The concept of "topological index" refers to a numerical value determined by the structure of a chemical network. It serves to determine the physicochemical and biological properties of diverse medications, offering a more precise depiction of the theoretical properties of organic materials, this is achieved through the utilization of degree-based topological indices. Because of the development of resistance to existing treatments and the unpleasant side effects associated with some current drugs, the hunt for new drugs remains a priority. In drug discovery, QSPR approaches are widely used to predict, from a chemical structure, the biological activity of potential novel drugs. Researchers can prioritize compounds for synthesis and optimize them to improve potency, preference, and other desired attributes by establishing a correlation between chemical features and biological activity. Rational drug design approaches incorporate research methodologies such as quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR), along with decision-making strategies. The goal of these strategies is to improve the biological activity and physicochemical qualities of existing leads. This research includes mathematical modeling of drug mechanisms utilizing multiple-criteria decision analysis and QSPR analysis. Furthermore, using decision-making techniques, I can determine the order of production for various drugs used to treat bone cancer based on their examination using QSPR analysis and topological indices.
Citation: Fozia Bashir Farooq. Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer[J]. AIMS Mathematics, 2024, 9(6): 15119-15131. doi: 10.3934/math.2024733
The concept of "topological index" refers to a numerical value determined by the structure of a chemical network. It serves to determine the physicochemical and biological properties of diverse medications, offering a more precise depiction of the theoretical properties of organic materials, this is achieved through the utilization of degree-based topological indices. Because of the development of resistance to existing treatments and the unpleasant side effects associated with some current drugs, the hunt for new drugs remains a priority. In drug discovery, QSPR approaches are widely used to predict, from a chemical structure, the biological activity of potential novel drugs. Researchers can prioritize compounds for synthesis and optimize them to improve potency, preference, and other desired attributes by establishing a correlation between chemical features and biological activity. Rational drug design approaches incorporate research methodologies such as quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR), along with decision-making strategies. The goal of these strategies is to improve the biological activity and physicochemical qualities of existing leads. This research includes mathematical modeling of drug mechanisms utilizing multiple-criteria decision analysis and QSPR analysis. Furthermore, using decision-making techniques, I can determine the order of production for various drugs used to treat bone cancer based on their examination using QSPR analysis and topological indices.
[1] | A. Busch, M. Jäger, C. Mayer, A. Sowislok, Functionalization of synthetic bone substitutes, Int. J. Mol. Sci., 22 (2021), 4412. https://doi.org/10.3390/ijms22094412 doi: 10.3390/ijms22094412 |
[2] | F. Bashir Farooq, N. Ul Hassan Awan, S. Parveen, N. Idrees, S. Kanwal, T. A. Abdelhaleem, Topological indices of novel drugs used in cardiovascular disease treatment and its QSPR modeling, J. Chem., 2022 (2022), 9749575. https://doi.org/10.1155/2022/9749575 doi: 10.1155/2022/9749575 |
[3] | S. A. U. H. Bokhary, Adnan, M. K. Siddiqui, M. Cancan, On topological indices and QSPR analysis of drugs used for the treatment of breast cancer, Polycycl. Aromat. Comp., 42 (2022), 6233–6253. https://doi.org/10.1080/10406638.2021.1977353 doi: 10.1080/10406638.2021.1977353 |
[4] | K. A. Chu, S. H. Yalkowsky, An interesting relationship between drug absorption and melting point, Int. J. Pharmaceut., 373 (2009), 24–40. https://doi.org/10.1016/j.ijpharm.2009.01.026 doi: 10.1016/j.ijpharm.2009.01.026 |
[5] | L. Cheng, K. S. Suresh, H. He, R. S. Rajput, Q. Feng, S. Ramesh, et al., 3D printing of micro-and nanoscale bone substitutes: A review on technical and translational perspectives, Int. J. Nanomed., 16 (2021), 4289–4319. https://doi.org/10.2147/IJN.S311001 doi: 10.2147/IJN.S311001 |
[6] | M. Cortini, N. Baldini, S. Avnet, New advances in the study of bone tumors: a lesson from the 3D environment, Front. Physiol., 10 (2019), 814. https://doi.org/10.3389/fphys.2019.00814 doi: 10.3389/fphys.2019.00814 |
[7] | J. Devillers, A. T. Balaban, Algorithms and software for the computation of topological indices and structure-property models, In: Topological indices and related descriptors in QSAR and QSPAR, 1999. https://doi.org/10.1201/9781482296945-23 |
[8] | D. Diakoulaki, G. Mavrotas, L. Papayannakis, Determining objective weights in multiple criteria problems: the critic method, Comput. Oper. Res., 22 (1995), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H doi: 10.1016/0305-0548(94)00059-H |
[9] | E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, 1998. |
[10] | S. Fajtlowicz, On conjectures of Graffiti-Ⅱ, Congr. Numer, 60 (1987), 187–197. |
[11] | B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z |
[12] | I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294 |
[13] | Z. Hui, S. Kanwal, A. Aslam, S. Saeed, N. Idrees, A mathematical investigation for appraisal of crystal structure lattices through eccentricity-based topological invariants, QSPR analysis, and MCDA, Eur. Phys. J. Plus, 137 (2022), 1277. https://doi.org/10.1140/epjp/s13360-022-03495-9 doi: 10.1140/epjp/s13360-022-03495-9 |
[14] | C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple attribute decision making, Berlin: Springer, 1981, 58–191. https://doi.org/10.1007/978-3-642-48318-9_3 |
[15] | S. N. Jayash, N. M. Al-Namnam, G. Shaghayegh, Osteoprotegerin (OPG) pathways in bone diseases and its application in therapeutic perspectives, Biointerface Res. App., 10 (2020), 5193–5200. https://doi.org/10.33263/BRIAC102.193200 doi: 10.33263/BRIAC102.193200 |
[16] | Y. Li, A. Aslam, S. Saeed, G. Zhang, S. Kanwal, Targeting highly resisted anticancer drugs through topological descriptors using VIKOR multi-criteria decision analysis, Eur. Phys. J. Plus, 137 (2022), 1245. https://doi.org/10.1140/epjp/s13360-022-03469-x doi: 10.1140/epjp/s13360-022-03469-x |
[17] | F. Liu, C. Cao, B. Cheng, A quantitative structure-property relationship (QSPR) study of aliphatic alcohols by the method of dividing the molecular structure into substructure, Int. J. Mol. Sci., 12 (2011), 2448–2462. https://doi.org/10.3390/ijms12042448 doi: 10.3390/ijms12042448 |
[18] | M. Madic, M. Radovanovic, Ranking of some most commonly used nontraditional machining processes using ROV and CRITIC methods, UPB Sci. Bull., Series D, 77 (2015), 193–204. |
[19] | S. T. Menéndez, B. Gallego, D. Murillo, A. Rodríguez, R. Rodríguez, Cancer stem cells as a source of drug resistance in bone sarcomas, J. Clin. Med., 10 (2021), 2621. https://doi.org/10.3390/jcm10122621 doi: 10.3390/jcm10122621 |
[20] | S. Nasir, N. U. H. Awan, F. B. Farooq, S. Parveen, Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling, AIMS Math., 7 (2022), 11829–11850. https://doi.org/10.3934/math.2022660 doi: 10.3934/math.2022660 |
[21] | M. Randic, Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001 |
[22] | A. Rauf, M. Naeem, J. Rahman, A. V. Saleem, QSPR study of Ve-degree based end Vertice edge entropy indices with physio-chemical properties of breast cancer drugs, Polycycl. Aromat. Comp., 43 (2023), 4170–4183. https://doi.org/10.1080/10406638.2022.2086272 doi: 10.1080/10406638.2022.2086272 |
[23] | J. D. Rojas, P. A. Dayton, In vivo molecular imaging using low-boiling-point phase-change contrast agents: a proof of concept study, Ultrasound Med. Biol., 45 (2019), 177–191. https://doi.org/10.1016/j.ultrasmedbio.2018.08.004 doi: 10.1016/j.ultrasmedbio.2018.08.004 |
[24] | A. Schö n, E. Freire, Enthalpy screen of drug candidates, Anal. Biochem., 513 (2016), 1–6. https://doi.org/10.1016/j.ab.2016.08.023 doi: 10.1016/j.ab.2016.08.023 |
[25] | Y. Shang, Bounds of distance Estrada index of graphs, Ars Comb., 128 (2016), 287–294. https://doi.org/10.48550/arXiv.1511.06132 doi: 10.48550/arXiv.1511.06132 |
[26] | Y. Shang, A note on the H index in random networks, J. Math. Sociol., 42 (2018), 77–82. https://doi.org/org/10.1080/0022250X.2017.1403438 doi: 10.1080/0022250X.2017.1403438 |
[27] | Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881 |
[28] | Y. L. Shang, Estrada index of dynamic random graphs, Appl. Math. J. Chin. Univ., 38 (2023), 159–165. https://doi.org/10.1007/s11766-023-3727-7 doi: 10.1007/s11766-023-3727-7 |
[29] | G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213–220. https://doi.org/10.22052/IJMC.2013.5294 doi: 10.22052/IJMC.2013.5294 |
[30] | C. Sikorska, Toward predicting vertical detachment energies for super halogen anions exclusively from 2-D structures, Chem. Phys. Lett., 625 (2015), 157–163. https://doi.org/10.1016/j.cplett.2015.03.002 doi: 10.1016/j.cplett.2015.03.002 |
[31] | C. Sikorska, A. Gajewicz, P. Urbaszek, L. Lubinski, T. Puzyn, Efficient way of designing fullerene derivatives based on simplified DFT calculations and QSPR modeling, Chemometrics and Intelligent Laboratory Systems, 152 (2016), 125–133. https://doi.org/10.1016/j.chemolab.2016.02.003 doi: 10.1016/j.chemolab.2016.02.003 |
[32] | J. Taskinen, J. Yliruusi, Prediction of physicochemical properties based on neural network modeling, Adv. Drug Deliver. Rev., 55 (2003), 1163–1183. https://doi.org/10.1016/S0169-409X(03)00117-0 doi: 10.1016/S0169-409X(03)00117-0 |
[33] | I. V. Tetko, Y. Sushko, S. Novotarskyi, L. Patiny, I. Kondratov, A. E. Petrenko, et al., How accurately can we predict the melting points of drug-like compounds? J. Chem. Inf. Model., 54 (2014), 3320–3329. https://doi.org/10.1021/ci5005288 doi: 10.1021/ci5005288 |
[34] | D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369–1376. https://doi.org/10.1007/s10910-009-9520-x doi: 10.1007/s10910-009-9520-x |
[35] | B. Yilmaz, N. Harmancioglu, Multi-criteria decision making for water resource management: a case study of the Gediz River Basin, Turkey, Water SA, 36 (2010), 5. https://doi.org/10.4314/wsa.v36i5.61990 doi: 10.4314/wsa.v36i5.61990 |
[36] | P. L. Yu, A class of solutions for group decision problems, Manage. sci., 19 (1973), 841–971. https://doi.org/10.1287/mnsc.19.8.936 doi: 10.1287/mnsc.19.8.936 |
[37] | B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4 |