Research article

Finite-time stability and uniqueness theorem of solutions of nabla fractional (q,h)-difference equations with non-Lipschitz and nonlinear conditions

  • Received: 25 January 2024 Revised: 31 March 2024 Accepted: 07 April 2024 Published: 26 April 2024
  • MSC : 39A12, 39A70

  • In this paper, the discrete (q,h)-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of (q,h)-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.

    Citation: Mei Wang, Baogua Jia. Finite-time stability and uniqueness theorem of solutions of nabla fractional (q,h)-difference equations with non-Lipschitz and nonlinear conditions[J]. AIMS Mathematics, 2024, 9(6): 15132-15148. doi: 10.3934/math.2024734

    Related Papers:

    [1] Jingfeng Wang, Chuanzhi Bai . Finite-time stability of $ q $-fractional damped difference systems with time delay. AIMS Mathematics, 2021, 6(11): 12011-12027. doi: 10.3934/math.2021696
    [2] Junsoo Lee, Wassim M. Haddad . On finite-time stability and stabilization of nonlinear hybrid dynamical systems. AIMS Mathematics, 2021, 6(6): 5535-5562. doi: 10.3934/math.2021328
    [3] Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique . Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 15129-15147. doi: 10.3934/math.2023772
    [4] Min Jiang, Rengang Huang . Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421
    [5] Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa . Existence theory and stability analysis of neutral $ \psi $–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396
    [6] Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional $ q $-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985
    [7] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
    [8] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [9] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [10] Yajun Xie, Changfeng Ma, Qingqing Zheng . On the nonlinear matrix equation $ X^{s}+A^{H}F(X)A = Q $. AIMS Mathematics, 2023, 8(8): 18392-18407. doi: 10.3934/math.2023935
  • In this paper, the discrete (q,h)-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of (q,h)-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.



    In the past few decades, fractional calculus has been widely used in fields such as science and engineering. Many natural systems can be properly modeled by a nonlinear differential equation in the real world, such as neural networks [1], control systems [2,3], disease models [4], blood production in leukemia patients (Mackey- Glass model) [5], and population dynamics [6]. Compared with classical integer-order systems, fractional systems can more accurately describe the memory characteristics of various materials and processes.

    In recent years, q-calculus has been widely used in various areas, such as, in the approximation theory [7], number theory [8], quantum theory [9], and physics [10]. In 2010, the authors (see [11,12]) introduced (q,h)-calculus as an extension of the basic notions of discrete fractional calculus. Since then, new results involving (q,h)-calculus have continued to emerge [13,14,15].

    The existence and uniqueness of solutions are the basis for studying the stability problem, but they are easily neglected. We can mention [2,3,16,17,18,19,20,21,22,23], references therein, etc. However, as far as we know, most nonlinear functions are already mentioned in the existing literature. Fractional difference systems are Lipschitz continuous. The results of the uniqueness theorem for solutions to non-Lipschitz, nonlinear fractional difference equations are rare. In [24], applying the fractional Bihari inequality, the authors investigated the uniqueness theorem of the Caputo difference equation. Motivated by the above discussion, the uniqueness theorem of solutions of fractional (q,h)-difference equations with non-Lipschitz nonlinearities is given in this paper.

    Owing to Lazarevic's remarkable and seminal works [25,26,27], more and more scientists have become increasingly interested in the finite-time stability analysis of fractional delay systems. Since stability analysis is critical in fractional systems, many experts and scholars are dedicated to studying methods of stability analysis, such as Lyapunov's method [28], the Gronwall inequality [29,30,31,32,33], the fractional Fourier transform [34], and Mittag-Leffler matrix functions [35].

    In our paper, with the aid of the discrete (q,h)-fractional Bihari inequality, we apply a new method to study the finite-time stability of the (q,h)-fractional difference equation (1.1)

    Caμ(q,h)x(t)=g(x(t)),t(q,h)˜TTσ(a),x(a)=x0, (1.1)

    where 0<μ<1, g:R[0,+), x(t):˜Tσ(a)(q,h)R, T˜Tσ(a)(q,h).

    Remark 1.1. In [36], fractional Bihari difference inequalities were studied. In our paper, a discrete fractional Bihari inequality with a (q,h) time scale is generalized and developed. Unlike the case in [36], where the existence of the inverse function of the function Φ was not clarified, the proof of discrete (q,h)-fractional Bihari inequality in our paper is more complete and precise.

    The rest of this paper is organized as follows: In Section 2, fundamental concepts of discrete fractional calculus on (q,h)-time scales are illuminated. In Section 3, the discrete (q,h)-fractional Bihari inequality is generalized. In Section 4, the uniqueness and finite-time stability of solutions of fractional (q,h)-difference equations with non-Lipschitz and nonlinear conditions are obtained. In Section 5, an example of a non-Lipschitz condition is presented to illustrate the validity of our conclusion numerically.

    In this section, fundamental concepts and conclusions about fractional (q,h)-difference are illuminated.

    For any s,tR, one has

    Ns:={s,s+1,s+2,},
    Nts:={s,s+1,s+2,,t},if tsN1,

    otherwise, Nts:=.

    Definition 2.1. [12] Let t0>0 and h>0. For q>1, the (q,h)-time scale is given by

    Tt0(q,h):={t0qm+[m]qh,mZ}{h1q}, (2.1)

    where [m]q:=qm1q1, [m]1:=m. Particularly, the (1,h)-time scale is given by Tt0(1,h):={t0+mh,mZ}.

    Let t0>0, q>1, h>0, and aTt0(q,h) with a>h1q. Restrictions of the time scale Tt0(q,h) are given as

    ˜Tσi(a)(q,h):={tTt0(q,h),tσi(a)},for i=0,1,2, (2.2)
    (q,h)˜TMσ(a):={tTt0(q,h),σ(a)tM},for M˜Tσ(a)(q,h). (2.3)

    Here, σ0(a)=a and σi(a)=σ(σi1(a)) for iN+(analogously for ρi).

    Definition 2.2. [37] Assume x: Tt0(q,h)R. Then the nabla (q,h)-derivative of the function x can be defined by

    (q,h)x(t):=x(t)x(ρ(t))ν(t)=x(t)x(˜q(th))(1˜q)t+˜qh, (2.4)

    where ˜q=1q,σ(t)=qt+h,ρ(t)=˜q(th),ν(t)=tρ(t)=(1˜q)t+˜qh.

    σm+1(t):=σm(σ(t)),ρm+1(t):=ρm(ρ(t)),m=0,1,

    The two standard notations above can help us obtain the following equalities:

    σm(t)=qmt+[m]qh,ρm(t)=qm(t[m]qh).

    Remark 2.3. For tTt0(q,h), the following equalities hold:

    1) ν(σk(t))=qk1((q1)t+h);

    2) ν(ρi(σn(t)))=˜qiν(σn(t)).

    Definition 2.4. [12] Γ˜q is the q-Gamma function, which is introduced as

    Γ˜q(x):=(˜q,˜q)(1˜q)1x(˜qx,˜q),xR{0,1,2,}, (2.5)

    where (a,˜q)=k=0(1a˜qk).

    For xR and kZ, the q-binomial coefficient is defined by

    [xk]˜q:=Γ˜q(x+1)Γ˜q(k+1)Γ˜q(xk+1). (2.6)

    Definition 2.5. [12] The μ-th power function on Tt0(q,h) is defined as

    (tτ)(μ)(˜q,h):=([t][τ])(μ)˜q,t,τTt0(q,h), (2.7)

    where [s] is given by [s]:=s+h˜q/(1˜q)=ν(s)1˜q and μR.

    The μ-th nabla fractional (q,h)-Taylor monomial on Tt0(q,h) is given by

    ˆhμ(t,s):=(ts)(μ)(˜q,h)Γ˜q(μ+1),t,sTt0(q,h), (2.8)

    where μR,˜q=1q.

    Lemma 2.6. Let μ1,2,3,. For sTσ(a)(q,h), the following fractional equalities can be derived: (1) ˆhμ(s,s)=0; (2) τ(q,h)ˆhμ(s,τ)=ˆhμ1(s,ρ(τ)); (3) saˆhμ(s,ρ(τ))(q,h)τ=ˆhμ+1(s,a).

    Lemma 2.7. ([12] q-Pascal rules) Property of the q-binomial coefficients:

    [ml]˜q=[m1l1]˜q+˜ql[m1l]˜q. (2.9)

    Lemma 2.7 is valuable in proving the monotony of the function Φ in Eq (3.1).

    Definition 2.8. [12] Assume f:Tσ(a)(q,h)R and s=σm(a),m1. Then, the nabla (q,h)-integral of f from a to s is defined by

    saf(τ)τ:=mj=1f(σj(a))ν(σj(a)) (2.10)

    with the standard convention that aaf(τ)τ=0.

    Definition 2.9. [12] The definition of μ-th (μR+) nabla (q,h)-fractional integral is given by

    aμ(q,h)f(t):=taˆhμ1(t,ρ(τ))f(τ)τ=nj=1ˆhμ1(σn(a),σj1(a))f(σj(a))ν(σj(a)). (2.11)

    Definition 2.10. [12] The μ-th(m1<μm,mZ+) Riemann-Liouville (R-L) nabla (q,h)-fractional difference of function f can be defined by

    aμ(q,h)f(t):=m(q,h)a(mμ)(q,h)f(t). (2.12)

    Particularly, for 0<μ<1, one has

    aμ(q,h)f(t):=(q,h)a(1μ)(q,h)f(t). (2.13)

    Definition 2.11. [12] The μ-th(m1<μm,mZ+) Caputo nabla (q,h)-fractional difference of function f can be introduced as

    Caμ(q,h)f(t):=a(mμ)(q,h)m(q,h)f(t). (2.14)

    Particularly, for 0<μ<1, one has

    Caμ(q,h)f(t):=a(1μ)(q,h)(q,h)f(t).

    Lemma 2.12. [38, Theorem 3.39] Given two functions u,v:Tσ(a)(q,h)R. Then, the integration by parts formula in fractional calculus is obtained as

    tau(ρ(τ))(q,h)v(τ)(q,h)τ=u(τ)v(τ)|tτ=atav(τ)(q,h)u(τ)(q,h)τ,tTσ(a)(q,h). (2.15)

    Lemma 2.13. Assume 0<μ<1, and y:˜Ta(q,h)R. Then,

    Caμ(q,h)y(t)=ˆhμ(t,a)y(a)+taˆhμ1(t,ρ(s))y(s)(q,h)s. (2.16)

    Proof. By Definition 2.11, one has

    Caμ(q,h)y(t)=a(1μ)(q,h)(q,h)y(t)=taˆhμ(t,ρ(s))(q,h)y(s)(q,h)s(2.15)=taˆhμ1(t,ρ(s))y(s)(q,h)s+ˆhμ(t,s)y(s)|ts=a=taˆhμ1(t,ρ(s))y(s)(q,h)sˆhμ(t,a)y(a),

    where, by convention, ˆhμ(t,t)=0.

    Lemma 2.14. [12] If μR,t,sTt0(q,h), t=σn(s) (nN), then,

    ˆhμ(t,s)=(ν(t))μ[μ+n1n1]˜q. (2.17)

    Lemma 2.15. [38] Assume x:˜Tσ(a)(q,h)R, and ν,μ>0. Then,

    aν(q,h)aμ(q,h)x(t)=aνμ(q,h)x(t). (2.18)

    Lemma 2.16. [38] For μ-th(m1<μ<m,mZ+), and x:˜Tσ(a)(q,h)R, it follows:

    a(mμ)(q,h)amμ(q,h)x(t)=x(t). (2.19)

    Lemma 2.17. [37] For μ-th(m1<μ<m,mZ+), and x:˜Ta(q,h)R, one has

    a(mμ)(q,h)Camμ(q,h)x(t)=x(t)x(a). (2.20)

    From Lemmas 2.13 and 2.14, we have the following lemma:

    Lemma 2.18. Assume x:Tσ(a)(q,h)R and t=σn(a),n1, 0<μ<1. For n1, it follows:

    Caμ(q,h)x(t)=(ν(σn(a)))μx(σn(a))(ν(σn(a)))μ[μ+n1n1]˜qx(a)+n1i=1(ν(σn(a)))μ1[μ+i1i]˜qx(σni(a))ν(σni(a)). (2.21)

    Proof. For simplicity, we denote x(σn(a)):=x(n). Owing to Lemma 2.13, it follows:

    Caμ(q,h)x(n)=ˆhμ(t,a)y(a)+taˆhμ1(t,ρ(s))y(s)(q,h)s=ˆhμ(σn(a),a)x(a)+ni=1ˆhμ1(σn(a),σi1(a))x(σi(a))ν(σi(a))=ˆhμ(σn(a),a)x(a)+ˆhμ1(σn(a),σn1(a)ν(σn(a))x(n)+n1i=1(ν(σn(a)))μ1[μ+i1i]˜qx(σni(a))ν(σni(a)).=(ν(σn(a)))μx(σn(a))(ν(σn(a)))μ[μ+n1n1]˜qx(a)+n1i=1(ν(σn(a)))μ1[μ+i1i]˜qx(σni(a))ν(σni(a)).

    Lemma 2.19. Let u(σn(a)) and v(σn(a)) be nonnegative functions, β>0 and nN1. If u(σi(a))v(σi(a)) for 1in, then,

    aβ(q,h)u(σn(a))aβ(q,h)v(σn(a)).

    Proof. Owing to Definition 2.9, one has

    aβ(q,h)u(σn(a))=σn(a)aˆhβ1(σn(a),ρ(s))u(s)(q,h)s=ni=1ˆhν1(σn(a),σi1(a))u(σi(a))ν(σi(a))=n1i=1ˆhν1(σn(a),σi1(a))u(σi(a))ν(σi(a))+(ν(σn(a)))βu(σn(a)).

    Similarly, we can derive

    aβ(q,h)v(σn(a))=n1i=1ˆhν1(σn(a),σi1(a))v(σi(a))ν(σi(a))+(ν(σn(a)))βv(σn(a)).

    For β>0,1in1, it has

    ˆhβ1(σn(a),σi1(a))(2.17)=(ν(σn(a)))β1[β1+nini]˜q(2.6)=(ν(σn(a)))β1Γ˜q(ν+ni)Γ˜q(ni+1)Γ˜q(β)(2.5)=(ν(σn(a)))β1(˜qni+1,˜q)(˜qβ,˜q)(˜qα+ni,˜q)=(ν(σn(a)))β1k=0(1˜qni+1+k)k=0(1˜qβ+k)k=0(1˜qβ+ni+k)>0.

    Thus, for 1in1, one has

    ˆhβ1(σn(a),σi1(a))u(σi(a))ν(σi(a))ˆhβ1(σn(a),σi1(a))v(σi(a))ν(σi(a)),

    and

    (ν(σn(a)))βu(σn(a))(ν(σn(a)))βv(σn(a)).

    Therefore, aβ(q,h)u(σn(a))aβ(q,h)v(σn(a)).

    In this section, a new (q,h)-fractional Bihari inequality is developed.

    According to the proof of Lemma 3.1 of [24], the discrete (q,h)-fractional Bihari inequality can be further generalized as follows:

    Lemma 3.1. Assume x:[0,)[0,), 0<μ<1. Let x be a continuous and nondecreasing function with x(0)=0. For any positive sequence {V(σn(a))|nN0}, Φ(u) is a solution to Eq (3.1),

    Caμ(q,h)Φ(V(σn(a)))=Caμ(q,h)V(σn(a))x(V(σn(a))). (3.1)

    If 0<m2<m1, then Φ(m2)<Φ(m1).

    Proof. For simplicity, we denote V(σi(a)):=Vi, where i{0,1,2,3,,n}.

    By Lemma 2.18, it follows:

    Caμ(q,h)Φ(Vn)=(ν(σn(a)))μΦ(Vn)(ν(σn(a)))μ[nμ1n1]˜qΦ(V0)+n1i=1(ν(σn(a)))μ1[iμ1i]˜qν(σni(a))Φ(Vni),Caμ(q,h)Vn=(ν(σn(a)))μVn(ν(σn(a)))μ[nμ1n1]˜qV0+n1i=1(ν(σn(a)))μ1[iμ1i]˜qν(σni(a))Vni.

    According to Eq (3.1), one has

    (ν(σn(a)))μΦ(Vn)(ν(σn(a)))μ[nμ1n1]˜qΦ(V0)+n1i=1(ν(σn(a)))μ1[iμ1i]˜qν(σni(a))Φ(Vni)=(ν(σn(a)))μVn(ν(σn(a)))μ[nμ1n1]˜qV0+n1i=1(ν(σn(a)))μ1[iμ1i]˜qν(σni(a))Vni,

    which leads easily to

    Φ(Vn)=Vnx(Vn)+[nμ1n1]˜q(Φ(V0)V0x(Vn))+n1i=1[iμ1i]˜q(ν(σn(a)))1ν(σni(a))(Vnix(Vn)Φ(Vni)). (3.2)

    In particular, we take a sequence {Vj} that satisfies the following conditions:

    Vj={m1,if 0jn1,m2,if jn,

    where 0<m2<m1.

    For 0<m2<m1, attending to Eq (3.2), it follows:

    Φ(m2)=Φ(Vn)=m2x(m2)+[nμ1n1]˜q(Φ(m2)m1x(m2))+n1i=1[iμ1i]˜q(ν(σn(a)))1ν(σni(a))(m1x(m2)Φ(m1))=m2x(m2)+m1x(m2)(n1i=1[iμ1i]˜q(ν(σn(a)))1ν(σni(a))[nμ1n1]˜q)+Φ(m1)(n1i=1[iμ1i]˜q(ν(σn(a)))1ν(σni(m1))+[nμ1n1]˜q)=m2x(m2)+m1x(m2)(n1i=1[iμ1i]˜q(ν(σn(a)))1ν(ρi(σn(a)))[nμ1n1]˜q)+Φ(m1)(n1i=1[iμ1i]˜q(ν(σn(a)))1ν(ρi(σn(a)))+[nμ1n1]˜q)Remark2.3(2)=m2x(m2)+m1x(m2)(n1i=1[iμ1i]˜q˜qi[nμ1n1]˜q)+Φ(m1)(n1i=1[iμ1i]˜q˜qi+[nμ1n1]˜q)(2.9)=m2x(m2)+m1x(m2)(n1i=1[iμi]˜qn1i=1[iμ1i1]˜q[nμ1n1]˜q)+Φ(m1)(n1i=1[iμi]˜q+n1i=1[iμ1i1]˜q+[nμ1n1]˜q)=m2x(m2)m1x(m2)+Φ(m1). (3.3)

    Thus, for 0<m2<m1, one has Φ(m2)<Φ(m1). The proof is completed.

    Remark 3.2. If 0<m2<m1, and Φ(m2) is defined as (3.3), one has

    limm20+Φ(m2)=,

    which is critical in the proof of the uniqueness theorem.

    Remark 3.3. According to equality (3.2), we can clarify the existence of a solution to Eq (3.1).

    Theorem 3.4. (Discrete (q,h)-fractional Bihari inequality) Suppose 0<μ<1, u(t):˜Ta(q,h)[0,+), and c>0 is a constant. Assume [0,+)[0,+), and ϕ is a continuous and nondecreasing function with ϕ(0)=0. If

    u(t)c+aμ(q,h)ϕ(u(t)),t(q,h)˜TTσ(a), (3.4)

    where T˜Tσ(a)(q,h), then,

    u(t)Φ1(Φ(c)+ˆhμ(t,a)),t(q,h)˜TTσ(a), (3.5)

    where Φ(u) is a solution to

    Caμ(q,h)Φ(V(σn(a)))=Caμ(q,h)V(σn(a))ϕ(V(σn(a)))

    for any positive sequence {V(σn(a))|nN0}.

    Proof. Let v(t) be the right-hand side of the inequality (3.4), namely

    v(t)=c+aμ(q,h)ϕ(u(t)),t(q,h)˜TTσ(a).

    It follows that

    u(t)v(t),t(q,h)˜TTσ(a). (3.6)

    For t(q,h)˜TTσ(a), one has

    Caμ(q,h)v(t)=a(1μ)(q,h)(q,h)v(t)=a(1μ)(q,h)(q,h)(c+aμ(q,h)ϕ(u(t)))=a(1μ)(q,h)(q,h)aμ(q,h)ϕ(u(t))(2.13)=a(1μ)(q,h)a1μ(q,h)ϕ(u(t))(2.19)=ϕ(u(t)).

    Combining the monotonicity of ϕ and the inequality (3.6) yields

    Caμ(q,h)v(t)ϕ(v(t)),t(q,h)˜TTσ(a).

    Therefore,

    Caμ(q,h)Φ(v(t))=Caμ(q,h)v(t)ϕ(v(t))ϕ(v(t))ϕ(v(t))=1,t(q,h)˜TTσ(a). (3.7)

    Using Lemma 2.19 on the inequality (3.7), one has

    aμ(q,h)Caμ(q,h)Φ(v(t))ˆhμ(t,a),t(q,h)˜TTσ(a), (3.8)

    where we use

    aμ(q,h)1=t0ˆhμ1(t,ρ(τ))(q,h)τLem.2.6=ˆhμ(t,a).

    By Lemma 2.17, we get

    Φ(v(t))Φ(v(a))+ˆhμ(t,a),t(q,h)˜TTσ(a). (3.9)

    Using the monotonicity of Φ and the inequality (3.9) obtains

    v(t)Φ1(Φ(v(a))+ˆhμ(t,a)),t(q,h)˜TTσ(a).

    Consequently,

    u(t)v(t)Φ1(Φ(c)+ˆhμ(t,a)),t(q,h)˜TTσ(a).

    This completes the proof.

    In this section, by using the discrete (q,h)-fractional Bihari inequality, the uniqueness and finite-time stability of solutions to the fractional (q,h)-difference equation are derived.

    Consider the fractional (q,h)-difference initial value problem

    Caμ(q,h)y(t)=g(y(t)),t(q,h)˜TTσ(a),y(a)=y0, (4.1)

    where 0<μ<1, g:R[0,+), y(t):˜Tσ(a)(q,h)R, T˜Tσ(a)(q,h).

    Theorem 4.1. (Uniqueness theorem) If a solution of the (q,h)-fractional difference initial value problem (FDIVP) (4.1) exists, then the Eq (4.1) has a unique solution on (q,h)˜TTσ(a) if the function f satisfies:

    |g(y(t))g(˜y(t))|ϕ(|y(t)˜y(t)|), (4.2)

    where ϕ(u):[0,)[0,), ϕ is a continuous and nondecreasing function with ϕ(0)=0.

    Proof. Assume that y(t) and ˜y(t) are solutions of Eq (4.1). Applying the operator aμ(q,h) on both sides of Eq (4.1), we obtain:

    aμ(q,h)Caμ(q,h)y(t)=y(t)y0=aμ(q,h)g(y(t)),

    which implies

    y(t)=y0+aμ(q,h)g(y(t)).

    Similarly, we get

    ˜y(t)=y0+aμ(q,h)g(˜y(t)).

    Thus,

    |y(t)˜y(t)|aμ(q,h)|g(y(t))g(˜y(t))|aμ(q,h)ϕ(|y(t)˜y(t)|)<ε+aμ(q,h)ϕ(|y(t)˜y(t)|).

    Due to Theorem 3.4, it becomes

    |y(t)˜y(t)|<Φ1(Φ(ε)+ˆhμ(t,a)),t(q,h)˜TTσ(a),

    where Φ(u) is a solution of

    Caμ(q,h)Φ(V(σn(a)))=Caμ(q,h)V(σn(a))ϕ(V(σn(a)))

    for any positive sequence {V(σn(a))|nN0}. According to Remark 3.2, one has

    limε0+Φ(ε)=.

    From here, it follows:

    limξΦ1(ξ)=0.

    Hence,

    limε0+Φ1(Φ(ε)+ˆhμ(t,a))=0 (4.3)

    for t(q,h)˜TTσ(a). Since ε is arbitrary, Eq (4.3) means that y(t)=˜y(t) for t(q,h)˜TTσ(a). Thus, the uniqueness theorem is proved.

    Definition 4.2. [27,32] The fractional difference initial value problem (4.1) is finite-time stable w.r.t. {T,δ,ϵ} with 0<δ<ϵ if and only if x0<δ implies x(t)<ϵ for any t(q,h)˜TTσ(a).

    Theorem 4.3. Let 0<μ<1 and g:R[0,+), where g is a continuous and nondecreasing function with g(0)=0. If

    δ+ϕ(δ)ˆhα(t,a)ϵ,t(q,h)˜TTσ(a), (4.4)

    for 0<δ<ϵ and T˜Tσ(a)(q,h), then the system (4.1) is finite-time stable w.r.t {T,δ,ϵ}, where Ψ(u) is a solution of

    Caμ(q,h)Ψ(V(σn(a)))=Caμ(q,h)V(σn(a))g(V(σn(a)))

    for any positive sequence {V(σn(a))|nN0}.

    Proof. Applying the operator aμ(q,h) on both sides of (4.1) yields

    aμ(q,h)Caμ(q,h)y(t)=y(t)y0=aμ(q,h)g(y(t)),

    which implies

    |y(t)||y0|+|aμ(q,h)g(y(t))|<δ+aμ(q,h)g(|y(t)|).

    According to Theorem 3.4, one has

    |y(t)|<Ψ1(Ψ(δ)+ˆhμ(t,a)),t(q,h)˜TTσ(a),

    where Ψ(u) is a solution of

    Caμ(q,h)Ψ(V(σn(a)))=Caμ(q,h)V(σn(a))g(V(σn(a)))

    for any positive sequence {V(σn(a))|nN0}.

    Formula (3.3) and inequality (4.4) lead to

    Ψ(δ)Ψ(ϵ)=δϵg(δ)ˆhμ(t,a),

    where t(q,h)˜TTσ(a). Thus,

    Ψ(δ)+ˆhμ(t,a)Ψ(ϵ),t(q,h)˜TTσ(a).

    By using Lemma 3.4, one has

    |x(t)|<Ψ1(Ψ(δ)+ˆhμ(t,a))ϵ,t(q,h)˜TTσ(a).

    This ends the proof.

    In the last section, a nonlinear example is provided to numerically illustrate the results.

    Example 5.1. Consider the Caputo nabla fractional difference equation

    C10.5(2,1)x(t)=x13(t),t(2,1)˜TTσ(1)x(1)=0.0005, (5.1)

    where T˜Tσ(1)(2,1). We have g(x(t))=x13(t) and δ=0.001. To begin, we need to prove the existence and uniqueness of the solution to (5.1). Let t=σn(1), where t(2,1)˜TTσ(1). According to (2.21), we have

    C10.5(q,h)x(t)=(ν(σn(1)))0.5x(σn(1))(ν(σn(1)))0.5[0.5+n1n1]˜qx(1)+n1i=1(ν(σn(1)))0.51[0.5+i1i]˜qx(σni(1))ν(σni(1))=x13(σn(1)).

    For simplicity, we define x(σn(1)):=xn, then,

    (ν(σn(1)))0.5xnx13n(ν(σn(1)))0.5[0.5+n1n1]˜qx0+n1i=1(ν(σn(1)))0.51[0.5+i1i]˜qν(σni(1))xni=0.

    Let

    φn(xn)=(ν(σn(1)))0.5xnx13n(ν(σn(1)))0.5[0.5+n1n1]˜qx0+n1i=1(ν(σn(1)))0.51[0.5+i1i]˜qν(σni(1))xni. (5.2)

    Let

    φn(xn)=0(nN1). (5.3)

    Next, we will discuss the existence of a positive solution xn to Eq (5.3) using the concept of strong induction. Assume xi>0 for iNk11.

    Since [0.5+k1k1]˜q>0 and [0.5+i1i]˜q<0, xi>0 for iNk11, one has

    φk(0)=(ν(σk(1)))α[0.5+k1k1]˜qx0+k1i=1(ν(σk(1)))0.51[0.5+i1i]˜qν(σki(1))xki<0.

    From Eq (5.2), we have limxk+φk(xk)=+. Note that φk(xk) is continuous with respect to xk, thus, the existence of a positive solution xn to Eq (5.3) is obtained.

    Then, applying Theorem 4.1, the uniqueness of the solution to Eq (5.1) is proven.

    We assume that there are two positive solutions z(t) and ˜z(t) to Eq (5.1) with z(1)=˜z(1)=0.0005, hence, we obtain the following inequality:

    |g(z(t))g(˜z(t))|=|z13(t)˜z13(t)|=|z(t)˜z(t)|z23(t)+z13(t)˜z13(t)+˜z23(t)|z(t)˜z(t)||z(t)˜z(t)|23=|z(t)˜z(t)|13=ϕ(|z(t)˜z(t)|),

    where ϕ(|z(t)|)=|z(t)|13. By Theorem 4.1, we obtain that the solution to Eq (5.1) is unique.

    Finally, using the criterion (4.4) in Theorem 4.3, the largest possible bounds ϵ of the system (5.1) are shown in Table 1.

    Table 1.  ϵ for δ=0.001 and T varies in Example 5.1.
    T 3 7 15 31 63
    ϵ 0.143 0.260 0.403 0.593 0.854

     | Show Table
    DownLoad: CSV

    In this paper, we have studied the discrete fractional Bihari inequality and applied it to obtain the uniqueness and finite-time stability of solutions of fractional difference equations with non-Lipschitz nonlinearities. In addition, we have provided an example to illustrate the effectiveness and rationality of the uniqueness and finite-time stability numerically.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    In acknowledgement of their valuable comments and constructive suggestions, the authors would like to thank the editor and the anonymous referees for their contributions to the improvement of the original manuscript. This work has received support from the Doctoral Research Launch Fund (XJ2022001601) from Hubei University of Technology.

    The authors declare that they have no competing interests.



    [1] Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372 (2020), 124995. https://doi.org/10.1016/j.amc.2019.124995 doi: 10.1016/j.amc.2019.124995
    [2] C. J. Xu, W. Ou, Y. C. Pang, Q. Y. Cui, Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, Match-Commun. Math. Co., 91 (2024), 367–413. https://doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X
    [3] W. Ou, C. J. Xu, Q. Y. Cui, Y. C. Pang, Z. X. Liu, J. W. Shen, Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [4] W. G. Alharbi, A. F. Shater, A. Ebaid, C. Cattani, M. Areshi, M. M. Jalal, et al., Communicable disease model in view of fractional calculus, AIMS Mathematics, 8 (2023), 10033–10048. http://doi.org/10.3934/math.2023508 doi: 10.3934/math.2023508
    [5] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
    [6] Y. Z. Pei, S. P. Li, C. G. Li, Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311–321. https://doi.org/10.1007/s11071-010-9805-4 doi: 10.1007/s11071-010-9805-4
    [7] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6946-9
    [8] A. de Médicis, P. Leroux, Generalized Stirling numbers, convolution formulae and p,q-analogues, Can. J. Math., 47 (1995), 474–499. https://doi.org/10.4153/CJM-1995-027-x doi: 10.4153/CJM-1995-027-x
    [9] V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal., 42 (1992), 171–201. https://doi.org/10.1016/0047-259X(92)90042-E doi: 10.1016/0047-259X(92)90042-E
    [10] R. J. Finkelstein, The q-coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. http://doi.org/10.1063/1.531532 doi: 10.1063/1.531532
    [11] J. Čermák, L. Nechvátal, On (q,h)-analogue of fractional calculus, J. Nonlinear Math. Phy., 17 (2010), 51–68. http://doi.org/10.1142/S1402925110000593 doi: 10.1142/S1402925110000593
    [12] J. Čermák, T. Kisela, L. Nechvátal, Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., 2011 (2011), 565067. http://doi.org/10.1155/2011/565067 doi: 10.1155/2011/565067
    [13] B. G. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional q-differences, Dynam. Syst. Appl., 25 (2016), 47–60.
    [14] B. G. Jia, S. Y. Chen, L. Erbe, A. Peterson, Liapunov functional and stability of linear nabla (q,h)-fractional difference equations, J. Differ. Equ. Appl., 23 (2017), 1974–1985. http://doi.org/10.1080/10236198.2017.1380634 doi: 10.1080/10236198.2017.1380634
    [15] M. Wang, F. F. Du, C. R. Chen, B. G. Jia, Asymptotic stability of (q,h)-fractional difference equations, Appl. Math. Comput., 349 (2019), 158–167. http://doi.org/10.1016/j.amc.2018.12.039 doi: 10.1016/j.amc.2018.12.039
    [16] C. J. Xu, Z. X. Liu, P. L. Li, J. L. Yan, L. Y. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. http://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [17] K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. http://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676
    [18] C. J. Xu, Y. C. Pang, Z. X. Liu, J. W. Shen, M. X. Liao, P. L. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. http://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
    [19] C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 2023 (2023), 1–31. http://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
    [20] Q. Y. Cui, C. J. Xu, W. Ou, Y. C. Pang, Z. X. Liu, P. L. Li, et al., Bifurcation behavior and hybrid controller design of a 2d Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. http://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [21] M. Chinnamuniyandi, S. Chandran, C. J. Xu, Fractional order uncertain bam neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313. http://doi.org/10.3233/JIFS-234744 doi: 10.3233/JIFS-234744
    [22] P. L. Li, R. Gao, C. J. Xu, J. W. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on hopf bifurcation of a type of bam neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. http://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
    [23] K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. http://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [24] M. Wang, B. G. Jia, C. R. Chen, X. J. Zhu, F. F. Du, Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-lipschitz nonlinearities, Appl. Math. Comput., 376 (2020), 125118. http://doi.org/10.1016/j.amc.2020.125118 doi: 10.1016/j.amc.2020.125118
    [25] M. P. Lazarević, D. L. Debeljković, Z. L. Nenadić, S. A. Milinković, Finite-time stability of delayed systems, IMA J. Math. Control I., 17 (2000), 101–109. http://doi.org/10.1093/imamci/17.2.101 doi: 10.1093/imamci/17.2.101
    [26] M. P. Lazarević, D. L. Debeljković, Finite time stability analysis of linear autonomous fractional order systems with delayed state, Asian J. Control, 7 (2005), 440–447. http://doi.org/10.1111/j.1934-6093.2005.tb00407.x doi: 10.1111/j.1934-6093.2005.tb00407.x
    [27] M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011
    [28] Y. Yang, G. P. Chen, Finite-time stability of fractional order impulsive switched systems, Int. J. Robust Nonlin., 25 (2015), 2207–2222. https://doi.org/10.1002/rnc.3202 doi: 10.1002/rnc.3202
    [29] R. Rakkiyappan, G. Velmurugan, J. D. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78 (2014), 2823–2836. https://doi.org/10.1007/s11071-014-1628-2 doi: 10.1007/s11071-014-1628-2
    [30] G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci., 57 (2018), 299–308. https://doi.org/10.1016/j.cnsns.2017.09.001 doi: 10.1016/j.cnsns.2017.09.001
    [31] F. F. Du, B. G. Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., 98 (2019), 233–239. https://doi.org/10.1016/j.aml.2019.06.017 doi: 10.1016/j.aml.2019.06.017
    [32] F. F. Du, J. G. Lu, New criterion for finite-time stability of fractional delay systems, Appl. Math. Lett., 104 (2020), 106248. https://doi.org/10.1016/j.aml.2020.106248 doi: 10.1016/j.aml.2020.106248
    [33] F. F. Du, B. G. Jia, Finite-time stability of nonlinear fractional order systems withn a constant delay, Journal of Nonlinear Modeling and Analysis, 2 (2020), 1–13. http://doi.org/10.12150/jnma.2020.1 doi: 10.12150/jnma.2020.1
    [34] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, et al., Hyers-Ulam-Mittag-Leffler stability of fractional differentialn equations with two caputo derivative using fractional fourier transform, AIMS Mathematics, 7 (2022), 1791–1810. http://doi.org/10.3934/math.2022103 doi: 10.3934/math.2022103
    [35] M. M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equation, Appl. Math. Comput., 324 (2018), 254–265. http://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
    [36] G. Deekshitulu, J. J. Mohan, Fractional difference inequalities of Bihari type, Communications in Applied Analysis, 14 (2010), 343–354.
    [37] M. R. S. Rahmat, M. S. M. Noorani, Caputo type fractional difference operator and its application on discrete time scales, Adv. Differ. Equ., 2015 (2015), 160. https://doi.org/10.1186/s13662-015-0496-5 doi: 10.1186/s13662-015-0496-5
    [38] C. Goodrich, A. C. Peterson, Discrete fractional calculus, Cham: Springer, 2015. http://doi.org/10.1007/978-3-319-25562-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1100) PDF downloads(38) Cited by(0)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog