01033-z
  • This article has been cited by:

    1. Zhi-hao Hui, Salma Kanwal, Adnan Aslam, Saadia Saeed, Nazeran Idrees, A mathematical investigation for appraisal of crystal structure lattices through eccentricity-based topological invariants, QSPR analysis, and MCDA, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03495-9
    2. Lei Huang, Yong Wang, K. Pattabiraman, P. Danesh, Muhammad Kamran Siddiqui, Murat Cancan, Topological Indices and QSPR Modeling of New Antiviral Drugs for Cancer Treatment, 2022, 1040-6638, 1, 10.1080/10406638.2022.2145320
    3. Saima Parveen, Nadeem Ul Hassan Awan, Fozia Bashir Farooq, Rakotondrajao Fanja, Qurat ul Ain Anjum, Nasimul Noman, Topological Indices of Novel Drugs Used in Autoimmune Disease Vitiligo Treatment and Its QSPR Modeling, 2022, 2022, 2314-6141, 1, 10.1155/2022/6045066
    4. Saima Parveen, Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Muhammad Farooq Choudhary, Muhammad Kamran Jamil, Topological Indices of Drugs Used in Rheumatoid Arthritis Treatment and Its QSPR Modeling, 2022, 2022, 2314-4785, 1, 10.1155/2022/1562125
    5. Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Saima Parveen, Nazeran Idrees, Salma Kanwal, Tarig A. Abdelhaleem, Patricia E. Allegretti, Topological Indices of Novel Drugs Used in Cardiovascular Disease Treatment and Its QSPR Modeling, 2022, 2022, 2090-9071, 1, 10.1155/2022/9749575
    6. Ali Ahmad, Kashif Elahi, Muhammad Azeem, Senesie Swaray, Muhammad Ahsan Asim, Gohar Ali, Topological Descriptors for the Metal Organic Network and Its Structural Properties, 2022, 2022, 2314-4785, 1, 10.1155/2022/9859957
    7. Rongbing Huang, Abid Mahboob, Muhammad Waheed Rasheed, Sajid Mahboob Alam, Muhammad Kamran Siddiqui, On molecular modeling and QSPR analysis of lyme disease medicines via topological indices, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-03867-9
    8. Saima Parveen, Nadeem Ul Hassan Awan, Fozia Bashir Farooq, Sajjad Hussain, Topological Descriptors and QSPR Models of Drugs used in Blood Cancer, 2023, 1016-2526, 27, 10.52280/pujm.2023.550103
    9. Sobia Sultana, Mahmood Ahmed, Chemical Application of Topological Indices in Infertility Treatment Drugs and QSPR Analysis, 2023, 2023, 1687-8779, 1, 10.1155/2023/6928167
    10. Alaa Altassan, Muhammad Imran, Bilal Ahmad Rather, On $ ABC $ energy and its application to anticancer drugs, 2023, 8, 2473-6988, 21668, 10.3934/math.20231105
    11. Alaa Altassan, Muhammad Imran, General Randić Index of Unicyclic Graphs and Its Applications to Drugs, 2024, 16, 2073-8994, 113, 10.3390/sym16010113
    12. Abdul Rauf Khan, Nadeem ul Hassan Awan, Muhammad Usman Ghani, Sayed M. Eldin, Hanen Karamti, Ahmed H. Jawhari, Yousef E. Mukhrish, Fundamental Aspects of Skin Cancer Drugs via Degree-Based Chemical Bonding Topological Descriptors, 2023, 28, 1420-3049, 3684, 10.3390/molecules28093684
    13. Mohamad Nazri Husin, Abdul Rauf Khan, Nadeem Ul Hassan Awan, Francis Joseph H. Campena, Fairouz Tchier, Shahid Hussain, Van Thanh Tien Nguyen, Multicriteria decision making attributes and estimation of physicochemical properties of kidney cancer drugs via topological descriptors, 2024, 19, 1932-6203, e0302276, 10.1371/journal.pone.0302276
    14. Muhammad Shoaib Sardar, Khalil Hadi Hakami, Vinod Kumar Tiwari, QSPR Analysis of Some Alzheimer’s Compounds via Topological Indices and Regression Models, 2024, 2024, 2090-9063, 10.1155/2024/5520607
    15. K. Pattabiraman, Empowerments of blood cancer therapeutics via molecular descriptors, 2024, 252, 01697439, 105180, 10.1016/j.chemolab.2024.105180
    16. Ali N.A. Koam, Muhammad Azeem, Ali Ahmad, Ibtisam Masmali, Connection number-based molecular descriptors of skin cancer drugs, 2024, 15, 20904479, 102750, 10.1016/j.asej.2024.102750
    17. Sakander Hayat, Sunilkumar M. Hosamani, Asad Khan, Ravishankar L. Hutagi, Umesh S. Mujumdar, Mohammed J. F. Alenazi, A novel edge-weighted matrix of a graph and its spectral properties with potential applications, 2024, 9, 2473-6988, 24955, 10.3934/math.20241216
    18. Fozia Bashir Farooq, Saima Parveen, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Cruz Vargas-De-León, Topological Descriptors and QSPR Modelling of HIV/AIDS Disease Treatment Drugs, 2023, 2023, 1607-887X, 1, 10.1155/2023/9963241
    19. Deepa Balasubramaniyan, Natarajan Chidambaram, Vignesh Ravi, Estimating physico-chemical properties of drugs for prostate cancer using degree-based and neighbourhood degree-based topological descriptors, 2024, 99, 0031-8949, 065233, 10.1088/1402-4896/ad478c
    20. Nadeem ul Hassan Awan, Abdul Ghaffar, Ferdous M. Tawfiq, Ghulam Mustafa, Muhammad Bilal, Mustafa Inc, QSPR analysis for physiochemical properties of new potential antimalarial compounds involving topological indices, 2024, 124, 0020-7608, 10.1002/qua.27391
    21. Abdul Rauf Khan, Nadeem Ul Hassan Awan, Fairouz Tchier, Saeed D. Alahmari, Ashjan F. Khalel, Shahid Hussain, An estimation of physiochemical properties of bladder cancer drugs via degree-based chemical bonding topological descriptors, 2023, 0739-1102, 1, 10.1080/07391102.2023.2292792
    22. Shahid Zaman, Mahnoor Mushtaq, Muhammad Danish, Parvez Ali, Sadaf Rasheed, Topological Characterization of Some New Anti-Viral Drugs for Cancer Treatment, 2024, 2191-1630, 10.1007/s12668-024-01500-2
    23. Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Comparative Analysis of Reverse Degree and Entropy Topological Indices for Drug Molecules in Blood Cancer Treatment through QSPR Regression Models, 2023, 1040-6638, 1, 10.1080/10406638.2023.2271648
    24. Fozia Bashir Farooq, Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer, 2024, 9, 2473-6988, 15119, 10.3934/math.2024733
    25. Xiujun Zhang, Zainab Saeed Bajwa, Shahid Zaman, Sidra Munawar, Dan Li, The study of curve fitting models to analyze some degree-based topological indices of certain anti-cancer treatment, 2024, 78, 0366-6352, 1055, 10.1007/s11696-023-03143-1
    26. W. Tamilarasi, B. J. Balamurugan, New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs, 2024, 12, 2296-2646, 10.3389/fchem.2024.1486933
    27. Hongyu Peng, Lin Hao, Junjie Feng, Wei Xu, Hongyuan Wei, Predictive Models for Sensitivities and Detonation Velocity of Energetic Materials Based on Nonlinear Kernel Machine and Heuristic Algorithms, 2024, 13, 2227-9717, 39, 10.3390/pr13010039
    28. Puneeth S., Veena Mathad, Shalini K., Sultan Senan Mahde, Damião Pergentino de Sousa, Application of Eccentricity‐Based Topological Indices to the Design and Optimization of Blood Cancer Drugs, 2024, 2024, 2090-9063, 10.1155/joch/2414974
    29. Nazeran Idrees, Esha Noor, Saima Rashid, Fekadu Tesgera Agama, Role of topological indices in predictive modeling and ranking of drugs treating eye disorders, 2025, 15, 2045-2322, 10.1038/s41598-024-81482-z
    30. Nadeem Ul Hassan Awan, Muhammad Usman Ghani, Sakeena Bibi, Syed Ajaz K. Kirmani, Manal Elzain Mohamed Abdalla, A paradigmatic approach to the topological measure of babesiosis drugs and estimating physical properties via QSPR analysis, 2025, 11, 24058440, e41615, 10.1016/j.heliyon.2024.e41615
    31. Fozia Bashir Farooq, Sobia Sultana, Nouf Abdulrahman Alqahtani, Muhammad Imran, Niravkumar Joshi, Optimization of HIV drugs through MCDM technique Analytic Hierarchy Process(AHP), 2025, 20, 1932-6203, e0316617, 10.1371/journal.pone.0316617
    32. Micheal Arockiaraj, J. J. Jeni Godlin, S. Radha, Tariq Aziz, Mitub Al-harbi, Comparative study of degree, neighborhood and reverse degree based indices for drugs used in lung cancer treatment through QSPR analysis, 2025, 15, 2045-2322, 10.1038/s41598-025-88044-x
    33. Sezer Sorgun, Kahraman Birgin, Vertex-Edge-Weighted Molecular Graphs: A Study on Topological Indices and Their Relevance to Physicochemical Properties of Drugs Used in Cancer Treatment, 2025, 1549-9596, 10.1021/acs.jcim.4c02013
    34. Tamilarasi William, Balamurugan Bommahalli Jayaraman, 2025, Chapter 7, 978-981-97-6956-8, 69, 10.1007/978-981-97-6957-5_7
    35. Sumiya Nasir, Mahmood Ahmed, Topological Descriptors of Colorectal Cancer Drugs and Characterizing Physical Properties Via QSPR Analysis, 2025, 2025, 1687-8760, 10.1155/ianc/5512172
    36. A. Berin Greeni, Micheal Arockiaraj, S. Gajavalli, Tariq Aziz, Metab Alharbi, Structural analysis of anti-cancer drug compounds using distance-based molecular descriptors and regression models, 2025, 48, 1292-8941, 10.1140/epje/s10189-025-00481-8
    37. Abdul Rauf Khan, Ifra Naeem, Fairouz Tchier, Fikadu Tesgera Tolasa, Shahid Hussain, Mathematical modeling and estimation of physicochemical characteristics of pneumonia treatment drugs through a novel approach K-Banhatti topological descriptors, 2025, 13, 2296-2646, 10.3389/fchem.2025.1564809
    38. Muhammad Shoaib Sardar, Muhammad Shahid Iqbal, Muhammad Mudassar Hassan, Changjiang Bu, Sharafat Hussain, Improved QSAR methods for predicting drug properties utilizing topological indices and machine learning models, 2025, 48, 1292-8941, 10.1140/epje/s10189-025-00491-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4243) PDF downloads(418) Cited by(38)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog