In the present paper, we prove the existence of unique almost periodic solutions to fuzzy shunting inhibitory cellular neural networks (FSICNN) with several delays. Further, by means of Halanay inequality we analyze the global exponential stability of these solutions and obtain corresponding convergence rate. The results of this paper are new, and they are concluded with numerical simulations confirming them.
Citation: Ardak Kashkynbayev, Moldir Koptileuova, Alfarabi Issakhanov, Jinde Cao. Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays[J]. AIMS Mathematics, 2022, 7(7): 11813-11828. doi: 10.3934/math.2022659
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
In the present paper, we prove the existence of unique almost periodic solutions to fuzzy shunting inhibitory cellular neural networks (FSICNN) with several delays. Further, by means of Halanay inequality we analyze the global exponential stability of these solutions and obtain corresponding convergence rate. The results of this paper are new, and they are concluded with numerical simulations confirming them.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖ |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right): = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in B_{\alpha,\beta}} \atop \scriptstyle {n \nmid x_{1}+\cdots+x_{k}}}} 1,(0 < \delta_{1}, \delta_{2},\cdots, \delta_{k} \leq 1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k \geq 2 be a fixed positive integer, q\geq n^{3} and c be two integers with (n, q) = (c, q) = 1 , and \delta_{1}, \delta_{2}, \cdots, \delta_{k} be real numbers satisfying 0 < \delta_{1}, \delta_{2}, \cdots, \delta_{k} \leq 1 . Let \alpha > 1 be an irrational number of finite type. Then, we have the following asymptotic formula:
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = \left(1-n^{-1}\right) \alpha^{-(k-1)} \delta_{1} \delta_{2} \cdots \delta_{k}\phi^{k-1}(q)+O(q^{k-1-\frac{1}{\tau+1}+\varepsilon} ), |
where \phi(\cdot) is the Euler function, \varepsilon is a sufficiently small positive number, and the implied constant only depends on n .
Notation. In this paper, we denote by \lfloor t\rfloor and \{t\} the integral part and the fractional part of t , respectively. As is customary, we put
\mathbf{e}(t): = e^{2 \pi i t} \quad \text { and } \quad\{t\}: = t-\lfloor t\rfloor . |
The notation \|t\| is used to denote the distance from the real number t to the nearest integer; that is,
\|t\|: = \min \limits_{n \in \mathbb{Z}}|t-n| . |
Let \chi^{0} be the principal character modulo q . The letter p always denotes a prime. Throughout the paper, \varepsilon always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters \alpha, n, \varepsilon but are absolute otherwise. For given functions F and G , the notations F \ll G , G \gg F and F = O(G) are all equivalent to the statement that the inequality |F| \leqslant \mathcal{C}|G| holds with some constant \mathcal{C} > 0 .
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set \mathcal{S} , we use \mathbf{1}_{\mathcal{S}} to denote its indicator function:
\mathbf{1}_{\mathcal{S}}(n): = \begin{cases}1 & { if } \;n \in \mathcal{S}, \\ 0 & { if }\; n \notin \mathcal{S} .\end{cases} |
We use \mathbf{1}_{\alpha, \beta} to denote the characteristic function of numbers in a Beatty sequence:
\mathbf{1}_{\alpha, \beta}(n): = \begin{cases}1 & { if } \;n \in \mathcal{B}_{\alpha, \beta}, \\ 0 & { if }\; n \notin \mathcal{B}_{\alpha, \beta}.\end{cases} |
Lemma 2.2. Let a, q be integers, \delta \in(0, 1) be a real number, \theta be a rational number. Let \alpha be an irrational number of finite type \tau and H = q^{\varepsilon} > 0 . We have
\sum\limits_{\scriptstyle {a \le \delta q} \atop \scriptstyle{a \in {{\cal B}_{\alpha ,\beta }}}} ' 1 = \alpha^{-1} \delta \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right), |
and
\sum\limits_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-1} q^{-\varepsilon}+q^{\varepsilon}\right). |
Taking
H = \|\theta\|^{-\frac{1}{\tau+1}+\varepsilon}, |
we have
\sum\limits_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1}+\varepsilon\right)}\right) . |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) = \sum\limits_{x_{1} \leqslant q-1} \cdots \sum\limits_{x_{k-1} \leqslant q-1} \mathbf{e}\left(\frac {r_{1}x_{1}+\cdots+r_{k-1}x_{k-1}+ r_{k}\overline{x_{1} \cdots x_{k-1}}}{p}\right). |
Then
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) \ll q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}, q\right)^{\frac{1}{2}} |
where (a, b, c) is the greatest common divisor of a, b and c .
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a = \frac{s}{r}+\frac{\theta}{r^{2}}, \quad(r, s) = 1, r \geq 1,|\theta| \leq 1, |
then
\sum\limits_{k \leqslant K} \min (U, \frac{1}{\|a k+b\|}) \ll (\frac{K}{r}+1 )(U+r \log r). |
Proof. The proof is given in [10].
We begin by the definition
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = S_{1}-S_{2}, |
where
S_{1}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}} }} 1, |
and
S_{2}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle{x_{1} \cdots x_{k} \equiv c\bmod q }\atop {\scriptstyle{x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}\atop \scriptstyle{n \mid x_{1}+\cdots+x_{k}}}} 1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
\begin{aligned} S_{1}& = \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{x_{1} \cdots x_{k} \equiv c\bmod q }\mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = \frac{1}{\phi(q)} \sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{11}+S_{12}, \end{aligned} |
where
\begin{align*} S_{11}: = \frac{1}{\phi(q)}\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
S_{12}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left(\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} ( x_{1}) \cdots \mathbf{1}_{\alpha,\beta}( x_{k-1} )\right). |
For S_{2} , it follows that
\begin{aligned} S_{2}& = \frac{1}{\phi(q)} \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{1}+\cdots+x_{k}} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{21}+S_{22}, \end{aligned} |
where
\begin{align*} S_{21}: = \frac{1}{\phi(q)} \mathop{\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} }_{n \mid x_{1}+\cdots+x_{k}} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
\begin{align*} S_{22}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \mathop{{\sum\limits_{x_{1} \leqslant \delta_{1} q}} \cdots {\sum\limits_{x_{k} \leqslant \delta_{k} q}}}_{n \mid x_{1}+\cdots+x_{k}} \chi(x_{1}) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1}\right) . \end{align*} |
From the classical bound
\sum \limits_{a \le \delta q}' 1 = \delta \phi(q)+O\left(d(q)\right) |
and Lemma 2.2, we have
\begin{align} S_{11}& = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}1\right) \\ & = \left(\delta_{k}+O\left(\frac{d(q)}{\phi(q)}\right)\right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right) \\ & = \alpha^{-(k-1)}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O\left(q^{k-1-\frac{1}{\tau+1}+\varepsilon}\right). \end{align} | (3.1) |
From Lemma 2.2, we obtain
\begin{align} S_{21}& = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left(\mathop{\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{k}+(x_{1}+ \cdots +x_{k-1})}1\right) \\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{\sum\limits_{x_{k} \leqslant \delta_{k} q }}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1}) \bmod n} \sum\limits_{\substack{d \mid(x_{k}, q)}} \mu(d)\right)\\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \mathop{\mathop{\sum\limits_{x_{k} \leqslant \delta_{k}q}}_{d \mid x_{k}}}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1})\bmod n} 1 \right) \\ & = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \left( \frac{\delta_{k}q}{nd}+O(1)\right)\right) \\ & = \frac{1}{\phi(q)}\left(\frac{\delta_{k}\phi(q)}{n}+O\left(d(q)\right) \right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right)\\ & = \alpha^{-(k-1)}n^{-1}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O (q^{k-1-\frac{1}{\tau+1}+\varepsilon} ). \end{align} | (3.2) |
By the properties of exponential sums,
\begin{align} S_{22} = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left({\sum\limits_{x_{1} \leqslant \delta_{1} q}}\cdots {\sum\limits_{x_{k} \leqslant \delta_{k-1} q}}\chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\right) \\ &\times \left(\sum \limits_{l = 1}^{n}\mathbf{e}(\frac{x_{1}+\cdots+x_{k}}{n}l) \right)\\ = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n} \prod \limits_{i = 1}^{k-1}\left( \sum\limits_{x_{i} \leqslant \delta_{i} q}\mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n} l)\right)\left( \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l)\right). \end{align} | (3.3) |
Let
G(r, \chi): = \sum\limits_{h = 1}^{q} \chi(h) \mathbf{e} (\frac{r h}{q} ) |
be the Gauss sum, and we know that for \chi \neq \chi_{0} ,
\chi(x_{i}) = \frac{1}{q} \sum\limits_{r = 1}^{q} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ) = \frac{1}{q} \sum\limits_{r = 1}^{q-1} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ), |
and
\frac{l}{n}-\frac{r}{q} \neq 0 |
for 1 \leqslant l \leqslant n, 1 \leqslant r \leqslant q-1 and (n, q) = 1 .
Therefore,
\begin{equation} \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l ) = \frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{h})-1}, \end{equation} | (3.4) |
where
f(\delta, l, r ; n, p): = 1-\mathbf{e}\left( (\frac{l}{n}-\frac{r}{q} )\lfloor\delta q\rfloor\right) |
and
\left|f\left(\delta_{k}, l, r_{k} ; n, q\right)\right| \leqslant 2. |
For x_{i}(1\leqslant i \leqslant k-1) , using Lemma 2.2, we also have
\begin{align} & \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e} (\frac{x_{i}}{n} l ) \\ = & \frac{1}{q} \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\alpha^{-1}\sum\limits_{a \leqslant \delta_{i} q} \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right)+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) \\ = &\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\frac{f\left(\delta_{i} , l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n} )-1}+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) . \end{align} | (3.5) |
Let
\begin{align} S_{23}& = \frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1} \left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \frac{f\left(\delta_{i}, l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n})-1}\right)\left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) \\ & = \frac{1}{n \phi(q) q^{k} \alpha^{k-1}} \sum\limits_{l = 1}^{n}\sum\limits_{r_{1} = 1}^{q-1}\cdots \sum\limits_{r_{k} = 1}^{q-1} \frac{f\left(\delta_{1} , l, r_{1} ; n, q\right)\cdots f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\left(\mathbf{e} (\frac{r_{1}}{q}-\frac{l}{n} )-1\right)\cdots \left(\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{n} )-1\right)} \\ &\times \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right). \end{align} | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
\begin{align} &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\sum\limits_{\chi \mathrm{mod}q}\chi(\overline c)\chi(h_{1})\cdots \chi(h_{k})\mathbf{e} ( \frac{r_{1}h_{1}+\cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\mathop{\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}}_{h_{1} \cdots h_{k} \equiv c \bmod q}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots r_{k-1}h_{k-1}+r_{k}c\overline{h_{1} \cdots h_{k-1}}}{q} )\\ = &\phi(q) \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k}c;q) \\ \ll& \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}c, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}c, q\right)^{\frac{1}{2}} \\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.7) |
By Mobius inversion, we get
G(r, \chi_{0}) = \sum\limits_{h = 1}^{q}' \mathbf{e} (\frac{r h}{q} ) = \mu\left(\frac{q}{(r, q)}\right) \frac{\varphi(q)}{\varphi(q /(r, q))} \ll(r, q), |
and
\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right) \ll\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). |
Hence,
\begin{align} &\mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)-\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right)\\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.8) |
From (3.8) we may deduce the following result:
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\mathbf{e} (\frac{r}{q}-\frac{l}{n} )-1\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\sin \pi (\frac{r}{q}-\frac{l}{n} )\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k}\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }\mathop{\sum\limits_{r \leq q-1}}_{(r,q) = d }\frac{d}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\mathop{\sum\limits_{m \leq\frac{q-1}{d} }}_{(m,q) = 1}\frac{1}{\|\frac{md}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\sum\limits_{k \mid q}\mu(k)\sum\limits_{m \leq\frac{q-1}{kd} }\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|}\right)^{k }. \end{align} |
It is easy to see
\|\frac{mkd}{q}-\frac{l}{n}\| = \|\frac{mkn-l(q/d)}{(q/d)n}\| \geq \frac{1}{(q/d)n}, |
and we obtain
S_{23}\ll\frac{k^{\omega(q)}}{n \phi(q) q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q\\{d < q }}}d\sum\limits_{k \mid q}\sum\limits_{m \leq\frac{q-1}{kd} }\min (\frac{qn}{d},\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|} )\right)^{k }. |
Let k d / q = h_{0} / q_{0} , where q_{0} \geq 1, \left(h_{0}, q_{0}\right) = 1 , and we will easily obtain q /(k d) \leq q_{0} \leq q / d . By using Lemma 2.4, we have
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q_{0}}+1\right) (\frac{q n}{d}+q_{0} \log q_{0} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q/(kd)}+1\right) (\frac{q n}{d}+\frac{q}{d} \log \frac{q}{d} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{ \alpha^{k-1}}\left(\sum\limits_{\substack{d \mid q \\ d < q}} \sum\limits_{k \mid q}n+\log q\right)^{k}\\ &\ll q^{\frac{k-1}{2}}d^{2k}(q)(\log q+n)^{k}. \end{align} |
Let
S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) |
and
S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right). |
By the same argument of S_{23} , it follows that
S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k}, |
S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n). |
Since n\ll q^{\frac{1}{3}} , we have
\begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} | (3.9) |
Taking n = 1 , we get
\begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | A. Bouzerdoum, R. B. Pinter, Shunting inhibitory cellular neural networks: Derivation and stability analysis, IEEE T. Circuits Syst. I: Fundam. Theory Appl., 40 (1993), 215–221. |
[2] | F. Pasemann, M. Hild, K. Zahedi, SO(2)-networks as neural oscillators, In: J. Mira, J. R. Álvarez, Computational methods in neural modeling, IWANN 2003, Lecture Notes in Computer Science, Springer, 2686 (2003), 144–151. https://doi.org/10.1007/3-540-44868-3_19 |
[3] |
J. Cao, Global asymptotic stability of neural networks with transmission delays, Int. J. Syst. Sci., 31 (2000), 1313–1316. https://doi.org/10.1080/00207720050165807 doi: 10.1080/00207720050165807
![]() |
[4] |
A. Kashkynbayev, J. Cao, Z. Damiyev, Stability analysis for periodic solutions of fuzzy shunting inhibitory CNNs with delays, Adv. Differ. Equ., 2019 (2019), 384. https://doi.org/10.1186/s13662-019-2321-z doi: 10.1186/s13662-019-2321-z
![]() |
[5] |
J. Cao, Periodic solutions and exponential stability in delayed cellular neural networks, Phys. Rev. E, 60 (1999), 3244. https://doi.org/10.1103/PhysRevE.60.3244 doi: 10.1103/PhysRevE.60.3244
![]() |
[6] |
J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136–147. https://doi.org/10.1016/S0375-9601(02)01720-6 doi: 10.1016/S0375-9601(02)01720-6
![]() |
[7] |
Z. Liu, L. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 290 (2004), 247–262. https://doi.org/10.1016/j.jmaa.2003.09.052 doi: 10.1016/j.jmaa.2003.09.052
![]() |
[8] |
Y. Li, Global stability and existence of periodic solutions of discrete delayed cellular neural networks, Phys. Lett. A, 333 (2004), 51–61. https://doi.org/10.1016/j.physleta.2004.10.022 doi: 10.1016/j.physleta.2004.10.022
![]() |
[9] |
A. Chen, J. Cao, Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients, Appl. Math. Comput., 134 (2003), 125–140. https://doi.org/10.1016/S0096-3003(01)00274-0 doi: 10.1016/S0096-3003(01)00274-0
![]() |
[10] |
H. Jiang, L. Zhang, Z. Teng, Existence and global exponential stability of almost periodic solution for cellular neural networks with variable coefficients and time-varying delays, IEEE T. Neur. Net., 16 (2005), 1340–1351. https://doi.org/10.1109/TNN.2005.857951 doi: 10.1109/TNN.2005.857951
![]() |
[11] |
B. Liu, L. Huang, Existence and exponential stability of almost periodic solutions for cellular neural networks with time-varying delays, Phys. Lett. A, 341 (2005), 135–144. https://doi.org/10.1016/j.physleta.2005.04.052 doi: 10.1016/j.physleta.2005.04.052
![]() |
[12] |
H. Zhang, J. Shao, Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms, Appl. Math. Comput., 219 (2013), 11471–11482. https://doi.org/10.1016/j.amc.2013.05.046 doi: 10.1016/j.amc.2013.05.046
![]() |
[13] |
Y. Yang, J. Cao, Stability and periodicity in delayed cellular neural networks with impulsive effects, Nonlinear Anal.: Real World Appl., 8 (2007), 362–374. https://doi.org/10.1016/j.nonrwa.2005.11.004 doi: 10.1016/j.nonrwa.2005.11.004
![]() |
[14] |
L. Pan, J. Cao, Anti-periodic solution for delayed cellular neural networks with impulsive effects, Nonlinear Anal.: Real World Appl., 12 (2011), 3014–3027. https://doi.org/10.1016/j.nonrwa.2011.05.002 doi: 10.1016/j.nonrwa.2011.05.002
![]() |
[15] |
K. Yuan, J. Cao, J. Deng, Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing, 69 (2006), 1619–1627. https://doi.org/10.1016/j.neucom.2005.05.011 doi: 10.1016/j.neucom.2005.05.011
![]() |
[16] |
C. Xu, Q. Zhang, Y. Wu, Existence and exponential stability of periodic solution to fuzzy cellular neural networks with distributed delays, Int. J. Fuzzy Syst., 18 (2016), 41–51. https://doi.org/10.1007/s40815-015-0103-7 doi: 10.1007/s40815-015-0103-7
![]() |
[17] |
Z. Huang, Almost periodic solutions for fuzzy cellular neural networks with time-varying delays, Neural Comput. Applic., 28 (2017), 2313–2320. https://doi.org/10.1007/s00521-016-2194-y doi: 10.1007/s00521-016-2194-y
![]() |
[18] |
Z. Huang, Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays, Int. J. Mach. Learn. Cyber., 8 (2017), 1323–1331. https://doi.org/10.1007/s13042-016-0507-1 doi: 10.1007/s13042-016-0507-1
![]() |
[19] |
J. Liang, H. Qian, B. Liu, Pseudo almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays, Neural Process. Lett., 48 (2018), 1201–1212. https://doi.org/10.1007/s11063-017-9774-4 doi: 10.1007/s11063-017-9774-4
![]() |
[20] |
Y. Tang, Exponential stability of pseudo almost periodic solutions for fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 49 (2019), 851–861. https://doi.org/10.1007/s11063-018-9857-x doi: 10.1007/s11063-018-9857-x
![]() |
[21] |
C. Xu, M. Liao, P. Li, Z. Liu, S. Yuan, New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays, Fuzzy Sets Syst., 411 (2021), 25–47. https://doi.org/10.1016/j.fss.2020.03.016 doi: 10.1016/j.fss.2020.03.016
![]() |
[22] |
A. Chen, J. Cao, Almost periodic solution of shunting inhibitory CNNs with delays, Phys. Lett. A, 298 (2002), 161–170. https://doi.org/10.1016/S0375-9601(02)00469-3 doi: 10.1016/S0375-9601(02)00469-3
![]() |
[23] |
X. Huang, J. Cao, Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay, Phys. Lett. A, 314 (2003), 222–231. https://doi.org/10.1016/S0375-9601(03)00918-6 doi: 10.1016/S0375-9601(03)00918-6
![]() |
[24] |
B. Liu, L. Huang, Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays, Phys. Lett. A, 349 (2006), 177–186. https://doi.org/10.1016/j.physleta.2005.09.023 doi: 10.1016/j.physleta.2005.09.023
![]() |
[25] |
B. Liu, L. Huang, Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Chaos Solitons Fract., 31 (2007), 211–217. https://doi.org/10.1016/j.chaos.2005.09.052 doi: 10.1016/j.chaos.2005.09.052
![]() |
[26] |
Y. Xia, J. Cao, Z. Huang, Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses, Chaos Solitons Fract., 34 (2007), 1599–607. https://doi.org/10.1016/j.chaos.2006.05.003 doi: 10.1016/j.chaos.2006.05.003
![]() |
[27] |
C. Ou, Almost periodic solutions for shunting inhibitory cellular neural networks, Nonlinear Anal.: Real World Appl., 10 (2009), 2652–2658. https://doi.org/10.1016/j.nonrwa.2008.07.004 doi: 10.1016/j.nonrwa.2008.07.004
![]() |
[28] |
Y. Li, C. Wang, Almost periodic solutions of shunting inhibitory cellular neural networks on time scales, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3258–3266. https://doi.org/10.1016/j.cnsns.2011.11.034 doi: 10.1016/j.cnsns.2011.11.034
![]() |
[29] |
J. Shao, Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Phys. Lett. A, 372 (2008), 5011–5016. https://doi.org/10.1016/j.physleta.2008.05.064 doi: 10.1016/j.physleta.2008.05.064
![]() |
[30] |
G. Peng, L. Huang, Anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays, Nonlinear Anal.: Real World Appl., 10 (2009), 2434–2440. https://doi.org/10.1016/j.nonrwa.2008.05.001 doi: 10.1016/j.nonrwa.2008.05.001
![]() |
[31] |
Y. Li, J. Shu, Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3326–3336. https://doi.org/10.1016/j.cnsns.2010.11.004 doi: 10.1016/j.cnsns.2010.11.004
![]() |
[32] |
L. Peng, W. Wang, Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms, Neurocomputing, 111 (2013), 27–33. https://doi.org/10.1016/j.neucom.2012.11.031 doi: 10.1016/j.neucom.2012.11.031
![]() |
[33] |
Z. Long, New results on anti-periodic solutions for SICNNs with oscillating coefficients in leakage terms, Neurocomputing, 171 (2016), 503–509. https://doi.org/10.1016/j.neucom.2015.06.070 doi: 10.1016/j.neucom.2015.06.070
![]() |
[34] |
C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47–52. https://doi.org/10.1016/j.neucom.2019.05.022 doi: 10.1016/j.neucom.2019.05.022
![]() |
[35] | T. Diagana, Almost automorphic type and almost periodic type functions in abstract spaces, New York: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-319-00849-3 |
[36] | S. Zaidman, Almost-periodic functions in abstract spaces, Pitman Research Notes in Math, Vol. 126, Boston: Pitman, 1985. |
[37] | M. Akhmet, Almost periodicity, chaos, and asymptotic equivalence, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-20572-0 |
[38] |
X. Huang, J. Cao, Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay, Phys. Lett. A, 314 (2003), 222–231. https://doi.org/10.1016/S0375-9601(03)00918-6 doi: 10.1016/S0375-9601(03)00918-6
![]() |