Mathematics

Research article

Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling

Sumiya Nasir ${ }^{1}$, Nadeem ul Hassan Awan², Fozia Bashir Farooq ${ }^{3, *}$ and Saima Parveen ${ }^{2}$
${ }^{1}$ Department of Mathematics and Natural Sciences, College of sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar 31952, Saudi Arabia
${ }^{2}$ Department of Mathematics, Government College University Faisalabad, Pakistan
${ }^{3}$ Department of Mathematics and statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia

* Correspondence: Email: ffarooq@imamu.edu.sa.

Abstract

A topological index is a real number obtained from the chemical graph structure. It can predict the physicochemical and biological properties of many anticancer medicines like blood, breast and skin cancer. This can be done through degree-based topological indices. . In this article, the drugs, azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, etc. which are used in order to cure blood cancer are discussed and the purpose of the QSPR study is to determine the mathematical relation between the properties under investigation (eg, boiling point, flash point etc.) and different descriptors related to molecular structure of the drugs. It is found that topological indices (TIs) applied on said drugs have a good correlation with physicochemical properties in this context.

Keywords: Drugs; blood cancer; linear QSPR model; degree-based topological indices
Mathematics Subject Classification: 05C09, 05C12, 05C31, 05C07, 05C92, 92E10

1. Introduction

Cancer is a dangerous disease and belongs to the family of genetic diseases. It is the uncontrolled magnification of abnormal blood cells in the body that stops normal functions and is prone to infection. The cancer that affects blood cells is known as blood cancer. Leukemia is an example of blood cancer and a mutation in the DNA of blood cells is its main cause, resulting in abnormal behavior of blood
cells. This will not only prone to infection but also in some cases becomes chronic and creates tumors in bones. Throughout the world, nearly 1.24 million people are affected by blood cancer annually. Medicos and scientists are always probing for better ways to care for people fighting cancer. One way to do this is to develop and study incipient drugs. Drug revelation is not an easy task, as it is expensive, time consuming, and challenging in some cases. Numerous ways have been discovered to treat cancer. Drug therapy is one of them. Drug therapy is used to stop the growth of cancer cells and eliminate them from the body, as well as to restore healthy cells. Anticancer drugs are also used to kill and halt this malignant disease and many drugs test are accompanied to fight the fatal disease. This requires timely diagnosis, screening, and medication that benefits patients to control the deadly disease in the future. For further detail see [1-3,14].

Topological Indices (TIs) are termed as numeric descriptors that are obtained from molecular graphs to describe chemical system and are mostly used to investigate the physiochemical properties of several drugs. There are several kinds of polynomials and topological indices which are extensively calculated, represent chemical structure and have vital position in chemical graph theory. Among these classes, degree-based topological indices are of great importance and particularly in chemistry. The use of graph invariants (TIs) in QSPR and QSAR studies has been of key interest in recent years. Topological indices have application in various areas of biology, mathematics, bioinformatics, mathematics, informatics, biology etc., but their utmost significant use to date is in the non-empirical Quantitative Structure- Property Relationships (QSPR) and Quantitative Structure -Activity Relationships (QSAR) [5,18,26]. The ABC index, Wiener index and Randic index are helpful for predicting the bioactivity of drugs. The QSPR models help to determine the optimal relationship between the topological indices and psychochemical characteristic. These psychochemical qualities are being studied because they have a big impact on bioactivity and drug transit in the human body. In this paper, we compute degree-based TIs related to blood cancer drugs. In the same way, anticancer drugs represent chemical compounds on which given topological indices are well defined and discussed in QSPR analysis. The corresponding characteristic calculated in this way is highly correlated with characteristic of blood cancer drugs by the use of linear regression.

2. Material and method

In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is considered as simple, finite, and connected, whereas V and E represented in chemical graph are termed as vertex and edge sets, respectively. Degree of vertex in graph G is number of vertices adjacent to it and is denoted by d_{u}. Valence of a compound in chemistry and the degree of vertex in the graph are closely related concepts, for more details see [4,10,11,13]. Degree-based topological indices used are defined below:
Def. 2.1 The ABC index [13] of a molecular graph G is defined as

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u+} d_{v}+2}{d_{u} d_{v}}}
$$

Def. 2.2 The first-degree-based topological index is Randic index $X(G)$ introduced by Milan Randic in 1975 [15]. Randic index is defined as:

$$
R A(G)=\sum_{u v \in E(G)} \sqrt{\frac{1}{d_{u} d_{v}}}
$$

Def. 2.3 The sum connectivity index [16] of a molecular graph G is defined as

$$
S(G)=\sum_{u v \in E(G)} \sqrt{\frac{1}{d_{u}+d_{v}}}
$$

Def. 2.4 The GA index [17] of a molecular graph G is defined as:

$$
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{d_{u} d_{v}}}{d_{u}+d_{v}}
$$

Def. 2.5 The first and second Zagreb indices [19] of a molecular graph G are defined as follows:

$$
\begin{aligned}
M 1(G) & =\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right) \\
M 2(G) & =\sum_{u v \in E(G)}\left(d_{u} d_{v}\right)
\end{aligned}
$$

Def. 2.6 The harmonic index [20] of a molecular graph G is defined as:

$$
H(G)=\sum_{u v \in E(G)} \frac{2}{d_{u}+d_{v}}
$$

Def. 2.7 The hyper Zagreb index [21] of a molecular graph G is defined as:

$$
H M(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)^{2}
$$

Def. 2.8 The forgotten index [23] of a molecular graph G is defined as:

$$
F(G)=\sum_{u v \in E(G)}\left[\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right]
$$

The values of physical properties are taken from Chem Spider. It is observed from data Tables 2 and is found these data values are normally distributed. So, linear regression model is most adequate to test and adopt for said analysis. For more information on degree-based topological indices, we refer the reader to visit the following articles [4-9,22,27,28].

The molecular formula for bulasan is $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}_{2}$. Busulfan is an antineoplastic alkylating agent and is used for many kinds of cancer. Alkylating agents have the ability to add alkyl groups to several electronegative groups under conditions present in cells. They prohibit tumor development by crosslinking guanine bases in DNA double-helix strands, directly attacking DNA. The strands are unable to separate and uncoil. It is mandatory in DNA replication and cells are no longer divide. The molecular formula of clofarabine is $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClF} \mathrm{N}_{5} \mathrm{O}_{5}$. Clofarabine interfere in growth of cancer cells. Clofarabine prevents cells from making DNA and RNA by interfering with the synthesis of nucleic acids, thus stopping the growth of cancer cells. The chemical formula of azacitidine is $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$. Azacytidine has been used as an antineoplastic agent. The molecular formula of meracptopurine is $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}$. Mercaptopurine is one of a large series of purine analogues that interfere with nucleic acid
biosynthesis and have been found active against human leukemias. The molecular formula of Tioguanine is $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{~S}$. Antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia.

The molecular formula of nelarabine is $\mathrm{C}_{11} \mathrm{H}_{5}{ }_{5} \mathrm{~N}_{5} \mathrm{~S}_{5}$. Nelarabine is a purine nucleoside analog and antineoplastic agent used for the treatment of acute T-cell lymphoblastic leukemia and T cell lymphoblastic lymphoma with inadequate clinical response to prior chemotherapeutic treatments. The molecular formula of cytarabine is $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{~S}_{5}$. Cytarabine is an antineoplastic antimetabolite used in the treatment of several forms of leukemia, including acute myelogenous leukemia and meningeal leukemia. The molecular formula of bosutinib is $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}$. It is used to treat a certain type of chronic myeloid leukemia (a cancer of white blood cells). The molecular formula of dasatinib is $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{~S}$.Dasatinib is a tyrosine kinase inhibitor used for the treatment of lymphoblastic or chronic myeloid leukemia. The molecular formula of melphala is $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$. Melphalan is an antineoplastic in the class of alkylating agents and is used to treat various forms of cancer. Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. They stop tumor growth by crosslinking guanine bases in DNA. The molecular formula of dexamethasone is $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{FO}_{5}$. Dexamethasone is a glucocorticoid available in various modes of administration that is used for the treatment of various inflammatory conditions, including bronchial asthma, as well as endocrine and rheumatic disorders. The molecular formula of doxorubicine is $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{11}$. Doxorubicin is an antineoplastic in the anthracycline class. Anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. The molecular formula of carbopalatin is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}$. Carboplatin is a alkylating agent used to treat advanced ovarian cancer.

3. Results and discussions

In this section, degree-based TIs are imposed on blood cancer drugs. The relation between QSPR analysis and topological indices depicts that they are highly correlated as regards physicochemical properties use to cure blood cancer. The thirteen medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin are used for this analysis of said disease. The chemical structure for given drugs is shown in Figure 1. In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Hence, the study used regression analysis for the calculation purpose.

3.1. Regression model

In this article, quantitative structure analysis about nine topological indices is calculated for QSPR modeling purpose. Five physical properties, boiling point (BP), molar volume (MV), molar refractivity (R), complexity and flash point (FP), for 13 medicines arranged in Figure 1, are investigated. We execute the regression analysis for the drugs and tested linear regression model is tested with the help of equation as under:

$$
\begin{equation*}
P=A+b(T I) \tag{1}
\end{equation*}
$$

Here, P is the physicochemical property of the candidate drug. The TI, A , and b represent topological index, constant and regression coefficient, respectively. All data tables are calculated by
the use of SPSS software version-26 to obtain accurate results. The nine TIs of candidate blood cancer drugs and their physical property are investigated with the help of linear QSPR model. By applying Eq 1, we calculate linear regression model for degree based TIs of candidate drugs given as under.

(a) Azacitidine

(d) Tioguanine

(g) Clofarabine

(j) Melphala

(b) Buslfan

(e) Nelarabine

(h) Bosutinib

(k) Dexamethasone

(m) Carboplatin

Figure 1. Molecular structure of drugs.

Theorem 1. Let G_{1} be the graph of Azacitidine, the various topological indices of G are given as follows.
i) $\quad A B C\left(G_{1}\right)=22.04$
ii) $\quad R A\left(G_{1}\right)=13.12$
iii) $\quad S\left(G_{1}\right)=13.46$
iv) $\quad G A\left(G_{1}\right)=27.72$
v) $\quad M 1\left(G_{1}\right)=162$
vi) $\quad M 2\left(G_{1}\right)=209$
vii) $\quad F\left(G_{1}\right)=516$
viii) $\quad H\left(G_{1}\right)=11.95$
ix) $\quad H M\left(G_{1}\right)=934.00$

Proof. Let G_{1} be the graph of Azacitidine with edge set E, Let $E_{m, n}$ represents the class of edges of G joining vertices of degrees m and n. With $\left|E_{1,2}\right|=3,\left|E_{1,3}\right|=4,\left|E_{1,4}\right|=6,\left|E_{2,3}\right|=4$, $\left|E_{2,4}\right|=5,\left|E_{3,3}\right|=3,\left|E_{3,4}\right|=1,\left|E_{4,4}\right|=4$.
i) By using definition 2.1 and above given edge partitions $E_{m, n}$ we get, $\left(G_{1}\right)==3 \sqrt{\frac{1+2-2}{1 \times 2}}+4 \sqrt{\frac{1+3-2}{1 \times 3}}+6 \sqrt{\frac{1+4-2}{1 \times 4}}+4 \sqrt{\frac{2+3-2}{2 \times 3}} \quad 5 \sqrt{\frac{2+4-2}{2 \times 4}}+3 \sqrt{\frac{3+3-2}{3 \times 3}}+1 \sqrt{\frac{3+4-2}{3 \times 4}}=22.04$.
ii) By using Definition 2.2 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{aligned}
R A\left(G G_{1}\right)= & =3 \sqrt{\frac{1}{1 \times 2}}+4 \sqrt{\frac{1}{1 \times 3}}+6 \sqrt{\frac{1}{1 \times 4}}+4 \sqrt{\frac{1}{2 \times 3}} 5 \sqrt{\frac{1}{2 \times 4}}+3 \sqrt{\frac{1}{3 \times 3}}+1 \sqrt{\frac{1}{3 \times 4}} \\
& +4 \sqrt{\frac{1}{4 \times 4}}=13.12
\end{aligned}
$$

iii) By using Definition 2.3 and above given edge partitions $E_{m, n}$ we get,
$S\left(G_{1}\right)==3 \sqrt{\frac{1}{1+2}}+4 \sqrt{\frac{1}{1+3}}+6 \sqrt{\frac{1}{1+4}}+4 \sqrt{\frac{1}{2+3}} \quad 5 \sqrt{\frac{1}{2+4}}+3 \sqrt{\frac{1}{3+3}}+1 \sqrt{\frac{1}{3+4}}+4 \sqrt{\frac{1}{4+4}}=13.46$.
iv) By using definition 2.4 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{aligned}
G A\left(G_{1}\right)= & =\frac{6 \sqrt{1 \times 2}}{1+2}+\frac{8 \sqrt{1 \times 3}}{1+3}+\frac{12 \sqrt{1 \times 4}}{1+4}+\frac{8 \sqrt{2 \times 3}}{2+3}+\frac{10 \sqrt{2 \times 4}}{2+4}+\frac{6 \sqrt{3 \times 3}}{3+3}+\frac{2 \sqrt{3 \times 4}}{3+4} \\
& +\frac{8 \sqrt{4 \times 4}}{4+4}=27.72
\end{aligned}
$$

v) By using Definition 2.5 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{array}{r}
M 1\left(G_{1}\right)=\sum_{u v \in E\left(G_{1}\right)}\left(s_{u+} s_{v}\right)=3(1+2)+4(1+3)+6(1+4)+4(2+3)+5(2+4)+ \\
3(3+3)+1(3+4)+4(4+4)=162 .
\end{array}
$$

vi) By using Definition 2.5 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{array}{r}
M 2\left(G_{1}\right)=3(1 \times 2)+4(1 \times 3)+6(1 \times 4)+4(2 \times 3)+5(2 \times 4)+3(3 \times 3)+1(3 \times 4)+ \\
4(4 \times 4)=209
\end{array}
$$

vii) By using definition 2.6 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{aligned}
& H\left(G_{1}\right)=6\left(\frac{1}{1+2}\right)+8\left(\frac{1}{1+3}\right)+12\left(\frac{1}{1+4}\right)+8\left(\frac{1}{2+3}\right)+10\left(\frac{1}{2+4}\right)+6\left(\frac{1}{3+3}\right) \\
& \quad+2\left(\frac{1}{3+4}\right)+8\left(\frac{1}{4+4}\right)=11.95
\end{aligned}
$$

viii) By using definition 2.7 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{aligned}
& H M\left(G_{1}\right)=3(1+2)^{2}+3(1+3)^{2}+6(1+4)^{2}+4(2+3)^{2}+5(2+4)^{2}+3(3+3)^{2} \\
&+1(3+4)^{2}+4(4+4)^{2}=934
\end{aligned}
$$

ix) By using definition 2.8 and above given edge partitions $E_{m, n}$ we get,

$$
\begin{gathered}
F\left(G_{1}\right)=3(1+4)+4(1+9)+6(1+16)+4(4+9)+5(4+16)+3(9+9)+1(9+16)+ \\
4(16+16)=516 .
\end{gathered}
$$

Theorem2. Let G_{2} be the graph of Buslfan, The various Topological indices of G_{2} are given as follows.
i) $\quad A B C\left(G_{2}\right)=20.77$
ii) $\quad R A\left(G_{2}\right)=11.31$
iii) $\quad S\left(G_{2}\right)=11.04$
iv) $\quad G A\left(G_{2}\right)=22.23$
v) $\quad M 1\left(G_{2}\right)=148$
vi) $\quad M 2\left(G_{2}\right)=176$
vii) $\quad F\left(G_{2}\right)=526$
viii) $\quad H\left(G_{2}\right)=9.45$
ix) $\quad H M\left(G_{2}\right)=878.00$

Proof. Let G_{2} be the graph of Buslfan with edge set E^{\prime}, Let $E_{(m, n)}^{\prime}$ represents the class of edges of G_{2} joining vertices of degrees m and n. With $\left|E_{(1,4)}^{\prime}\right|=18,\left|E_{(2,4)}^{\prime}\right|=3,\left|E_{(4,4)}^{\prime}\right|=5$.
i) By using definition 2.1 and edge partitions $E_{(m, n)}^{\prime}$ we get,

$$
\left(G_{2}\right)==18 \sqrt{\frac{1+4-2}{1 \times 4}}+3 \sqrt{\frac{2+4-2}{2 \times 4}}+5 \sqrt{\frac{4+4-2}{4 \times 4}}=20.77
$$

ii) By using def 2.2 and edge partition $E^{\prime}(m, n)$ we get,

$$
R A\left(G_{2}\right)=18 \sqrt{\frac{1}{1 \times 4}}+3 \sqrt{\frac{1}{2 \times 4}}+5 \sqrt{\frac{1}{4 \times 4}}=11.31
$$

iii) Definition 2.3 and edge partition $\left.E_{(m, n)}^{\prime}\right)$ gives

$$
S\left(G_{2}\right)=18 \sqrt{\frac{1}{1+4}}+3 \sqrt{\frac{1}{2+4}}+5 \sqrt{\frac{1}{4+4}}=11.04
$$

iv) Using def 2.4 and edge partition $E_{(m, n)}^{\prime}$ we get,

$$
G A\left(G_{2}\right)=\frac{36 \sqrt{1 \times 4}}{1+4}+\frac{6 \sqrt{2 \times 4}}{2+4}+\frac{10 \sqrt{4 \times 4}}{4+4}=22.23
$$

v) Using def 2.5 and edge partition $E_{(m, n)}^{\prime}$ we get,

$$
M 1\left(G_{2}\right)=18(1+4)+3(2+4)+5(4+4)=148
$$

vi) Using def 2.5 and edge partition $E_{(m, n)}^{\prime}$ we get,

$$
M 2\left(G_{2}\right)=18(1 \times 4)+3(2 \times 4)+5(4 \times 4)=176
$$

vii) Using def 2.6 and edge partition $E_{(m, n)}^{\prime}$ we get,

$$
H\left(G_{2}\right)=36\left(\frac{1}{1+4}\right)+6\left(\frac{1}{2+4}\right)+10\left(\frac{1}{4+4}\right)=9.45
$$

viii) Using def 2.7 and edge partition $E_{(m, n)}^{\prime}$ we get,

$$
H M(G)=18(1+4)^{2}+3(2+4)^{2}+5(4+4)^{2}=878
$$

ix) By using def 2.8 and edge partition $E^{\prime}(m, n)$ we get,

$$
F\left(G_{2}\right)=18(1+16)+3(4+16)+5(16+16)=526
$$

One can calculate the topological indices of the remaining drugs by adopting a similar procedure applied in Theorem 1, Theorem 2 and using definitions 2.1 to 2.8 . Also, the calculated values of all drugs are listed in Table 2.

Using (1), we have calculated the following diverse linear models for all degree-based topological index, which are given as under:

1. Regression models for atom bond connectivity index $\mathrm{ABC}(\mathrm{G})$:

Boiling point $=395.921+5.802[\mathrm{ABC}(\mathrm{G})]$
Refractive index $=6.034+2.468[\mathrm{ABC}(\mathrm{G})]$
$\mathrm{FP}=197.699+3.486[\mathrm{ABC}(\mathrm{G})]$
MV $\quad=-10.083+7.258[\mathrm{ABC}(\mathrm{G})]$
Complexity $=-107.244+18.352[$ ABC (G)]

2. Regression models for the atom-bond connectivity index RA (G)]:

Boiling point $=385.002+10.833[\mathrm{RA}(\mathrm{G})]$
Refractive index $=4.535+4.408$ [RA (G)]
$\mathrm{FP} \quad=191.561+6.451[\mathrm{RA}(\mathrm{G})]$
MV $=-14.889+12.947$ [RA (G)]
Complexity $=-125.985+33.119[R A(G)]$
3. Regression models for atom bond connectivity index $S(\mathbf{G})$:

Boiling point $=384.612+10.664[\mathrm{~S}(\mathrm{G})]$
Refractive Index $=5.102+4.293$ [S (G)]
FP $\quad=191.365+6.348[\mathrm{~S}(\mathrm{G})]$
$\mathrm{MV}=-11.972+12.540[\mathrm{~S}(\mathrm{G})]$
Complexity $=-125.538+32.402[\mathrm{~S}(\mathrm{G})]$
4. Regression models for atom bond connectivity index GA (G):

Boiling point $=386.718+5.013[\mathrm{GA}(\mathrm{G})]$
Refractive Index $=6.258+2.010[\mathrm{GA}(\mathrm{G})]$
$\mathrm{FP}=192.642+2.985[\mathrm{GA}(\mathrm{G})]$
$\mathrm{MV}=-7.333+5.841[\mathrm{GA}(\mathrm{G})]$
Complexity $=121.577+15.270[\mathrm{GA}(\mathrm{G})]$
5. Regression models for atom bond connectivity index M1 (G):

Boiling point $=405.004+.738[\mathrm{M1}(\mathrm{G})]$
Refractive Index $=9.310+.318[\mathrm{M1}(\mathrm{G})]$
$\mathrm{FP}=202.599+0.448[\mathrm{M} 1(\mathrm{G})]$
$\mathrm{MV}=1.253+.932$ [M1 (G)]
Complexity $=-97.937+2.432[\mathrm{M} 1(\mathrm{G})]$

6. Regression models for atom bond connectivity index HM (G):

Boiling point $=419.068+.115[\mathrm{HM}(\mathrm{G})]$
Refractive index $=13.368+0.052[\mathrm{HM}(\mathrm{G})]$
$\mathrm{FP}=210.170+0.071[\mathrm{HM}(\mathrm{G})]$
$\mathrm{MV}=13.491+.151[\mathrm{HM}(\mathrm{G})]$
Complexity $=-78.956+.404[\mathrm{HM}(\mathrm{G})]$
7. Regression models for atom bond connectivity index M2 (G):

Boiling point $=414.903+.535[\mathrm{M} 2(\mathrm{G})]$
Refractive index $=13.461+.233$ [M2 (G)]
$\mathrm{FP}=208.190+.327$ [M2 (G)]
MV $\quad=15.185+.677[\mathrm{M} 2(\mathrm{G})]$
Complexity $=-87.855+1.849$ [M2 (G)]
8. Regression models for the atom-bond connectivity index $F(G)$:

Boiling point $\quad=422.835+.200[\mathrm{~F}(\mathrm{G})]$
Refractive Index $=13.494+.092[\mathrm{~F}(\mathrm{G})]$
$\mathrm{FP}=212.010+.124[\mathrm{~F}(\mathrm{G})]$
$\mathrm{MV}=13.736+.273[\mathrm{~F}(\mathrm{G})]$
Complexity $=-71.482+.717[\mathrm{~F}(\mathrm{G})]$
9. Regression models for atom bond connectivity index H (G):

Boiling point $=377.349+12.647[\mathrm{H}(\mathrm{G})]$
Refractive Index $=4.240+4.943[\mathrm{H}(\mathrm{G})]$
$\mathrm{FP}=187.144+7.500[\mathrm{H}(\mathrm{G})]$
MV $\quad=-14.817+14.434[\mathrm{H}(\mathrm{G})]$
Complexity $=-136.607+37.543[H(G)]$
3.2. Quantitative structure analysis and comparison between topological indices and correlation coefficient of physicochemical properties

The physicochemical properties of 13 blood cancer drugs are presented in Table 2. Their TI values are listed in Table 1 and computed from their molecular structure. The correlation coefficient between five physicochemical properties and TIs is listed in Table 3. The graph between the correlation coefficient of the physicochemical properties of the drug and the topological index is drawn in Figure 2.

Table 1. The TI values of candidate drugs.

Name of drug	ABC(G)	RA(G)	$\mathrm{S}(\mathrm{G})$	$\mathrm{GA}(\mathrm{G})$	$\mathrm{M} 1(\mathrm{G})$	$\mathrm{M} 2(\mathrm{G})$	$\mathrm{F}(\mathrm{G})$	$\mathrm{H}(\mathrm{G})$	$\mathrm{HM}(\mathrm{G})$
Azacitidine	22.04	13.12	13.46	27.72	162	209	516	11.95	934.00
Buslfan	20.77	11.31	11.04	22.23	148	176	526	9.45	878.00
Mercaptopurine	10.91	6.52	6.74	14.25	76	93	210	6.10	396.00
Tioguanine	12.39	7.43	7.65	16.12	86	105	238	6.93	448.00
Nelarabine	27.99	16.29	16.67	35.13	206	262	652	14.85	1176.00
Cytarabine	22.77	13.55	13.68	28.62	168	218	536	12.32	972.00
Clofarabine	24.24	14.04	14.43	30.59	180	233	570	12.82	1036.00
Bosutinib	51.18	28.73	29.39	61.92	374	467	1198	25.39	2132.00
Dasatinib	45.50	25.95	26.60	56.11	330	412	1028	23.43	1852.00
Melphala	28.12	16.18	16.15	33.33	202	252	656	14.28	1160.00
Dexamethasone	44.81	24.85	25.37	54.14	354	493	1242	21.86	2228.00
Doxorubicine	52.32	30.01	30.76	65.33	396	522	1288	27.11	2332.00
Carboplatin	19.82	10.76	10.95	23.16	152	202	532	9.34	936.00

Table 2. Physical properties of drugs.
\(\left.$$
\begin{array}{llllll}\hline & \begin{array}{l}\text { Molar volume } \\
\left(\mathrm{cm}^{3}\right)\end{array} & \begin{array}{l}\text { Boiling } \\
\text { Point }{ }^{\circ} \mathrm{C}\end{array} & \begin{array}{l}\text { Refractive } \\
\text { Index }\left(\mathrm{m}^{3}\right. \\
\left.\mathrm{mol}^{-1}\right)\end{array} & \text { Complexity }\end{array}
$$ \quad \begin{array}{l}Flash

Pame of drug{ }^{\circ} \mathrm{C}\end{array}\right]\)| Azacitidine | 117.10 | 534.21 | 54.10 | 384.00 |
| :--- | :--- | :--- | :--- | :--- |
| Buslfan | 182.40 | 464.00 | 50.90 | |
| Mercaptopurine | 94.20 | 491.00 | 41.00 | 19.00 |
| Tioguanine | 80.20 | 460.70 | 46.89 | 225.00 |
| Nelarabine | 149.90 | 721.00 | 65.80 | 377.00 |
| Cytarabine | 128.40 | 547.70 | 52.60 | 383.00 |
| Clofarabine | 143.10 | 550.00 | 63.60 | 370.00 |
| Bosutinib | 388.30 | 649.70 | 142.12 | 734.00 |
| Dasatinib | 366.40 | | 133.08 | 642.00 |
| Melphala | 231.20 | 473.00 | 78.23 | 265.00 |
| Dexamethasone | 296.20 | 568.20 | 100.20 | 805.00 |
| Doxorubicine | 336.60 | 216.00 | 134.59 | 977.00 |
| Carboplatin | | 366.40 | 60.04 | 177.00 |

(i) Refractive index on TI

(ii) Flash Point in TI

Correlation Coefficient of

 Boiling Point
(ii) Boiling Point on TI
(iv) Complexity on TI

(v) Molar volume on TI

Figure 2. Physicochemical properties and Tis.

Table 3. Correlation coefficients.

				Correlation coefficient	Correlation coefficient ofrelation
Topological					
Index	Correlation coefficient of complexity	Correlation coefficient of refractive index	coefficient of of boiling	of molar volume	
ABC(G)	0.943	0.966	0.731	0.672	0.953
RA(G)	0.947	0.965	0.751	0.7	0.946
S(G)	0.949	0.966	0.759	0.708	0.942
GA(G)	0.951	0.966	0.764	0.711	0.938
M1(G)	0.953	0.952	0.728	0.66	0.939
M2(G)	0.96	0.928	0.72	0.645	0.913
HM(G)	0.954	0.927	0.705	0.625	0.822
F(G)	0.949	0.925	0.692	0.609	0.927
H(G)	0.95	0.965	0.772	0.725	0.936

3.3. Calculation of statistical parameters

In this section, QSPR modeling is done to find a relation between physicochemical properties of blood cancer drugs such as medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin and their calculated degree based TIs. whereas TIs, b, r, and N are independent variable, regression model constant, correlation coefficient and sample size respectively. We perceive the correlation coefficient come to be one the experimental and theoretical calculation are close that are marked bold in tables. This type of test can helpful to compare and decide the improvement of model. It is noted the value of r is greater than 0.6 and p value is less than 0.05 . Hence, it decides all properties are significant. Tables 4-12 Represent the Statistical parameters used in QSPR models of TIs.

Table 4. Statistical parameters used in the QSPR model of ABC (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	395.921	5.802	.672	.451	8.228	.017	Significant
Refractive index	13	6.034	2.468	.966	.933	154.093	.000	Significant
Flash point	11	197.699	3.486	.731	.535	10.343	.011	Significant
Molar volume	12	-10.083	7.258	.953	.909	99.904	.000	Significant
Complexity	12	-107.244	18.352	.943	.889	79.955	.000	Significant

Table 5. Statistical parameters used in the QSPR model of RA (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	385.002	10.833	.700	.490	9.614	.011	Significant
Refractive index	13	4.535	4.408	.965	.932	150.523	.000	Significant
Flash point	11	191.561	6.451	.751	.564	11.648	.008	Significant
Molar volume	12	-14.889	12.947	.946	.894	84.680	.000	Significant
Complexity	12	-125.985	33.119	.947	.896	86.612	.000	Significant

Table 6. Statistical parameters used in the QSPR model of S (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	384.612	10.664	.708	.501	10.027	.010	Significant
Refractive index	13	5.102	4.293	.966	.934	155.042	.000	Significant
Flash point	11	191.365	6.348	.759	.576	12.232	.007	Significant
Molar volume	12	-11.972	12.540	.942	.887	78.511	.000	Significant
Complexity	12	-125.538	32.402	.949	.900	90.006	.000	Significant

Table 7. Statistical parameters used in the QSPR model of GA (G).

Physiochemical Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	386.718	5.013	.711	.505	10.202	.010	Significant
Refractive index	13	6.258	2.010	.966	.933	152.002	.000	Significant
Flash point	11	192.642	2.985	.764	.583	12.597	.006	Significant
Molar volume	12	-7.333	5.841	.938	.879	72.917	.000	Significant
Complexity	12	-121.577	15.270	.951	.905	95.147	.000	Significant

Table 8. Statistical parameters used in the QSPR model of M1 (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	405.004	.738	.660	.436	7.721	.019	Significant
Refractive index	13	9.310	.318	.952	.907	106.874	.000	Significant
Flash point	11	202.599	.448	.728	.530	10.153	.011	Significant
Molar volume	12	1.253	.932	.939	.882	74.603	.000	Significant
Complexity	12	-97.937	2.432	.953	.908	98.435	.000	Significant

Table 9. Statistical parameters used in the QSPR model of M2 (G).

Physiochemical Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	414.903	.535	.645	.416	7.127	.024	Significant
Refractive index	13	13.461	.233	.928	.861	67.942	.000	Significant
Flash point	11	208.190	.327	.720	.518	9.666	.013	Significant
Molar volume	12	15.185	.677	.913	.834	50.072	.000	Significant
Complexity	12	-87.855	1.849	.960	.922	118.593	.000	Significant

Table 10. Statistical parameters used in the QSPR model of HM (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	419.068	.115	.625	.391	6.420	.030	Significant
Refractive index	13	13.368	.052	.927	.859	67.002	.000	Significant
Flash point	11	210.170	.071	.705	.497	8.876	.015	Significant
Molar volume	12	13.491	.151	.822	.849	56.325	.000	Significant
Complexity	12	-78.956	.404	.954	.911	102.026	.000	Significant

Table 11. Statistical parameters used in the QSPR model of F (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	422.835	.200	.609	.370	5.882	.036	Significant
Refractive index	13	13.494	.092	.925	.855	64.869	.000	Significant
Flash point	11	212.010	.124	.692	.478	8.256	.018	Significant
Molar volume	12	13.736	.273	.927	.859	64.032	.000	Significant
Complexity	12	-71.482	.717	.949	.901	90.832	.000	Significant

Table 12. Statistical parameters used in the QSPR model of H (G).

Physiochemical								
Property	N	A	b	r	r^{2}	F	p	Indicator
Boiling Point	12	377.349	12.647	.725	.526	11.103	.008	Significant
Refractive index	13	4.240	4.943	.965	.930	147.100	.000	Significant
Flash point	11	187.144	7.500	.772	.596	13.299	.005	Significant
Molar volume	12	-14.817	14.434	.936	.877	71.041	.000	Significant
Complexity	12	-136.607	37.543	.950	.902	91.960	.000	Significant

3.4. Standard error of estimate (SE) and comparison

Measure of variation for an observation calculated around the computed regression line is said to be standard error estimate. It measures the amount of accuracy of predictions made around computed regression line and is mentioned in Table 13. We also compare the physicochemical properties of the experimental and theoretical calculated values of the models and are presented in Tables 14-18.

Table 13. Standard error of estimate.

Topological	Std. Error of the estimate for loiling point	Std. Error of the estimate for refractive index	Std. Error of the estimate for flash point	Std. Error of the estimate for molar volume	Std. Error of the estimate for complexity
ABC(G)	125.47771	9.78297	49.28724	34.98955	99.29113
RA(G)	135.48910	9.89048	47.70434	3.69784	95.80944
S(G)	135.49670	9.75496	47.04354	38.98953	94.16957
GA(G)	135.48311	9.84552	46.64458	40.28320	91.83836
M1(G)	135.40209	11.57777	49.53170	39.877986	90.43550
M2(G)	135.28260	14.14755	50.17335	47.32703	83.04506
HM(G)	135.30024	14.23249	51.27036	45.04104	88.97405
F(G)	135.31481	14.43119	52.18328	43.52285	93.78305
H(G)	135.48656	9.99697	45.90422	40.74687	93.26266

Table 14. Comparison of actual and computed values for molar volume from regression models.

Name of drug	Molar volume of drug	Molar volume from regression model for ABC(G) Index	Molar volume from regression model for RA(G) Index	Molar volume from regression model for SCI(G) Index	Molar volume from regression model for GA(G) Index	Molar volume from regression model for M1(G) Index	Molar volume from regression model for M2(G)Index	Molar volume from regression model for F(G)Index	Molar volume from regression model for H(G) Index	Molar volume from regression model for HM(G)Index
Azacitidine	$117.1 \mathrm{~cm}^{3}$	149.883	139.827	156.816	154.579	152.237	156.678	154.604	157.669	154.525
Buslfan	$182.4 \mathrm{~cm}^{3}$	140.665	107.460	126.469	122.512	139.189	134.337	157.334	121.584	146.069
Mercaptopurine	$94.2 \mathrm{~cm}^{3}$	69.1017	64.0877	72.5476	75.9012	72.085	78.146	71.066	73.2304	73.287
Tioguanine	$80.2 \mathrm{~cm}^{3}$	79.8436	74.8337	83.959	86.8239	81.405	86.27	78.71	85.2106	81.139
Nelarabine	$149.9 \mathrm{~cm}^{3}$	193.068	177.374	197.069	197.861	193.245	192.559	191.732	199.527	191.067
Cytarabine	$128.4 \mathrm{~cm}^{3}$	155.181	144.618	159.575	159.836	157.829	162.771	160.064	163.009	160.263
Clofarabine	$143.1 \mathrm{~cm}^{3}$	165.850	151.091	168.980	171.343	169.013	172.926	169.346	170.226	169.927
Bosutinib	$388.3 \mathrm{~cm}^{3}$	361.381	313.835	356.578	354.341	349.821	331.344	340.79	351.662	335.423
Dasatinib	$366.4 \mathrm{~cm}^{3}$	320.156	288.459	321.592	320.405	308.813	294.109	294.38	323.371	293.143
Melphala	$231.2 \mathrm{~cm}^{3}$	194.012	169.994	190.549	187.347	189.517	185.789	192.824	191.300	188.651
Dexamethasone	$296.2 \mathrm{~cm}^{3}$	315.148	268.132	306.167	308.898	331.181	348.946	352.802	300.710	349.919
Doxorubicine	$336.6 \mathrm{~cm}^{3}$	369.655	336.104	373.758	374.259	370.325	368.579	365.36	376.488	365.623
Carboplatin		133.770	106.036	125.341	127.944	142.917	151.939	158.972	119.996	154.827

Table 15. Comparison of actual and computed values for flash point from regression models.

	Flash point of drug	Flash point computed from regression model for ABC(G) Index	Flash point computed from regression model for RA(G) Index	Flash point computed from regression model for SCI(G) Index	Flash point computed from regression model for GA(G) Index	Flash point computed from regression model for M1 (G) Index	Flash point computed from regression model for M2(G)Index	Flash point computed from regression model for F(G)Index	Flash point computed from regression model for H(G) Index	Flash point computed from regression model for HM(G)Index
Azacitidine	$277{ }^{\circ} \mathrm{C}$	523.797	514.456	528.149	525.678	524.56	526.718	526.035	528.480	526.478
Buslfan	$234.4{ }^{\circ} \mathrm{C}$	516.428	487.373	502.342	498.157	514.228	509.063	528.035	496.863	520.038
Mercaptopurine	$250.5{ }^{\circ} \mathrm{C}$	459.220	451.083	456.487	458.153	461.092	464.658	464.835	454.495	464.608
Tioguanine	$232{ }^{\circ} \mathrm{C}$	467.807	460.074	466.191	467.527	468.472	471.078	470.435	464.992	470.588
Nelarabine	$389.9{ }^{\circ} \mathrm{C}$	558.319	545.872	562.380	562.824	557.032	555.073	553.235	565.157	554.308
Cytarabine	$283.8{ }^{\circ} \mathrm{C}$	528.032	518.464	530.495	530.190	528.988	531.533	530.035	533.16	530.848
Clofarabine	$286.4{ }^{\circ} \mathrm{C}$	536.561	523.881	538.493	540.065	537.844	539.558	536.835	539.483	538.208
Bosutinib	$346.7{ }^{\circ} \mathrm{C}$	692.867	660.051	698.027	697.123	681.016	664.748	662.435	698.456	664.248
Dasatinib		659.912	638.819	668.274	667.997	648.544	635.323	628.435	673.668	632.048
Melphala	$239{ }^{\circ} \mathrm{C}$	559.073	539.697	556.835	553.801	554.08	549.723	554.035	557.948	552.468
Dexamethasone	$298{ }^{\circ} \mathrm{C}$	655.908	621.811	655.157	658.12	666.256	678.658	671.235	653.812	675.288
Doxorubicine	$443.8{ }^{\circ} \mathrm{C}$	699.481	678.684	712.636	714.217	697.252	694.173	680.435	720.209	687.248
Carboplatin		5109166	486.182	501.382	502.819	517.18	522.973	529.235	495.472	526.708

Table 16. Comparison of actual and computed values for refractive index from regression models.
$\left.\begin{array}{lllllllllll}\hline & & \text { Refractive } \\ \text { Index }\end{array}\right)$

Table 17. Comparison of actual and computed values for complexity from regression models.

Name of drug	Complexity of drug	Complexity computed from regression model for ABC(G) Index	Complexity computed from regression model for RA(G) Index	Complexity computed from regression model for $\mathrm{SCI}(\mathrm{G})$ Index	Complexity computed from regression model for GA(G) Index	Complexity computed from regression model for M1 (G) Index	Complexity computed from regression model for M2(G) Index	Complexity computed from regression model for F(G) Index	Complexity computed from regression model for H(G) Index	Complexity computed from regression model for HM(G)Index
Azacitidine	384	297.234	269.787	310.592	301.707	296.047	298.586	298.49	312.031	298.38
Buslfan		273.927	186.989	232.180	217.875	261.999	237.569	305.66	218.174	275.756
Mercaptopurine	190	92.9763	76.0409	92.8514	96.0205	86.895	84.102	79.088	92.4053	81.028
Tioguanine	225	120.137	103.529	122.337	124.575	111.215	106.29	99.164	123.566	102.036
Nelarabine	377	406.428	365.832	414.603	414.858	403.055	396.583	396.002	420.906	396.148
Cytarabine	383	310.631	282.041	317.721	315.450	310.639	315.227	312.83	325.922	313.732
Clofarabine	370	337.608	298.600	342.022	345.532	339.823	342.962	337.208	344.694	339.588
Bosutinib	734	832.011	714.906	826.756	823.941	811.631	775.628	787.484	816.609	782.372
Dasatinib	642	727.772	649.993	736.355	735.222	704.623	673.933	665.594	743.025	669.252
Melphala	265	408.814	346.954	397.754	387.372	393.327	378.093	398.87	399.507	389.684
Dexamethasone	805	715.109	597.996	696.500	705.140	762.991	823.702	819.032	684.083	821.156
Doxorubicine	977	852.932	771.871	871.147	876.012	865.135	877.323	852.014	881.183	863.172
Carboplatin	177	256.492	183.346	229.263	232.076	271.727	285.643	309.962	214.044	299.188

Table 18. Comparision of actural and computed values for boiling point from regression models.

		Boiling Point computed from regression model for ABC(G)	Boiling Point computed from regression model for RA(G) Index	Boiling Point computed from regression model for SCI(G) Index	Boiling Point computed from regression model for GA(G) Index	Boiling Point computed from regression model for M1 (G) Index	Boiling Point computed from regression model for M2(G)Index	Boiling Point computed from regression model for F(G)Index	Boiling Point computed from regression model for H(G) Index	Boiling Point computed from regression model for HM(G)Index
Name of drug	Boiling Point of drug									
Azacitidine	$534.2 \pm 60{ }^{\circ} \mathrm{C}$ at 760 mm Hg	523.79	514.45	528.14	525.67	524.56	526.718	526.03	528.48	526.48
Buslfan	$464 \pm 28^{\circ} \mathrm{C}$ at 760 mm Hg	516.42	487.37	502.34	498.15	514.22	509.063	528.03	496.86	520.04
Mercaptopurine	$491 \pm 25^{\circ} \mathrm{C}$ at 760 mm Hg	459.22	451.08	456.48	458.15	461.09	464.658	464.83	454.49	464.61
Tioguanine	$460.7 \pm 37^{\circ} \mathrm{C}$ at 760 mm Hg	467.80	460.07	466.19	467.52	468.47	471.078	470.43	464.99	470.59
Nelarabine	$721 \pm 70^{\circ} \mathrm{C}$ at 760 mm Hg	558.31	545.87	562.38	562.82	557.0	555.073	553.23	565.15	554.31
Cytarabine	$547.7 \pm 60{ }^{\circ} \mathrm{C}$ at 760 mm Hg	528.03	518.46	530.49	530.19	528.98	531.533	530.03	533.16	530.85
Clofarabine	$550 \pm 60^{\circ} \mathrm{C}$ at 760 mm Hg	536.56	523.88	538.49	540.06	537.84	539.558	536.83	539.48	538.21
Bosutinib	$649.7 \pm 55^{\circ} \mathrm{C}$ at 760 mm Hg	692.86	660.05	698.02	697.12	681.01	664.748	662.43	698.45	664.25
Dasatinib		659.91	638.81	668.27	667.99	648.54	635.323	628.43	673.66	632.05
Melphala	$473 \pm 45^{\circ} \mathrm{C}$ at 760 mm Hg	559.07	539.69	556.83	553.80	554.08	549.723	554.03	557.94	552.47
Dexamethasone	$568.2 \pm 5^{\circ} \mathrm{C}$ at 760 mm Hg	655.90	621.81	655.15	658.12	666.25	678.658	671.23	653.81	675.29
Doxorubicine	$216 \pm 65^{\circ} \mathrm{C}$ at 760 mm Hg	699.48	678.68	712.63	714.21	697.25	694.173	680.43	720.20	687.25
Carboplatin	$366.4 \pm 60{ }^{\circ} \mathrm{C}$ at 760 mm Hg	510.91	486.18	501.38	502.81	517.18	522.973	529.23	495.47	526.71

4 Conclusions

It is obvious from statistical parameters used in linear QSPR models and topological indices that: $\mathrm{ABC}(\mathrm{G})$ index provides high correlated value for molar volume $\mathrm{r}=0.953$. HM index offers maximum correlated value of complexity i.e. $\mathrm{r}=0.954$. GA index depicts utmost correlation coefficient of refractive index $\mathrm{r}=0.966$. Harmonic $\mathrm{H}(\mathrm{G})$ provides maximum correlated value of flash point $\mathrm{r}=0.772$.

In this paper, we have computed topological indices and relate it with linear QSPR model for the drugs used to cure blood cancer. The results obtained in this way will helpful for designing some new drugs to obtain preventive measure for the said disease in pharmaceutical industry. The correlation coefficient has significant contribution to the range of topological indices for these drugs. The results are an eye-opener for the researcher working on drugs science in pharmaceutical industry and provide a way to estimate physicochemical properties for novice discoveries of anticancer medicines to cure other specific cancer disease.

Conflict of interest

We declare no conflict of interest.

References

1. B. Figuerola, C. Avila, The phylum bryozoa as a promising source of anticancer drugs, Mar. Drugs, 17 (2019), 477. https://doi.org/10.3390/md17080477
2. G. Genovese, A. K. Kähler, R. E. Handsaker, J. Lindberg, S. A. Rose, S. F. Bakhoum, et al., Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, New Eng. J. Med., 371 (2014), 2477-2487. https://doi.org/10.1056/NEJMoa1409405
3. T. Terwilliger, M. J. B. C. J. Abdul-Hay, Acute lymphoblastic leukemia: A comprehensive review and 2017 update, Blood Cancer J., 7 (2017), e577-e577. https://doi.org/10.1038/bcj.2017.53
4. A. Aslam, Y. Bashir, S. Ahmad, W. Gao, On topological indices of certain dendrimer structures, Z. Naturforsch., 72 (2017), 559-566. https://doi.org/10.1515/zna-2017-0081
5. S. M. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled, S. Gavade, QSPR anlysis of certain degree based topological indices, J. Statis. Appl. Prob., 6 (2017), 1-11. https://doi.org/10.18576/jsap/060211
6. M. Randic, Comparative structure-property studies: regressions using a single descriptor, Croat. Chem. Acta, 66 (1993), 289-312.
7. M. Randic, Quantitative structure-propert relationship: boiling points and planar benzenoids, New J. Chem., 20 (1996) 1001-1009.
8. M. C. Shanmukha, N. S. Basavarajappa, K. N. Anilkumar, Predicting physico-chemical properties of octane isomers using QSPR approach, Malaya J. Math., 8 (2020) 104-116. https://doi.org/10.26637/MJM0801/0018
9. S. Hayat, M. Imran, J. Liu, Correlation between the Estrada index and Q-electronic energies for benzenoid hydrocarbons with applica-tions to boron nanotubes, Int. J. Quant. Chem., 2019. https://doi.org/10.1002/qua. 26016
10. A. Aslam, S. Ahmad, W. Gao, On topological indices of boron triangular nanotubes, Z. Naturforsch., 72 (2017), 711-716. https://doi.org/10.1515/zna-2017-0135
11. S. Hayat, S. Wang, J. Liu, Valency-based topological descrip-tors of chemical networks and their applications, Appl. Math. Model., 2018. https://doi.org/10.1016/j.apm.2018.03.016
12. S. Hayat, M. Imran, J. Liu, An efficient computational technique for degree and distance based topological descriptors with applications, 2019. https://doi.org/10.1109/ACCESS.2019.2900500
13. E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849-855.
14. T. Barbui, J. Thiele, H. Gisslinger, H. M. Kvasnicka, A. M. Vannucchi, P. Guglielmelli, et al., The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion, Blood Cancer J., 8 (2018), 1-11. https://doi.org/10.1038/s41408-018-0054-y
15. M. Randic, On Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001
16. B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210-218. https://doi.org/10.1007/s10910-009-9542-4
17. D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376. https://doi.org/10.1007/s10910-009-9520-x
18. M., Adnan, S. A. U. H. Bokhary, G. Abbas, T. Iqbal, Degree-based topological indices and QSPR analysis of antituberculosis drugs, J. Chem., 2022, Article ID 5748626. https://doi.org/10.1155/2022/5748626
19. I. Gutman, Degree based topological indices, Croat. Chem. Acta, 86 (2013), 351-361. https://doi.org/10.5562/cca2294
20. S. Fajtlowicz, On conjectures of grafitti II, Congr. Numerantium, 60 (1987), 189-197.
21. G. H. Shirdel, H. RezaPour, A. M. Sayadi, The hyper-zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213-220.
22. M. Imran, M. K. Siddiqui, A. Q. Baig, W. Khalid, H. Shaker, Topological properties of cellular neural networks, J. Intell. Fuzzy Syst., 37 (2019), 3605-3614. https://doi.org/10.3233/JIFS-181813
23. B. Furtula, I. Gutman, A forgotton topological index, J. Math. Chem., 53 (2015), 213-220. https://doi.org/10.1007/s10910-015-0480-z
24. W. Gao, W. Wang, M. K. Jamil, M. R. FArhani, Electron energy studing of moleculer structurevia forgotten topological index computation, J. Chem., 2016. https://doi.org/10.1155/2016/1053183
25. I. B. M. Corp, Released. IBM SPSS Statistics for Windows, Version 24.0 (Armonk, NY: IBM Corp., 2016).
26. J. Liu, M. Arockiaraj, M. Arulperumjothi, S. Prabhu, Distance based and Bond additive topological indices of certain repurposed antiviral drug compounds tested for treating COVID19, Int. J. Quantum Chem., 121 (2021), e26617. https://doi.org/10.1002/qua. 26617
27. S. Prabhu, G. Murugan, M. Arockiaraj, M. Arulperumjothi, V. Manimozhi, Molecular topological characterization of three classes of polycyclic aromatic hydrocarbons, J. Mol. Struct., 1229 (2021), 129501. https://doi.org/10.1016/j.molstruc.2020.129501
28. S. Prabhu, Y. S. Nisha, M. Arulperumjothi, D. Sagaya Rani Jeba, V. Manimozhi, On detour index of Cycloparaphenylene and polyphenylene molecular structures, Sci. Rep-UK, 2021. https://doi.org/10.1038/s41598-021-94765-6
29. Y. Chu, K. Julietraja, P. Venugopal, M. K. Siddiqui, S. Prabhu, Degree- and irregularity-based molecular descriptors for benzenoid systems, Eur. Phys. J. Plus, 136 (2021), 78. https://doi.org/10.1140/epjp/s13360-020-01033-z
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
