Loading [MathJax]/jax/output/SVG/jax.js
Research article

Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data

  • In the field of medical applications, graph theory offers diverse topological models for representing the human heart. The key challenge is identifying the optimal structure as an effective diagnostic model. This paper explains the rationale behind using topological visualization, graph analysis, and rough sets via neighborhood systems. We introduce the novel 1-neighborhood system (1-NS) tools, enabling rough set generalization and a heart topological graph model. Exploring minimal and core minimal neighborhoods, vital for classifying subsets and accuracy computation, these approaches outperform existing methods while preserving Pawlak's properties. Multiple topologies are constructed and examined using these systems. The paper presents a real-world example showcasing innovative topological spaces through a human heart's vertex network. These spaces enhance understanding of the heart's structural organization. Two algorithms are introduced for decision-making and generating graph topologies, defining unique spaces. Beyond graph theory, these techniques apply to medical contexts like blood circulation and geographical scenarios such as community street mapping. Implemented using MATLAB, they are valuable tools.

    Citation: R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably. Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data[J]. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379

    Related Papers:

    [1] Habibu Abdullahi, A. K. Awasthi, Mohammed Yusuf Waziri, Issam A. R. Moghrabi, Abubakar Sani Halilu, Kabiru Ahmed, Sulaiman M. Ibrahim, Yau Balarabe Musa, Elissa M. Nadia . An improved convex constrained conjugate gradient descent method for nonlinear monotone equations with signal recovery applications. AIMS Mathematics, 2025, 10(4): 7941-7969. doi: 10.3934/math.2025365
    [2] Xuejie Ma, Songhua Wang . A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
    [3] Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang . A new conjugate gradient method with a restart direction and its application in image restoration. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
    [4] Sani Aji, Poom Kumam, Aliyu Muhammed Awwal, Mahmoud Muhammad Yahaya, Kanokwan Sitthithakerngkiet . An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery. AIMS Mathematics, 2021, 6(8): 8078-8106. doi: 10.3934/math.2021469
    [5] Wei Xue, Pengcheng Wan, Qiao Li, Ping Zhong, Gaohang Yu, Tao Tao . An online conjugate gradient algorithm for large-scale data analysis in machine learning. AIMS Mathematics, 2021, 6(2): 1515-1537. doi: 10.3934/math.2021092
    [6] Jamilu Sabi'u, Ibrahim Mohammed Sulaiman, P. Kaelo, Maulana Malik, Saadi Ahmad Kamaruddin . An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection. AIMS Mathematics, 2024, 9(1): 642-664. doi: 10.3934/math.2024034
    [7] Xiyuan Zhang, Yueting Yang . A new hybrid conjugate gradient method close to the memoryless BFGS quasi-Newton method and its application in image restoration and machine learning. AIMS Mathematics, 2024, 9(10): 27535-27556. doi: 10.3934/math.20241337
    [8] Maulana Malik, Ibrahim Mohammed Sulaiman, Auwal Bala Abubakar, Gianinna Ardaneswari, Sukono . A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection. AIMS Mathematics, 2023, 8(1): 1-28. doi: 10.3934/math.2023001
    [9] Xiaowei Fang . A derivative-free RMIL conjugate gradient method for constrained nonlinear systems of monotone equations. AIMS Mathematics, 2025, 10(5): 11656-11675. doi: 10.3934/math.2025528
    [10] Xiao Guo, Chuanpei Xu, Zhibin Zhu, Benxin Zhang . Nonmonotone variable metric Barzilai-Borwein method for composite minimization problem. AIMS Mathematics, 2024, 9(6): 16335-16353. doi: 10.3934/math.2024791
  • In the field of medical applications, graph theory offers diverse topological models for representing the human heart. The key challenge is identifying the optimal structure as an effective diagnostic model. This paper explains the rationale behind using topological visualization, graph analysis, and rough sets via neighborhood systems. We introduce the novel 1-neighborhood system (1-NS) tools, enabling rough set generalization and a heart topological graph model. Exploring minimal and core minimal neighborhoods, vital for classifying subsets and accuracy computation, these approaches outperform existing methods while preserving Pawlak's properties. Multiple topologies are constructed and examined using these systems. The paper presents a real-world example showcasing innovative topological spaces through a human heart's vertex network. These spaces enhance understanding of the heart's structural organization. Two algorithms are introduced for decision-making and generating graph topologies, defining unique spaces. Beyond graph theory, these techniques apply to medical contexts like blood circulation and geographical scenarios such as community street mapping. Implemented using MATLAB, they are valuable tools.



    Consider the constrained system

    F(x)=0,xΨ, (1.1)

    where the function F:ΨRn is a continuous, monotone, and ΨRn is nonempty, closed and convex. The monotonicity of F implies

    (F(x)F(y))T(xy)0,x,yΨ. (1.2)

    This problem has applications in financial forecasting problems [1] and compressive sensing [2]. The Newton method [3], quasi-Newton methods [4], and conjugate gradient (CG) methods [5] are among the most often used approaches for solving it. When dealing with large-scale nonsmooth algebraic systems, CG methods are seen to be the most successful. The iterative technique for the CG algorithm is as follows:

    x0Rnxk+1=xk+αkdk, (1.3)

    the vector dk is given by

    dk=F0,k=0,dk=Fk+βkdk1,k1, (1.4)

    where Fk=F(xk), and βk is the CG formula that differentiates CG methods. One of the most efficient CG formulas with restarting feature is the Polak-Ribiˊere-Polyak (PRP) [6] formula defined by

    βPRPk=FTk+1ykFk2, (1.5)

    where yk=Fk+1Fk. Despite the good features of the formula (1.5), it doesn't satisfy the sufficient descent condition (SDC). This opens up the possibility for future investigations on the modification of the PRP formula to satisfy the SDC. There are different PRP algorithms for solving the general monotone system of nonlinear equations in the literature. The first PRP algorithm for solving monotone algebraic systems was proposed by Cheng [7] where he extended the default PRP using the hyperplane technique discussed in [8]. Subsequently, Yu [9] proposed the derivative-free PRP for a large-scale monotone system that uses the backtracking line search procedure. Ahookhosh [10] proposed a descent three-term PRP algorithm for solving large-scale nonlinear monotone equations that combine extended PRP formula with the projection technique. Yuan and Zhang [11] proposed another descent-modified PRP CG algorithm for monotone nonlinear equations. Sabi'u and Gadu [12]proposed a projection-based hybrid FR and PRP algorithm for the monotone system. Others are; the improved three-term PRP CG method [13], spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations [14], the new hybrid algorithm for solving large-scale monotone nonlinear equations [15], and the accelerated CG algorithm for solving nonlinear monotone equations and image restoration problems [16].

    Moreover, for the convex-constrained system (1.1), Jinkui [17] proposed a spectral PRP projection algorithm for solving nonlinear monotone equations with convex constraints. Followed by; the projection-based PRP-like algorithm [18], the modified spectral PRP conjugate gradient projection method for solving large-scale monotone equations and its application in compressed sensing [19], the new hybrid prpfr CG method for solving nonlinear monotone equations and image restoration problems [20], the modified PRP CG projection method for solving large scale nonlinear convex constrained monotone equations [21], the modified PRP CG method with weaker conditions [22], the PRP-like algorithm for monotone operator equations [23], and the modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint [24]. In this work, we will propose a scaled PRP CG gradient algorithm for constrained nonlinear systems in which the scaling parameters are determined by approaching the quasi-Newton direction and exploiting the advantages of the well-known Barzilai-Borwein technique. The appealing features of our algorithm are: (i) derivative and matrix-free algorithm, (ii) exploiting best out of the PRP formula numerically and theoretically in contrast to conventional scaled CG algorithms, (iii) the application of the proposed algorithm in solving the two-joint planar robotic manipulator problems, and finally, (iv) the proposed directions will satisfy the SDC independent of the line search procedure.

    The next section will discuss the proposed algorithm using the scaling strategy, Section 3 contains the global convergence of the method. The numerical experiment will be presented in Section 4, and the last section will contain the concluding remarks.

    The scaling strategy is proved to be an efficient strategy for enhancing numerical and theoretical performances of the CG methods, see [25,26]. In line with this, we scaled the PRP CG (SPRP) formula to get

    βSPRPk=γβPRPk, (2.1)

    such that |γ|1. We are going to propose two effective ways of computing the parameter γ at each iteration.

    We are going to propose an optimal choice for the scaling parameter γ at every iteration by tending the proposed direction to approach the general quasi-Newton direction. Starting with the quasi-Newton equation

    yk=Bk+1sk, (2.2)

    where Bk+1 is a positive definite and symmetric Jacobian approximate. Now, the general quasi-Newton direction is as follows:

    dk+1=Hk+1Fk+1, (2.3)

    where the matrix Hk+1 is the inverse of Bk+1. Now, using (1.4) and (2.1), the SPRPR search direction can be written as

    dk+1=Fk+1+βSPRPkdk,k=0,1,. (2.4)

    In order to incorporate Jacobian approximation information in the quasi-Newton direction into our scheme, since the quasi-Newton schemes employ the actual Jacobian approximations, from (2.3), (2.4), and also by the virtue of equality relation, we get

    Hk+1Fk+1=Fk+1+γFTk+1ykFk2dk. (2.5)

    Multiplying (2.5) by Bk+1sTk to obtain

    sTkFk+1=Bk+1sTkFk+1γFTk+1ykFk2Bk+1sTkdk. (2.6)

    Solving for γ after eliminating the matrix Bk+1 in (2.6) by using (2.2) to get

    γk=(yksk)TFk+1βPRPkyTkdk. (2.7)

    We further achieved |γ1k|1 by using the Polak-Ribiˊere-Polyak non-negative restriction to obtain

    γ1k=min{1,|γk|}. (2.8)

    We will again propose another optimal choice for the scaling parameter γ by using some prominent features of the Barzilai-Borwein approach. The Barzilai-Borwein [27] proposed some prevalent choices for the scaling parameters given by

    ω1k=sTkskyTksk,andω2k=sTkykyTkyk. (2.9)

    By considering Perry's point of view, the scaled SPRP search direction can be written as

    d0=F0,dk+1=^Hk+1Fk+1,k=0,1,, (2.10)

    where ^Hk+1 is defined by

    ^Hk+1=IγykdTkFk2. (2.11)

    Now, we aim at taking the advantage of the Barzilai-Borwein [27] approach to propose the parameter γ by minimizing

    minγ^Hk+1ωkI2F, (2.12)

    where .F stands for the Frobenius matrix norm. Moreover, if we assigned Q=^Hk+1ωkI and utilized the relation Q2F=Trace(QTQ), we arrived at

    γk=(1ωk)yTkdkFk2yk2dk2, (2.13)

    In addition, we ensure that all of the prevalent choices for the Barzilai-Borwein scaling parameters are properly integrated into our scheme by suggesting that

    ωk=max{ωmin,min{ωik,ωmax}},i=1,2, (2.14)

    with 0<ωmin<ωmax<. We proposed the following modified version of (2.13) that satisfies |γ2k|1 as

    γ2k=min{1,|γk|}. (2.15)

    Furthermore, to guarantee that the sufficient descent condition is fulfilled independent of the line search process, we provided the following modified SPRP directions

    dSPRP1k+1=ζ1kFk+1+γ1kβPRPkdk,k=0,1,, (2.16)

    and,

    dSPRP2k+1=ζ2kFk+1+γ2kβPRPkdk,k=0,1,, (2.17)

    where

    ζ1k=1+γ1kβPRPkFTk+1dkFk+12,ζ2k=1+γ2kβPRPkFTk+1dkFk+12. (2.18)

    Below we present the proposed algorithm.

    Algorithm 2.1. The scaled PRP projection-based CG algorithm (SPRPCG)

    Step 0. Start by initializing: ϵ0, b(0,1), θ>0, τ>0, a>0, 0<ωminωmax and x0Rn. Set k=0 and d0=F0.

    Step 1. If Fkϵ, terminate, otherwise continue with Step 2.

    Step 2. Determine the scaled PRP CG direction dk via (2.16) or (2.17), where sk=ukxk, and yk=F(uk)Fk+bsk.

    Step 3. Set uk=xk+αkdk and compute αk=max{τθi:i=0,1,2,} satisfying

    F(uk)TdkaαkF(uk)dk2 (2.19)

    Step 4. If ukΨ and F(uk)=0 stop, otherwise

    xk+1=AΨ[xkvkF(hk)], (2.20)

    where A is the projection operator, and

    vk=F(uk)T(xkuk)F(uk)2. (2.21)

    Step 5. Set k=k+1 and repeat from Step 1.

    This section describes the global convergence of the proposed algorithm under the Lipschitz continuous and monotonicity assumptions on F.

    Lemma 3.1. For all k0, the line search (2.19) is well-defined.

    Proof. Suppose there exists k00 such that for i=0,1,2,,

    F(xk0+τθidk0)Tdk0<aτθiF(xk0+τθidk0)dk02. (3.1)

    Let i in (3.1), we have

    F(xk0)Tdk00. (3.2)

    Since the proposed directions satisfiy the sufficient condition, we have

    F(xk0)Tdk0F(xk0)2>0. (3.3)

    Thus, the relations (3.2) and (3.3) yield a contradiction. Hence, the proof is complete.

    Lemma 3.2. [25] If the sequences {xk} and {vk} are produced by the SPRPCG algorithm, then for some M>0 we have

    FkM,limkαkdk=0,k. (3.4)

    Proof. Now, from the line search (2.19), we have

    F(uk)T(xkuk)=F(uk)Tdkaα2kF(uk)dk2>0. (3.5)

    Assume that xΩ such that F(x)=0, using the monotonicity of F, we have

    F(uk)T(xkx)=F(uk)T(xkuk)+F(uk)T(ukx)F(uk)T(xkuk)+F(x)T(ukx)=F(uk)T(xkuk). (3.6)

    Using (3.5) and (3.6) to get

    xk+1x2=AΨ(xkvkF(uk))x2xkvkF(uk)x2=xkx22vkF(uk)T(xkx)+v2kF(uk)2. (3.7)

    By the definition of vk, and the Cauchy Schwarz inequality in (3.7), we obtain

    xk+1x2xkx22vkF(uk)T(xkuk)+v2kF(uk)2xkx2(F(uk)T(xkuk))2F(uk)2xkx2a2xkuk4, (3.8)

    thus, we have

    xk+1xxkx,k0. (3.9)

    Therefore, {xkx} is a decreasing sequence and hence convergent. Now, utilizing (3.9) and the Lispchitz continuity of F, we get

    F(xk)=F(xk)F(x)LxkxLx0x=M. (3.10)

    By (2.19), monotonicity of F, and the Cauchy Schwarz inequality, we obtain

    aF(uk)xkuk2F(uk)T(xkuk)F(uk)xkuk, (3.11)

    which gives

    axkuk1. (3.12)

    From (3.12), we see that the sequence {uk} is bounded. Also, from (3.8), we obtain

    a2k=0xkuk4k=0(xkx2xk+1x2)<. (3.13)

    This implies

    limkxkuk=limkαkdk=0. (3.14)

    The proof is now complete.

    Theorem 3.1. The SPRPCG algorithm converges, i.e.,

    lim infkFk=0. (3.15)

    Proof. Assume that (3.15) is not true, i.e., there exists q>0 such that

    Fkq,kN. (3.16)

    Again from the Lipschitz continuinity of F it is easy to see that yk(L+a)sk=N, where L is assumed to be the Lipschitz constant. Thus,

    dk+1=ζ1kFk+1+γ1kβPRPkdk=(1+γ1kβPRPkFTk+1dkFk+12)Fk+1+γ1kβPRPkdkFk+1+2+Fk+1ykq2dkM+2MNq2dk. (3.17)

    Now, let h=2MNq2, therefore from (3.17) we get

    dk+1M+hdkM(1+h+h2++hkk0+1)dk0M1h+dk0. (3.18)

    Hence, for Z=max{d1,d2,,dk0,M1h+dk0}, we obtain the boundedness of the proposed direction. Similarly, we can show that (2.17) is also bounded. From the sufficient condition and the Cauchy-Schwarz inequality we get

    FkdkFkdkFk2>0. (3.19)

    From (3.19) we obtain

    dkFk>q. (3.20)

    Therefore, from (3.14) and (3.20) we have

    limkαk=0. (3.21)

    Suppose αk doesn't safies the line search procedure (2.19), i.e.,

    F(xk+αkdk)Tdk<aαkF(xk+αkdk)dk2, (3.22)

    It is obvious that {xk} is bounded and has an accumulation point ˆx and an infinite index set D1 such that limkD1xk=ˆx. It also follows that {dk}kD1 is bounded. Therefore, there exist an infinite index set D2D1 with an accumulation point ˆd such that limkD2dk=ˆd. Now, taking limit in (3.22), we obtain

    F(ˆx)Tˆd0. (3.23)

    Also taking the limit in (3.19), we get

    F(ˆx)Tˆd0. (3.24)

    The last two inequalities give a contradiction and the proof is complete.

    The proposed scaled PRP algorithm is numerically compared to the MPRPA [24], DFSP [26], and STCGM [25] algorithms, using published values in the compared papers. Furthermore, we initialized the following variables for the SPRPCG algorithm: b=0.2, a=0.0001, θ=0.99, τ=1, ωmin=0.0001, ωmax=104, Ψ=Rn+, and ϵ=1010. Matlab14 is used to run all algorithms on an Intel Core i5 8th Generation personal computer. We carried out our experiment using the following test problems:

    Problem 4.1. Reference [25] F(xi)=2xisin|xi|, for i=1,2,3,,n, and Ω=Rn+.

    Problem 4.2. Reference [25] Fi(x)=4xi+(xi+12xi)x2i+13, for i=1,2,,n1, Fn(x)=4xn+(xn12xn)x2n13, and Ω=Rn+.

    Problem 4.3. Reference [26] Fi(x)=exi1,i=1,2,,n, and Ω=Rn+.

    Problem 4.4. Reference [25] F1(x)=cos(x1)9+3x1+8exp(x2) Fi(x)=cos(xi)9+3xi+8exp(xi2), for i=2,3,,n, and Ω=Rn+

    Problem 4.5. Reference [25] F1(x)=ex11, Fi(x)=exi+xi11,i=2,3,,n1, and Ω=Rn+.

    From Tables 1–5, we used eight initial points, namely; x10=(2,2,,2), x20=(1,12,13,,1n), x30=(1,1,,1), x40=(1n,2n,,1), x50=(n1n,n2n,,n1), x60=(2,22,23,,2n), x70=(11,112,113,,11n) and x80=(3,3,,3). In which the terms ITER, FVAL, TIME, and NORM stand for the number of iterations, function evaluation, computing time and the norm of Fk at the stopping criteria respectively.

    Table 1.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25] and MPRPA algorithms [24].
    Problem 1 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005949 0 1 14 0.005133 0 35 71 0.02165 9.62E-11 23 49 0.027654 7.9E-11 8 25 0.00943 6.42E-11
    x20 2 27 0.007886 0 2 27 0.007942 0 22 189 0.033029 5.1E-11 6 56 0.013212 0 5 53 0.008826 0
    x30 1 14 0.0054 0 1 14 0.006263 0 37 75 0.023115 6.37E-11 22 46 0.015948 6.25E-11 8 20 0.010007 7.57E-12
    x40 2 27 0.007635 0 2 27 0.007432 0 27 221 0.039841 5.48E-11 5 43 0.010364 0 17 136 0.123572 0
    x50 2 27 0.00817 0 2 27 0.007754 0 27 218 0.042077 9E-11 6 56 0.013789 0 17 130 0.023084 0
    x60 2 27 0.008051 0 2 27 0.007844 0 24 206 0.086541 5.98E-11 6 57 0.01194 0 8 25 0.012607 9.09E-11
    x70 2 27 0.007648 0 2 27 0.007856 0 27 218 0.044937 9E-11 6 56 0.013552 0 5 53 0.010073 0
    x80 2 27 0.008063 0 2 27 0.009222 0 1 4 0.004576 0 1 6 0.004244 0 8 20 0.011038 1.07E-11
    1000 x10 1 14 0.007079 0 1 14 0.006871 0 36 73 0.027915 6.73E-11 24 51 0.021346 3.39E-11 17 135 0.029611 0
    x20 2 27 0.009849 0 2 27 0.009229 0 21 185 0.055912 7.33E-11 6 56 0.016773 0 18 138 0.035786 0
    x30 1 14 0.006306 0 1 14 0.006283 0 37 75 0.030669 9.01E-11 22 46 0.02162 8.88E-11 9 27 0.048078 5.63E-12
    x40 2 27 0.010302 0 2 27 0.009833 0 11 83 0.027815 0 6 56 0.018072 0 5 53 0.082559 0
    x50 2 27 0.010085 0 2 27 0.01037 0 11 83 0.023342 0 6 57 0.017067 0 8 20 0.039123 3.39E-11
    x60 2 27 0.00958 0 2 27 0.012111 0 24 203 0.055708 8.24E-11 6 57 0.01826 0 18 144 0.223104 0
    x70 2 27 0.009673 0 2 27 0.00937 0 11 83 0.027194 0 6 57 0.017675 0 18 143 0.12509 0
    x80 2 27 0.011959 0 2 27 0.010101 0 1 4 0.004386 0 1 6 0.005709 0 9 27 0.212339 1.26E-11
    10000 x10 1 14 0.026098 0 1 14 0.025464 0 38 77 0.200128 5.22E-11 25 53 0.111401 3.45E-11 5 53 0.200085 0
    x20 2 27 0.047774 0 2 27 0.041911 0 11 98 0.153287 0 6 56 0.089864 0 8 20 0.164896 7.57E-11
    x30 1 14 0.025732 0 1 14 0.02334 0 39 79 0.246965 6.98E-11 23 48 0.096345 8.71E-11 18 144 0.601218 0
    x40 2 27 0.044049 0 2 27 0.042824 0 14 110 0.20247 0 6 56 0.091267 0 19 151 1.020748 0
    x50 2 27 0.047091 0 2 27 0.044061 0 14 110 0.195937 0 6 56 0.087251 0 9 27 0.268154 1.78E-11
    x60 2 27 0.04558 0 2 27 0.042455 0 24 202 0.328184 8.06E-11 6 57 0.086451 0 5 53 0.831941 0
    x70 2 27 0.045994 0 2 27 0.046985 0 14 110 0.201035 0 6 56 0.087745 0 9 22 0.299434 2.1E-12
    x80 2 27 0.047422 0 2 27 0.048712 0 1 4 0.009599 0 1 6 0.014179 0 19 150 2.261945 0
    50000 x10 1 14 0.096279 0 1 14 0.101904 0 39 79 0.767104 5.77E-11 25 53 0.437284 8.8E-11 19 152 1.872535 0
    x20 2 27 0.185007 0 2 27 0.184709 0 11 98 0.69978 0 6 56 0.374874 0 8 25 0.003892 7.04E-12
    x30 1 14 0.095243 0 1 14 0.097266 0 40 81 0.769044 7.73E-11 24 50 0.425448 6.2E-11 5 52 0.006669 0
    x40 2 27 0.389746 0 2 27 0.178131 0 16 127 0.929816 0 5 43 0.318514 0 7 18 0.00442 4.23E-11
    x50 2 27 0.36199 0 2 27 0.189434 0 16 127 0.992202 0 5 43 0.308814 0 6 68 0.009472 0
    x60 2 27 0.329928 0 2 27 0.178671 0 24 205 1.581707 6.03E-11 6 57 0.385743 0 5 51 0.00544 0
    x70 2 27 0.295669 0 2 27 0.185862 0 16 127 0.892216 0 5 43 0.296815 0 8 25 0.007498 7.6E-12
    x80 2 27 0.282256 0 2 27 0.201677 0 1 4 0.039697 0 1 6 0.046323 0 5 52 0.00674 0
    100000 x10 1 14 0.292199 0 1 14 0.187861 0 39 79 1.65231 8.17E-11 26 55 0.911281 4.11E-11 7 18 0.004102 4.57E-11
    x20 2 27 0.454309 0 2 27 0.376562 0 11 98 1.488625 0 6 56 0.725688 0 2 18 0.005527 0
    x30 1 14 0.237757 0 1 14 0.187526 0 41 83 1.776357 5.41E-11 24 50 0.861569 9.16E-11 5 51 0.005885 0
    x40 2 27 0.471781 0 2 27 0.397482 0 16 126 1.741981 0 5 43 0.589476 0 8 25 0.00696 8.13E-12
    x50 2 27 0.462599 0 2 27 0.370585 0 17 139 1.953327 0 5 43 0.59129 0 5 52 0.003811 0
    x60 2 27 0.453023 0 2 27 0.376696 0 24 204 2.711584 6.75E-11 6 57 0.760319 0 7 18 0.006613 4.88E-11
    x70 2 27 0.48348 0 2 27 0.362695 0 17 139 1.840027 0 5 43 0.583836 0 2 18 0.005547 0
    x80 2 27 0.495025 0 2 27 0.42318 0 1 4 0.076396 0 1 6 0.092276 0 6 60 0.006736 0

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 2 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.00616 0 1 14 0.006448 0 3 30 0.009564 0 9 85 0.024533 9.27E-11 1 14 0.007168 0
    x20 1 14 0.006193 0 1 14 0.005646 0 2 18 0.007262 0 6 71 0.01834 0 2 27 0.00951 0
    x30 1 14 0.005835 0 1 14 0.00614 0 3 32 0.009654 0 9 85 0.019681 4.01E-11 1 14 0.005623 0
    x40 1 14 0.006187 0 1 14 0.006602 0 4 45 0.011538 0 5 58 0.017104 0 1 14 0.007012 0
    x50 1 14 0.005661 0 1 14 0.006467 0 5 58 0.015613 0 5 58 0.016217 0 2 27 0.004613 0
    x60 1 14 0.005917 0 1 14 0.006679 0 2 18 0.007484 0 6 71 0.018448 0 1 14 0.006543 0
    x70 1 14 0.005769 0 1 14 0.006531 0 5 58 0.015084 0 5 58 0.016812 0 2 27 0.006565 0
    x80 1 3 0.004172 0 1 3 0.004642 0 1 9 0.006094 0 1 3 0.0038 0 1 14 0.007489 0
    1000 x10 1 14 0.006684 0 1 14 0.007853 0 3 30 0.012287 0 10 96 0.034862 4.34E-12 1 14 0.005651 0
    x20 1 14 0.00862 0 1 14 0.007312 0 4 45 0.017093 0 6 71 0.026176 0 2 27 0.011575 0
    x30 1 14 0.007406 0 1 14 0.00786 0 3 32 0.013344 0 9 85 0.030241 5.69E-11 1 14 0.032168 0
    x40 1 14 0.008181 0 1 14 0.008113 0 4 45 0.017142 0 5 58 0.021131 0 2 27 0.050307 0
    x50 1 14 0.007682 0 1 14 0.007276 0 5 58 0.020869 0 5 58 0.022127 0 1 14 0.033315 0
    x60 1 14 0.008416 0 1 14 0.008252 0 2 18 0.009431 0 6 71 0.02732 0 1 14 0.01479 0
    x70 1 14 0.008132 0 1 14 0.007605 0 5 58 0.01976 0 5 58 0.021743 0 2 27 0.061964 0
    x80 1 3 0.004654 0 1 3 0.004176 0 1 9 0.006268 0 1 3 0.004233 0 1 14 0.091229 0
    10000 x10 1 14 0.034062 0 1 14 0.034897 0 3 30 0.068186 0 10 96 0.221348 1.84E-11 2 27 0.285117 0
    x20 1 14 0.035571 0 1 14 0.034198 0 4 45 0.097955 0 6 71 0.156478 0 1 14 0.092376 0
    x30 1 14 0.034545 0 1 14 0.03343 0 3 32 0.071271 0 10 96 0.214021 5.82E-12 1 14 0.15221 0
    x40 1 14 0.033543 0 1 14 0.033777 0 4 45 0.095412 0 5 58 0.134208 0 2 27 0.185719 0
    x50 1 14 0.034247 0 1 14 0.033997 0 5 58 0.123651 0 5 58 0.126169 0 1 14 0.350673 0
    x60 1 14 0.033179 0 1 14 0.033604 0 2 18 0.040918 0 6 71 0.152915 0 2 27 0.502155 0
    x70 1 14 0.034517 0 1 14 0.032933 0 5 58 0.125501 0 5 58 0.127013 0 1 14 0.250523 0
    x80 1 3 0.01073 0 1 3 0.010852 0 1 9 0.022272 0 1 3 0.011772 0 1 14 0.308355 0
    50000 x10 1 14 0.144173 0 1 14 0.146136 0 3 30 0.323007 0 10 96 1.002645 6.02E-11 2 27 0.491642 0
    x20 1 14 0.144648 0 1 14 0.145859 0 4 45 0.453818 0 6 71 0.746929 0 1 14 0.004396 0
    x30 1 14 0.144283 0 1 14 0.147213 0 3 32 0.319894 0 10 96 0.997627 1.36E-11 2 27 0.008702 0
    x40 1 14 0.142842 0 1 14 0.139717 0 4 45 0.481684 0 5 58 0.609387 0 1 14 0.004268 0
    x50 1 14 0.142552 0 1 14 0.143273 0 5 58 0.585424 0 5 58 0.598987 0 1 14 0.005546 0
    x60 1 14 0.144208 0 1 14 0.141715 0 2 18 0.18099 0 6 71 0.737116 0 2 27 0.003315 0
    x70 1 14 0.141234 0 1 14 0.167606 0 5 58 0.603428 0 5 58 0.605638 0 1 14 0.004384 0
    x80 1 3 0.03565 0 1 3 0.036751 0 1 9 0.092186 0 1 3 0.036785 0 2 27 0.003942 0
    100000 x10 1 14 0.288466 0 1 14 0.281604 0 3 30 0.623989 0 11 107 2.484277 3.3E-12 1 14 0.004815 0
    x20 1 14 0.281627 0 1 14 0.281598 0 4 45 0.98394 0 6 71 1.63692 0 1 14 0.002507 0
    x30 1 14 0.28431 0 1 14 0.293397 0 3 32 0.670524 0 10 96 2.212571 1.98E-11 2 27 0.007047 0
    x40 1 14 0.274463 0 1 14 0.279905 0 4 45 0.980961 0 5 58 1.297317 0 1 14 0.002786 0
    x50 1 14 0.289894 0 1 14 0.289534 0 5 58 1.262739 0 5 58 1.323224 0 2 27 0.007023 0
    x60 1 14 0.288962 0 1 14 0.289889 0 2 18 0.437525 0 6 71 1.624833 0 1 14 0.002699 0
    x70 1 14 0.284459 0 1 14 0.286553 0 5 58 1.210862 0 5 58 1.331419 0 1 14 0.005008 0
    x80 1 3 0.068662 0 1 3 0.066155 0 1 9 0.191548 0 1 3 0.073259 0 2 27 0.003077 0

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 3 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.005065 0 1 14 0.005702 0 33 76 0.019308 5.51E-11 23 58 0.020183 3.02E-11 1 14 0.004557 0
    x20 2 27 0.007402 0 2 27 0.007827 0 21 163 0.027816 6.91E-11 6 66 0.013712 0 4 50 0.009725 0
    x30 1 14 0.006092 0 1 14 0.006609 0 31 63 0.017096 6.17E-11 23 49 0.016392 3.01E-11 8 26 0.008178 1.33E-11
    x40 2 27 0.008335 0 2 27 0.00744 0 24 179 0.031604 5.04E-11 5 46 0.011696 0 4 49 0.011172 0
    x50 2 27 0.007787 0 2 27 0.007068 0 25 180 0.032925 3.7E-11 6 60 0.013848 0 4 49 0.011364 0
    x60 2 27 0.007486 0 2 27 0.008 0 9 69 0.013732 0 5 50 0.011986 0 1 14 0.006459 0
    x70 2 27 0.007729 0 2 27 0.008037 0 25 180 0.029996 3.7E-11 6 60 0.012398 0 4 50 0.012351 0
    x80 1 3 0.004163 0 1 3 0.003858 0 1 3 0.003841 0 1 3 0.003691 0 8 26 0.005912 1.88E-11
    1000 x10 1 14 0.006594 0 1 14 0.006499 0 33 76 0.025403 7.79E-11 23 58 0.022122 4.28E-11 4 49 0.012041 0
    x20 2 27 0.00899 0 2 27 0.008246 0 21 161 0.0376 6.85E-11 6 66 0.017943 0 4 49 0.00792 0
    x30 1 14 0.006662 0 1 14 0.005875 0 31 63 0.022674 8.72E-11 23 49 0.021127 4.27E-11 1 14 0.02137 0
    x40 2 27 0.009007 0 2 27 0.009575 0 25 179 0.041317 5.58E-11 5 46 0.014358 0 4 50 0.06797 0
    x50 2 27 0.009047 0 2 27 0.008923 0 25 180 0.042117 4.65E-11 6 59 0.016748 0 8 26 0.039395 5.95E-11
    x60 2 27 0.00939 0 2 27 0.009113 0 9 69 0.018797 0 5 50 0.014086 0 4 49 0.057746 0
    x70 2 27 0.009503 0 2 27 0.009876 0 25 180 0.041626 4.65E-11 6 59 0.015995 0 4 49 0.041586 0
    x80 1 3 0.004261 0 1 3 0.004402 0 1 3 0.003657 0 1 3 0.003832 0 1 14 0.072798 0
    10000 x10 1 14 0.023061 0 1 14 0.023074 0 35 80 0.129582 6.03E-11 24 60 0.097674 4.11E-11 4 50 0.164054 0
    x20 2 27 0.035898 0 2 27 0.037322 0 21 164 0.216364 5.35E-11 6 66 0.08125 0 9 28 0.160535 2.63E-12
    x30 1 14 0.021199 0 1 14 0.021082 0 33 67 0.10905 6.76E-11 24 51 0.085409 4.15E-11 4 49 0.196973 0
    x40 2 27 0.037109 0 2 27 0.037459 0 26 189 0.235984 4.6E-11 6 59 0.076381 0 4 49 0.249326 0
    x50 2 27 0.036095 0 2 27 0.036294 0 26 190 0.221085 4.43E-11 6 59 0.074121 0 1 14 0.093946 0
    x60 2 27 0.036085 0 2 27 0.03981 0 9 69 0.085623 0 5 50 0.06211 0 4 50 0.543017 0
    x70 2 27 0.038158 0 2 27 0.041666 0 26 190 0.240258 4.43E-11 6 59 0.075446 0 9 28 0.202887 3.72E-12
    x80 1 3 0.007806 0 1 3 0.007687 0 1 3 0.007488 0 1 3 0.007325 0 4 49 0.526138 0
    50000 x10 1 14 0.081922 0 1 14 0.083414 0 36 82 0.541356 6.68E-11 24 60 0.416089 9.4E-11 4 49 0.368258 0
    x20 2 27 0.140326 0 2 27 0.144851 0 21 162 0.807446 7.06E-11 6 66 0.337831 0 1 14 0.003984 0
    x30 1 14 0.075495 0 1 14 0.075355 0 34 69 0.486584 7.48E-11 24 51 0.423295 9.67E-11 4 50 0.008395 0
    x40 2 27 0.144768 0 2 27 0.144126 0 26 189 0.999566 9.44E-11 6 59 0.332809 0 7 24 0.004468 7.44E-11
    x50 2 27 0.142742 0 2 27 0.142328 0 27 196 1.025835 3.04E-11 6 59 0.32261 0 4 50 0.007229 0
    x60 2 27 0.146161 0 2 27 0.141539 0 9 69 0.363751 0 5 50 0.252642 0 4 49 0.003732 0
    x70 2 27 0.137162 0 2 27 0.142295 0 27 196 1.075529 3.04E-11 6 59 0.320723 0 1 14 0.004157 0
    x80 1 3 0.022052 0 1 3 0.022394 0 1 3 0.020302 0 1 3 0.021952 0 4 50 0.008577 0
    100000 x10 1 14 0.170899 0 1 14 0.159038 0 36 82 1.047394 9.47E-11 25 62 0.808989 4.06E-11 7 24 0.005938 8.03E-11
    x20 2 27 0.27101 0 2 27 0.276769 0 21 163 1.65595 6.97E-11 6 66 0.673843 0 4 50 0.003566 0
    x30 1 14 0.155212 0 1 14 0.154447 0 35 71 0.963394 5.24E-11 25 53 0.722074 4.23E-11 4 49 0.006346 0
    x40 2 27 0.283305 0 2 27 0.298966 0 27 194 2.086407 5.26E-11 6 59 0.630216 0 1 14 0.005198 0
    x50 2 27 0.28082 0 2 27 0.284577 0 27 194 2.034998 5.36E-11 6 59 0.632952 0 4 50 0.003295 0
    x60 2 27 0.275107 0 2 27 0.283492 0 9 69 0.73778 0 5 50 0.534591 0 7 24 0.006763 8.59E-11
    x70 2 27 0.266159 0 2 27 0.284258 0 27 194 2.066981 5.36E-11 6 59 0.631261 0 4 50 0.004407 0
    x80 1 3 0.039855 0 1 3 0.039435 0 1 3 0.043968 0 1 3 0.041767 0 4 49 0.005924 0

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 4 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 1 14 0.006826 0 1 14 0.007826 0 1 14 0.006633 0 2 26 0.019218 0 1 14 0.00379 0
    x20 1 14 0.006307 0 1 14 0.006454 0 2 27 0.009176 0 2 24 0.008969 0 1 14 0.007432 0
    x30 1 14 0.007101 0 1 14 0.007151 0 1 14 0.006891 0 2 24 0.00945 0 1 14 0.004323 0
    x40 1 14 0.00711 0 1 14 0.007319 0 2 27 0.010489 0 5 63 0.019216 0 1 14 0.004346 0
    x50 1 14 0.006932 0 1 14 0.00683 0 1 14 0.00652 0 5 63 0.020158 0 1 14 0.004034 0
    x60 1 14 0.007527 0 1 14 0.007411 0 1 14 0.005606 0 2 24 0.009091 0 1 14 0.009196 0
    x70 1 14 0.007439 0 1 14 0.007114 0 1 14 0.006337 0 5 63 0.018762 0 1 14 0.004103 0
    x80 2 27 0.049849 0 2 27 0.01603 0 1 12 0.006616 0 1 9 0.005235 0 1 14 0.008791 0
    1000 x10 1 14 0.009025 0 1 14 0.009648 0 1 14 0.008993 0 2 26 0.014945 0 1 14 0.003916 0
    x20 1 14 0.008027 0 1 14 0.007585 0 2 27 0.011886 0 2 24 0.011934 0 1 14 0.009405 0
    x30 1 14 0.009139 0 1 14 0.009137 0 1 14 0.008549 0 2 24 0.013415 0 1 14 0.026243 0
    x40 1 14 0.009153 0 1 14 0.008709 0 2 27 0.013689 0 5 63 0.029391 0 1 14 0.032894 0
    x50 1 14 0.00978 0 1 14 0.009065 0 1 14 0.010278 0 5 63 0.029139 0 1 14 0.020722 0
    x60 1 14 0.007148 0 1 14 0.008364 0 1 14 0.007888 0 2 24 0.011702 0 1 14 0.037939 0
    x70 1 14 0.008703 0 1 14 0.010072 0 1 14 0.008224 0 5 63 0.028993 0 1 14 0.033949 0
    x80 2 27 0.023566 0 2 27 0.0236 0 1 12 0.007582 0 1 9 0.007211 0 1 14 0.116722 0
    10000 x10 1 14 0.035678 0 1 14 0.035677 0 1 14 0.034545 0 2 26 0.059988 0 1 14 0.125283 0
    x20 1 14 0.033449 0 1 14 0.032304 0 2 27 0.058071 0 2 24 0.052061 0 1 14 0.096024 0
    x30 1 14 0.035411 0 1 14 0.037456 0 1 14 0.033769 0 2 24 0.057893 0 1 14 0.136805 0
    x40 1 14 0.03611 0 1 14 0.037482 0 2 27 0.073244 0 5 63 0.149776 0 1 14 0.096786 0
    x50 1 14 0.037252 0 1 14 0.038376 0 2 27 0.062793 0 5 63 0.149361 0 1 14 0.292711 0
    x60 1 14 0.03319 0 1 14 0.034843 0 1 14 0.029509 0 2 24 0.052367 0 1 14 0.209517 0
    x70 1 14 0.035739 0 1 14 0.035515 0 2 27 0.061489 0 5 63 0.144616 0 1 14 0.300057 0
    x80 2 27 0.097333 0 2 27 0.091716 0 1 12 0.030227 0 1 9 0.023266 0 1 14 0.208775 0
    50000 x10 1 14 0.153393 0 1 14 0.158395 0 1 14 0.143519 0 2 26 0.264726 0 1 14 0.332781 0
    x20 1 14 0.131391 0 1 14 0.127049 0 2 27 0.239204 0 2 24 0.215807 0 1 14 0.003875 0
    x30 1 14 0.149158 0 1 14 0.153346 0 1 14 0.138068 0 2 24 0.255097 0 1 14 0.003652 0
    x40 1 14 0.148252 0 1 14 0.146291 0 2 27 0.285022 0 5 63 0.634745 0 1 14 0.00406 0
    x50 1 14 0.149375 0 1 14 0.14397 0 2 27 0.284079 0 5 63 0.656865 0 1 14 0.00492 0
    x60 1 14 0.134224 0 1 14 0.133645 0 1 14 0.127057 0 2 24 0.217751 0 1 14 0.003563 0
    x70 1 14 0.142002 0 1 14 0.141666 0 2 27 0.287637 0 5 63 0.646074 0 1 14 0.004908 0
    x80 2 27 0.383604 0 2 27 0.388343 0 1 12 0.117212 0 1 9 0.093164 0 1 14 0.004126 0
    100000 x10 1 14 0.290397 0 1 14 0.278313 0 1 14 0.275099 0 2 26 0.572796 0 1 14 0.004362 0
    x20 1 14 0.258255 0 1 14 0.251781 0 2 27 0.496492 0 2 24 0.515692 0 1 14 0.003318 0
    x30 1 14 0.284833 0 1 14 0.289966 0 1 14 0.270982 0 2 24 0.557129 0 1 14 0.003945 0
    x40 1 14 0.296112 0 1 14 0.283181 0 4 42 0.847157 0 5 63 1.408381 0 1 14 0.003111 0
    x50 1 14 0.282097 0 1 14 0.286251 0 2 27 0.546095 0 5 63 1.457335 0 1 14 0.003803 0
    x60 1 14 0.249396 0 1 14 0.256651 0 1 14 0.254254 0 2 24 0.489583 0 1 14 0.00303 0
    x70 1 14 0.281713 0 1 14 0.294178 0 2 27 0.547392 0 5 63 1.384502 0 1 14 0.004455 0
    x80 2 27 0.761841 0 2 27 0.780406 0 1 12 0.239859 0 1 9 0.182963 0 1 14 0.002743 0

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical comparison of SPRPCG algorithm versus DFSP [26], STCGM [25], and MPRPA algorithms [24].
    Problem 5 SPRPCG(1) SPRPCG(2) MPRPA DFSP STCGM
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    500 x10 2 27 0.031742 0 2 27 0.04209 0 5 61 0.041802 0 7 73 0.059792 0 2 27 0.033139 0
    x20 2 27 0.008489 0 2 27 0.025384 0 3 30 0.026171 0 4 45 0.017053 0 3 40 0.026812 0
    x30 2 27 0.004682 0 2 27 0.006594 0 7 84 0.010716 0 6 69 0.010229 0 3 40 0.00564 0
    x40 3 40 0.009244 0 3 40 0.008962 0 4 35 0.006085 0 5 57 0.011329 0 4 53 0.006817 0
    x50 2 27 0.006779 0 2 27 0.007919 0 94 1214 0.155333 9.21E-11 5 56 0.011371 0 3 40 0.006959 0
    x60 2 27 0.006728 0 2 27 0.008041 0 4 38 0.00796 0 6 72 0.013581 0 2 27 0.004568 0
    x70 2 27 0.006478 0 2 27 0.006652 0 94 1214 0.170393 9.21E-11 5 56 0.01192 0 3 40 0.008646 0
    x80 5 66 0.013512 0 5 66 0.012999 0 2 16 0.005321 0 2 17 0.006361 0 3 40 0.011563 0
    1000 x10 2 27 0.009778 0 2 27 0.009275 0 4 48 0.012698 0 8 84 0.023033 0 4 53 0.011952 0
    x20 2 27 0.009892 0 2 27 0.008778 0 3 30 0.009737 0 4 45 0.012158 0 3 40 0.011994 0
    x30 2 27 0.009887 0 2 27 0.009648 0 6 71 0.016186 0 9 78 0.019961 0 2 27 0.036469 0
    x40 3 40 0.012129 0 3 40 0.011647 0 4 34 0.010774 0 5 56 0.015291 0 3 40 0.04434 0
    x50 2 27 0.009335 0 2 27 0.009274 0 5 51 0.013627 0 5 56 0.014255 0 3 40 0.042221 0
    x60 2 27 0.00897 0 2 27 0.014394 0 4 38 0.010787 0 6 72 0.017204 0 4 53 0.062818 0
    x70 2 27 0.009645 0 2 27 0.008467 0 5 51 0.013366 0 5 56 0.016387 0 3 40 0.046493 0
    x80 5 66 0.017462 0 5 66 0.018425 0 2 16 0.006788 0 2 17 0.007563 0 2 27 0.126165 0
    10000 x10 2 27 0.037271 0 2 27 0.039634 0 4 48 0.061572 0 8 65 0.114416 0 3 40 0.22902 0
    x20 2 27 0.037149 0 2 27 0.061507 0 3 30 0.041141 0 4 45 0.070161 0 3 40 0.17597 0
    x30 2 27 0.040859 0 2 27 0.044393 0 5 56 0.076301 0 9 68 0.104997 0 4 53 0.298447 0
    x40 3 40 0.05355 0 3 40 0.069205 0 4 33 0.046029 0 5 56 0.087023 0 3 40 0.18673 0
    x50 2 27 0.048185 0 2 27 0.049425 0 4 34 0.058705 0 5 56 0.086953 0 2 27 0.319727 0
    x60 2 27 0.043537 0 2 27 0.046542 0 4 38 0.063938 0 6 72 0.106673 0 3 40 0.295781 0
    x70 2 27 0.047107 0 2 27 0.048886 0 4 34 0.060947 0 5 56 0.084679 0 3 40 0.496922 0
    x80 5 66 0.106679 0 5 66 0.1112 0 2 16 0.030821 0 3 30 0.046564 0 4 53 0.461636 0
    50000 x10 2 27 0.209091 0 2 27 0.206392 0 4 48 0.343347 0 10 89 0.61594 0 3 40 0.697509 0
    x20 2 27 0.188112 0 2 27 0.188834 0 3 30 0.223882 0 4 45 0.316733 0 2 27 0.002348 0
    x30 2 27 0.201281 0 2 27 0.201688 0 5 56 0.391772 0 7 71 0.493416 0 3 40 0.004563 0
    x40 3 40 0.296775 0 3 40 0.287346 0 4 33 0.259131 0 5 56 0.39824 0 3 40 0.007643 0
    x50 2 27 0.19805 0 2 27 0.198322 0 4 33 0.247166 0 5 56 0.395003 0 3 40 0.00774 0
    x60 2 27 0.186891 0 2 27 0.188475 0 4 38 0.277752 0 6 72 0.490119 0 3 40 0.005804 0
    x70 2 27 0.210921 0 2 27 0.201636 0 4 33 0.250694 0 5 56 0.397919 0 2 27 0.004488 0
    x80 5 66 0.497911 0 5 66 0.476101 0 2 16 0.131588 0 3 30 0.211239 0 3 40 0.005869 0
    100000 x10 2 27 0.424607 0 2 27 0.401009 0 4 48 0.672367 0 9 67 1.027705 0 3 40 0.004747 0
    x20 2 27 0.388978 0 2 27 0.391899 0 3 30 0.448241 0 4 45 0.689342 0 3 40 0.006402 0
    x30 2 27 0.394533 0 2 27 0.401115 0 5 56 0.80191 0 11 124 1.801222 0 3 40 0.004984 0
    x40 3 40 0.571176 0 3 40 0.615386 0 4 33 0.507612 0 5 56 0.86444 0 2 27 0.003807 0
    x50 2 27 0.404814 0 2 27 0.389485 0 4 33 0.499288 0 5 56 0.869131 0 3 40 0.004945 0
    x60 2 27 0.360131 0 2 27 0.405794 0 4 38 0.583693 0 6 72 1.080131 0 3 40 0.006149 0
    x70 2 27 0.380321 0 2 27 0.382274 0 4 33 0.558948 0 5 56 0.898111 0 3 40 0.007208 0
    x80 5 66 0.940601 0 5 66 0.972183 0 2 16 0.258353 0 3 30 0.494071 0 3 40 0.006065 0

     | Show Table
    DownLoad: CSV

    When compared to the MPRP, STCGM, and DFSP algorithms, the proposed approach solved the Problem 1 with the lowest number of ITER and FVAL. However, for the computing time, the MPRP algorithm won initially and failed to STCGM as the dimension increases. Likewise for Problems 2–5. Moreover, it is remarkable to note that the MPRP algorithm is competing with the STCGM algorithm for computing time with respect to all the considered test problems. Finally, the proposed algorithm outperforms the MPRPA, STCGM, and DFSP algorithms for ITER, and FVAL, but competes with the STCGM algorithm with respect to TIME.

    Furthermore, we used the well-known Dolan and Morˊe [28] performance profile to produce a more exact numerical comparison using the bulk data in all the tables. Figure 1 three subfigures indicate that the SPRPCG algorithm with two directions reflects the upper left curves with regards to 1a and 1b. However, for the 1c, the SPRPCG initially won in the fractions of 0 to approximately 0.9, and later failed to STCGM algorithm. As a result, when compared to the MPRPA, STCGM, and DFSP algorithms, the SPRPCG algorithm has fewer iterations, and function evaluations on average and competes with the STCGM algorithm for CPU time.

    Figure 1.  Comparison of the proposed algorithm with the two directions versus MPRPA and DFSP algorithms.

    IIn this part, we will tackle the motion control of a two-joint planar robotic manipulator using the SPRP projection-based algorithm. The following discrete-time kinematics equation describes the position level of the two-joint planar robot manipulator

    f(ηk)=σk, (4.1)

    where the kinematics function f(.) is defined by

    f(η)=(m1p1m2p2m1r1m2r2), (4.2)

    in which, mj for j=1,2 is the length of the jth rod, p1=cos(η1), r1=sin(η1), p2=cos(η1+η2), and r2=sin(η1+η2). Also, the vector σkR2 stands for the end effector position vector, and the joint angle vector is represented by ηkR2, for more detail about the kinematics equation we refer readers to [29] and the references therein. In our experiment we aimed at solving the series of optimization problems at a time interval tk[0,tf] defined as follows:

    minσkR212σkσdk2. (4.3)

    In this experiment, mj=1 is assigned for j=1,2, and the end effector is regulated to trace a Lissajous curve as provided by

    σdk=(1.5+0.2sinπtk532+0.2sin(πtk5+π3)). (4.4)

    For SPRP algorithm, we initialized b=0.2, a=0.08, θ=0.2, τ=1, ωmin=0.0001, ωmax=104, η0=[0,π3], and the end task duration tf=10s. We further divided the task duration [0,10] into 200 equal parts.

    Figure 2 depicts the experimental findings generated by the SPRP algorithm, including the robot trajectories synthesized by the SPRP algorithm, the end plots of the effector trajectory and the intended route, and the error of the SPRP algorithm on both the vertical x and y axes. It is not difficult to see from Figures 2a and 2b that the SPRP algorithm completes the specified task satisfactorily. Furthermore, Figures 2c and 2d show that the resultant error is around 105.

    Figure 2.  Numerical results generated by SPRP algorithm for the motion control of a two-joint planar robotic manipulator problem.

    A robust descent-scaled PRP projection-based technique for solving monotone nonlinear problems with convex constraints was given. The monotone and Lipschitz continuous assumptions are applied to accomplish the proposed algorithm's global convergence. A detailed numerical comparison with the related algorithms indicated that the proposed technique is much more efficient than the existing algorithms. Furthermore, the proposed technique is used to solve the motion control problem of a two-joint planar robotic manipulator with extremely little error. Finally, the provided technique may be used for various problems, including solving unconstrained optimization problems, generic algebraic nonlinear systems, and so on.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).

    The authors declare no conflict of interest.



    [1] M. E. Abd El-Monsef, M. A. El-Gayar, R. M. Aqeel, On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 257–271. https://doi.org/10.1504/IJGCRSIS.2014.068022 doi: 10.1504/IJGCRSIS.2014.068022
    [2] M. E. Abd El-Monsef, M. A. El-Gayar, R. M. Aqeel, A comparison of three types of rough fuzzy sets based on two universal sets, Int. J. Mach. Learn. Cybern. 8 (2017), 343–353. https://doi.org/10.1007/s13042-015-0327-8
    [3] M. E. Abd El-Monsef, O. A. Embaby, M. K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 292–305. https://doi.org/10.1504/IJGCRSIS.2014.068032 doi: 10.1504/IJGCRSIS.2014.068032
    [4] M. E. Abd El-Monsef, A. M. Kozae, A. L. El Maghrabi, Some semi topological applications on rough sets, J. Egypt Math. Soc., 12 (2004), 45–53.
    [5] E. A. Abo-Tabl, Rough sets and topological spaces based on similarity, Int. J. Mach. Learn. Cybern., 4 (2013), 451–458. https://doi.org/10.1007/s13042-012-0107-7 doi: 10.1007/s13042-012-0107-7
    [6] E. A. Abo-Tabl, M. K. El-Bably, Rough topological structure based on reflexivity with some applications, AIMS Mathematics, 7 (2022), 9911–9922. https://doi.org/10.3934/math.2022553 doi: 10.3934/math.2022553
    [7] R. Abu-Gdairi, M. A. El-Gayar, T. M. Al-shami, A. S. Nawar, M. K. El-Bably, Some topological approaches for generalized rough sets and their decision-making applications, Symmetry, 14 (2022), 95. https://doi.org/10.3390/sym14010095 doi: 10.3390/sym14010095
    [8] R. Abu-Gdairi, M. A. El-Gayar, M. K. El-Bably, K. K. Fleifel, Two different views for generalized rough sets with applications, Mathematics, 9 (2022), 2275. https://doi.org/10.3390/math9182275 doi: 10.3390/math9182275
    [9] M. I. Ali, M. K. El-Bably, E. A. Abo-Tabl, Topological approach to generalized soft rough sets via near concepts, Soft Comput., 26 (2022), 499–509. https://doi.org/10.1007/s00500-021-06456-z doi: 10.1007/s00500-021-06456-z
    [10] A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts, In: Rough sets, fuzzy sets, data mining, and granular computing, Berlin, Heidelberg: Springer, 2005, 64–73. https://doi.org/10.1007/11548669_7
    [11] W. S. Amer, M. I. Abbas, M. K. El-Bably, On j-near concepts in rough sets with some applications, J. Intell. Fuzzy Syst., 32 (2017), 1089–1099. https://doi.org/10.3233/JIFS-16169 doi: 10.3233/JIFS-16169
    [12] M. Atef, A. E. F. El Atik, Some extensions of covering-based multigranulation fuzzy rough sets from new perspectives, Soft Comput., 25 (2021), 6633–6651. https://doi.org/10.1007/s00500-021-05659-8 doi: 10.1007/s00500-021-05659-8
    [13] M. Atef, A. E. F. El Atik, A. S. Nawar, Fuzzy topological structures via fuzzy graphs and their applications, Soft Comput., 25 (2021), 6013–6027. https://doi.org/10.1007/s00500-021-05594-8 doi: 10.1007/s00500-021-05594-8
    [14] D. Chen, J. Li, R. Lin, Y. Chen, Information entropy and optimal scale combination in multi-scale covering decision systems, IEEE Access, 8 (2020), 182908–182917. https://doi.org/10.1109/ACCESS.2020.3029157 doi: 10.1109/ACCESS.2020.3029157
    [15] J. H. Dai, S. C. Gao, G. J. Zheng, Generalized rough set models determined by multiple neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094. https://doi.org/10.1007/s00500-017-2672-x doi: 10.1007/s00500-017-2672-x
    [16] H. Dou, X. Yang, X. Song, H. Yu, W. Z. Wu, J. Yang, Decision-theoretic rough set: A multicost strategy, Knowl-Based Syst., 91 (2016), 71–83. https://doi.org/10.1016/j.knosys.2015.09.011 doi: 10.1016/j.knosys.2015.09.011
    [17] A. E. F. A. El Atik, A. A. Nasef, Some topological structures of fractals and their related graphs, Filomat, 34 (2020), 153–165. https://doi.org/10.2298/FIL2001153A doi: 10.2298/FIL2001153A
    [18] A. E. F. El Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granul. Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z
    [19] A. E. F. A. El Atik, A. S. Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, J. Intell. Fuzzy Syst., 39 (2020), 6979–6992. https://doi.org/10.3233/JIFS-200126 doi: 10.3233/JIFS-200126
    [20] M. K. El-Bably, E. A. Abo-Tabl, A topological reduction for predicting of a lung cancer disease based on generalized rough sets, J. Intell. Fuzzy Syst., 41 (2021), 3045–3060. https://doi.org/10.3233/JIFS-210167 doi: 10.3233/JIFS-210167
    [21] M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Mathematics, 8 (2023), 9082–9105. https://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
    [22] M. K. El-Bably, M. I. Ali, E. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. https://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495
    [23] M. K. El-Bably, T. M. Al-Shami, Different kinds of generalized rough sets based on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086. https://doi.org/10.1142/S1793524521500868 doi: 10.1142/S1793524521500868
    [24] M. K. El-Bably, A. E. F. A. El Atik, Soft β-rough sets and their application to determine COVID-19, Turk. J. Math., 45 (2021), 4. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93
    [25] A. El-Fattah A. El-Atik, M. E. A. El Monsef, E. I. Lashin, On finite T0 topological spaces, In: Proceedings of the Ninth Prague Topological Symposium, 2002, 75–90.
    [26] A. El-Fattah A. El-Atik, H. Z. Hassan, Some nano topological structures via ideals and graphs, J. Egypt. Math. Soc., 28 (2020), 41. https://doi.org/10.1186/s42787-020-00093-5 doi: 10.1186/s42787-020-00093-5
    [27] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023), 4723233. https://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
    [28] M. A. El-Gayar, A. E. F. El Atik, Topological models of rough sets and decision making of COVID-19, Complexity, 2022 (2022), 2989236. https://doi.org/10.1155/2022/2989236 doi: 10.1155/2022/2989236
    [29] M. K. El-Bably, M. El-Sayed, Three methods to generalize Pawlak approximations via simply open concepts with economic applications, Soft Comput., 26 (2022), 4685–4700. https://doi.org/10.1007/s00500-022-06816-3 doi: 10.1007/s00500-022-06816-3
    [30] M. K. El-Bably, K. K. Fleifel, O. A. Embaby, Topological approaches to rough approximations based on closure operators, Granul. Comput., 7 (2022), 1–14. https://doi.org/10.1007/s41066-020-00247-x doi: 10.1007/s41066-020-00247-x
    [31] M. El Sayed, M. A. El Safty, M. K. El-Bably, Topological approach for decision-making of COVID-19 infection via a nano-topology model, AIMS Mathematics, 6 (2021), 7872–7894. https://doi.org/10.3934/math.2021457 doi: 10.3934/math.2021457
    [32] M. M. El-Sharkasy, Topological model for recombination of DNA and RNA, Int. J. Biomath., 11 (2018), 1850097. https://doi.org/10.1142/S1793524518500973 doi: 10.1142/S1793524518500973
    [33] H. H. Hung, Symmetric and tufted assignments of neighborhoods and metrization, Topol. Appl., 155 (2008), 2137–2142. https://doi.org/10.1016/j.topol.2007.11.009 doi: 10.1016/j.topol.2007.11.009
    [34] Z. Huang, J. Li, Discernibility measures for fuzzy β covering and their application, IEEE T. Cybernetics, 52 (2022), 9722–9735. https://doi.org/10.1109/TCYB.2021.3054742 doi: 10.1109/TCYB.2021.3054742
    [35] Z. Huang, J. Li, Feature subset selection with multi-scale fuzzy granulation, IEEE T. Artif. Intell., 4 (2023), 121–134. https://doi.org/10.1109/TAI.2022.3144242 doi: 10.1109/TAI.2022.3144242
    [36] Z. Huang, J. Li, Noise-tolerant discrimination indexes for fuzzy γ covering and feature subset selection, IEEE T. Neural. Netw. Learn. Syst., (2022), 1–15. https://doi.org/10.1109/TNNLS.2022.3175922
    [37] Z. Huang, J. Li, Y. Qian, Noise-tolerant fuzzy-β-covering-based multigranulation rough sets and feature subset selection, IEEE T. Fuzzy Syst., 30 (2022), 2721–2735. https://doi.org/10.1109/TFUZZ.2021.3093202 doi: 10.1109/TFUZZ.2021.3093202
    [38] Z. Li, T. Xie, Q. Li, Topological structure of generalized rough sets, Comput. Math. Appl. 63 (2021), 1066–1071. https://doi.org/10.1016/j.camwa.2011.12.011
    [39] T. Y. Lin, Neighborhood systems and approximation in relational databases and knowledge bases, In: Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems, 1988.
    [40] T. Y. Lin, Granular computing on binary relations I: Data mining and neighborhood systems, In: Rough set representations and belief functions, rough sets in knowledge discovery 1, Heidelberg: Physica -Verlag, 1998,107–140.
    [41] S. Liang, X. Yang, X. Chen, J. Li, Stable attribute reduction for neighborhood rough set, Filomat, 32 (2018), 1809–1815. https://doi.org/10.2298/FIL1805809L doi: 10.2298/FIL1805809L
    [42] H. Lu, A. M. Khalil, W. Alharbi, M. A. El-Gayar, A new type of generalized picture fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 40 (2021), 12459–12475. https://doi.org/10.3233/JIFS-201706 doi: 10.3233/JIFS-201706
    [43] S. Nada, A. E. F. El Atik, M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801–5810. https://doi.org/10.1002/mma.4726 doi: 10.1002/mma.4726
    [44] A. S. Nawar, A. A. El Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), 1950006. https://doi.org/10.1142/S1793524519500062 doi: 10.1142/S1793524519500062
    [45] A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, θβ-ideal approximation spaces and their applications, AIMS Mathematics, 7 (2022), 2479–2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139
    [46] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
    [47] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3534-4
    [48] K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008), 4138–4141. https://doi.org/10.1016/j.ins.2008.07.002 doi: 10.1016/j.ins.2008.07.002
    [49] M. Shokry, R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103–1108.
    [50] W. Sierpinski, General topology: (Mathematical expositions No. 7), University of Toronto press, 1952. Available from: https://utorontopress.com/9781487584894/general-topology/
    [51] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fund. Inform., 27 (1996), 245–253. https://doi.org/10.3233/FI-1996-272311 doi: 10.3233/FI-1996-272311
    [52] A. Tan, S. Shi, W. Z. Wu, J. Li, W. Pedrycz, Granularity and entropy of intuitionistic fuzzy information and their applications, IEEE T. Cybernetics, 52 (2022), 192–204. https://doi.org/10.1109/TCYB.2020.2973379 doi: 10.1109/TCYB.2020.2973379
    [53] W. Z. Wu, W. X. Zhang, Neighborhood operator systems and approximations, Inform. Sci., 144 (2002), 201–217. https://doi.org/10.1016/S0020-0255(02)00180-9 doi: 10.1016/S0020-0255(02)00180-9
    [54] Y. Y. Yao, Generalized rough set models, In: Rough sets in knowledge discovery 1, Heidelberg: Physica Verlag, 1998,286–318.
    [55] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sci., 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
    [56] Y. Y. Yao, A Comparative study of fuzzy sets and rough sets, Inform. Sci., 109 (1998), 227–242. https://doi.org/10.1016/S0020-0255(98)10023-3 doi: 10.1016/S0020-0255(98)10023-3
    [57] Y. Y. Yao, Granular computing using neighborhood systems, In: Advances in soft computing, London: Springer, 1999,539–553. https://doi.org/10.1007/978-1-4471-0819-1_40
    [58] Y. Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci., 180 (2010), 341–353. https://doi.org/10.1016/j.ins.2009.09.021 doi: 10.1016/j.ins.2009.09.021
    [59] Y. Y. Yao, Three-way decision and granular computing, Int. J. Approx. Reason., 103(2018), 107–123. https://doi.org/10.1016/j.ijar.2018.09.005 doi: 10.1016/j.ijar.2018.09.005
    [60] Z. Yu, X. Bai, Z. Yun, A study of rough sets based on 1-neighborhood systems, Inform. Sci., 248 (2013), 103–113. https://doi.org/10.1016/j.ins.2013.06.031 doi: 10.1016/j.ins.2013.06.031
    [61] C. Zhang, J. Ding, J. Zhan, A. K. Sangaiah, D. Li, Fuzzy intelligence learning based on bounded rationality in IoMT systems: A case study in Parkinson's disease, IEEE T. Comput. Soc. Syst., 10 (2023), 1607–1621. https://doi.org/10.1109/TCSS.2022.3221933 doi: 10.1109/TCSS.2022.3221933
    [62] C. Zhang, D. Li, J. Liang, Hesitant fuzzy linguistic rough set over two universes model and its applications, Int. J. Mach. Learn. Cybern., 9 (2018), 577–588. https://doi.org/10.1007/s13042-016-0541-z doi: 10.1007/s13042-016-0541-z
    [63] C. Zhang, D. Li, J. Liang, Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes, Inform. Sci., 507 (2020), 665–683. https://doi.org/10.1016/j.ins.2019.01.033 doi: 10.1016/j.ins.2019.01.033
    [64] P. Zhang, T. Li, C. Luo, G. Wang, AMG-DTRS: Adaptive multi-granulation decision theoretic rough sets, Int. J. Approx. Reason., 140 (2022), 7–30. https://doi.org/10.1016/j.ijar.2021.09.017 doi: 10.1016/j.ijar.2021.09.017
    [65] C. Zhang, D. Li, R. Ren, Pythagorean fuzzy multigranulation rough set over two universes and its applications in merger and acquisition, Int. J. Intell. Syst., 31 (2016), 921–943. https://doi.org/10.1002/int.21811 doi: 10.1002/int.21811
    [66] C. Zhang, X. Li, A. K. Sangaiah, W. Li, B. Wang, F. Cao, et al., Collaborative fuzzy linguistic learning to low-resource and robust decision system based on bounded rationality, ACM Transactions on Asian and Low-Resource Language Information Processing, 2023. https://doi.org/10.1145/3592605
    [67] C. Zhang, D. Li, Y. Yan, A dual hesitant fuzzy multigranulation rough set over two-universe model for medical diagnoses, Comput. Math. Meth. Medicine, 2015 (2015), 292710. https://doi.org/10.1155/2015/292710 doi: 10.1155/2015/292710
    [68] N. Zhong, Y. Yao, M. Ohshima, Peculiarity oriented multidatabase mining, IEEE T. Knowl. Data Eng., 15 (2003), 952–960. https://doi.org/10.1109/TKDE.2003.1209011 doi: 10.1109/TKDE.2003.1209011
    [69] W. Zhu, F. Y. Wang, Covering based granular computing for conflict analysis, In: Intelligence and security informatics, Berlin, Heidelberg: Springer, (2006), 566–571. https://doi.org/10.1007/11760146_58
  • This article has been cited by:

    1. Saman Babaie–Kafaki, Zohre Aminifard, An augmented memoryless Davidon–Fletcher–Powell method based on the Dai–Liao approach, 2024, 0233-1934, 1, 10.1080/02331934.2024.2395432
    2. Qun Li, Guolin Chen, Maolin Liang, An efficient spectral three-term derivative-free projection algorithm for a large-scale system of monotone nonlinear equations, 2025, 44, 2238-3603, 10.1007/s40314-025-03103-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2110) PDF downloads(150) Cited by(16)

Figures and Tables

Figures(1)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog