T | 3 | 7 | 15 | 31 | 63 |
ϵ | 0.143 | 0.260 | 0.403 | 0.593 | 0.854 |
In this paper, the discrete (q,h)-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of (q,h)-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.
Citation: Mei Wang, Baogua Jia. Finite-time stability and uniqueness theorem of solutions of nabla fractional (q,h)-difference equations with non-Lipschitz and nonlinear conditions[J]. AIMS Mathematics, 2024, 9(6): 15132-15148. doi: 10.3934/math.2024734
[1] | Jingfeng Wang, Chuanzhi Bai . Finite-time stability of $ q $-fractional damped difference systems with time delay. AIMS Mathematics, 2021, 6(11): 12011-12027. doi: 10.3934/math.2021696 |
[2] | Junsoo Lee, Wassim M. Haddad . On finite-time stability and stabilization of nonlinear hybrid dynamical systems. AIMS Mathematics, 2021, 6(6): 5535-5562. doi: 10.3934/math.2021328 |
[3] | Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique . Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 15129-15147. doi: 10.3934/math.2023772 |
[4] | Min Jiang, Rengang Huang . Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421 |
[5] | Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa . Existence theory and stability analysis of neutral $ \psi $–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396 |
[6] | Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional $ q $-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985 |
[7] | Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436 |
[8] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[9] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[10] | Yajun Xie, Changfeng Ma, Qingqing Zheng . On the nonlinear matrix equation $ X^{s}+A^{H}F(X)A = Q $. AIMS Mathematics, 2023, 8(8): 18392-18407. doi: 10.3934/math.2023935 |
In this paper, the discrete (q,h)-fractional Bihari inequality is generalized. On the grounds of inequality, the finite-time stability and uniqueness theorem of solutions of (q,h)-fractional difference equations with non-Lipschitz and nonlinear conditions is concluded. In addition, the validity of our conclusion is illustrated by a nonlinear example with a non-Lipschitz condition.
In the past few decades, fractional calculus has been widely used in fields such as science and engineering. Many natural systems can be properly modeled by a nonlinear differential equation in the real world, such as neural networks [1], control systems [2,3], disease models [4], blood production in leukemia patients (Mackey- Glass model) [5], and population dynamics [6]. Compared with classical integer-order systems, fractional systems can more accurately describe the memory characteristics of various materials and processes.
In recent years, q-calculus has been widely used in various areas, such as, in the approximation theory [7], number theory [8], quantum theory [9], and physics [10]. In 2010, the authors (see [11,12]) introduced (q,h)-calculus as an extension of the basic notions of discrete fractional calculus. Since then, new results involving (q,h)-calculus have continued to emerge [13,14,15].
The existence and uniqueness of solutions are the basis for studying the stability problem, but they are easily neglected. We can mention [2,3,16,17,18,19,20,21,22,23], references therein, etc. However, as far as we know, most nonlinear functions are already mentioned in the existing literature. Fractional difference systems are Lipschitz continuous. The results of the uniqueness theorem for solutions to non-Lipschitz, nonlinear fractional difference equations are rare. In [24], applying the fractional Bihari inequality, the authors investigated the uniqueness theorem of the Caputo difference equation. Motivated by the above discussion, the uniqueness theorem of solutions of fractional (q,h)-difference equations with non-Lipschitz nonlinearities is given in this paper.
Owing to Lazarevic's remarkable and seminal works [25,26,27], more and more scientists have become increasingly interested in the finite-time stability analysis of fractional delay systems. Since stability analysis is critical in fractional systems, many experts and scholars are dedicated to studying methods of stability analysis, such as Lyapunov's method [28], the Gronwall inequality [29,30,31,32,33], the fractional Fourier transform [34], and Mittag-Leffler matrix functions [35].
In our paper, with the aid of the discrete (q,h)-fractional Bihari inequality, we apply a new method to study the finite-time stability of the (q,h)-fractional difference equation (1.1)
Ca∇μ(q,h)x(t)=g(x(t)),t∈(q,h)˜TTσ(a),x(a)=x0, | (1.1) |
where 0<μ<1, g:R→[0,+∞), x(t):˜Tσ(a)(q,h)→R, T∈˜Tσ(a)(q,h).
Remark 1.1. In [36], fractional Bihari difference inequalities were studied. In our paper, a discrete fractional Bihari inequality with a (q,h) time scale is generalized and developed. Unlike the case in [36], where the existence of the inverse function of the function Φ was not clarified, the proof of discrete (q,h)-fractional Bihari inequality in our paper is more complete and precise.
The rest of this paper is organized as follows: In Section 2, fundamental concepts of discrete fractional calculus on (q,h)-time scales are illuminated. In Section 3, the discrete (q,h)-fractional Bihari inequality is generalized. In Section 4, the uniqueness and finite-time stability of solutions of fractional (q,h)-difference equations with non-Lipschitz and nonlinear conditions are obtained. In Section 5, an example of a non-Lipschitz condition is presented to illustrate the validity of our conclusion numerically.
In this section, fundamental concepts and conclusions about fractional (q,h)-difference are illuminated.
For any s,t∈R, one has
Ns:={s,s+1,s+2,…}, |
Nts:={s,s+1,s+2,…,t},if t−s∈N1, |
otherwise, Nts:=∅.
Definition 2.1. [12] Let t0>0 and h>0. For q>1, the (q,h)-time scale is given by
Tt0(q,h):={t0qm+[m]qh,m∈Z}∪{h1−q}, | (2.1) |
where [m]q:=qm−1q−1, [m]1:=m. Particularly, the (1,h)-time scale is given by Tt0(1,h):={t0+mh,m∈Z}.
Let t0>0, q>1, h>0, and a∈Tt0(q,h) with a>h1−q. Restrictions of the time scale Tt0(q,h) are given as
˜Tσi(a)(q,h):={t∈Tt0(q,h),t≥σi(a)},for i=0,1,2,… | (2.2) |
(q,h)˜TMσ(a):={t∈Tt0(q,h),σ(a)≤t≤M},for M∈˜Tσ(a)(q,h). | (2.3) |
Here, σ0(a)=a and σi(a)=σ(σi−1(a)) for i∈N+(analogously for ρi).
Definition 2.2. [37] Assume x: Tt0(q,h)→R. Then the nabla (q,h)-derivative of the function x can be defined by
∇(q,h)x(t):=x(t)−x(ρ(t))ν(t)=x(t)−x(˜q(t−h))(1−˜q)t+˜qh, | (2.4) |
where ˜q=1q,σ(t)=qt+h,ρ(t)=˜q(t−h),ν(t)=t−ρ(t)=(1−˜q)t+˜qh.
σm+1(t):=σm(σ(t)),ρm+1(t):=ρm(ρ(t)),m=0,1,⋯ |
The two standard notations above can help us obtain the following equalities:
σm(t)=qmt+[m]qh,ρm(t)=q−m(t−[m]qh). |
Remark 2.3. For t∈Tt0(q,h), the following equalities hold:
1) ν(σk(t))=qk−1((q−1)t+h);
2) ν(ρi(σn(t)))=˜qiν(σn(t)).
Definition 2.4. [12] Γ˜q is the q-Gamma function, which is introduced as
Γ˜q(x):=(˜q,˜q)∞(1−˜q)1−x(˜qx,˜q)∞,x∈R∖{0,−1,−2,⋯}, | (2.5) |
where (a,˜q)∞=∞∏k=0(1−a˜qk).
For x∈R and k∈Z, the q-binomial coefficient is defined by
[xk]˜q:=Γ˜q(x+1)Γ˜q(k+1)Γ˜q(x−k+1). | (2.6) |
Definition 2.5. [12] The μ-th power function on Tt0(q,h) is defined as
(t−τ)(μ)(˜q,h):=([t]−[τ])(μ)˜q,t,τ∈Tt0(q,h), | (2.7) |
where [s] is given by [s]:=s+h˜q/(1−˜q)=ν(s)1−˜q and μ∈R.
The μ-th nabla fractional (q,h)-Taylor monomial on Tt0(q,h) is given by
ˆhμ(t,s):=(t−s)(μ)(˜q,h)Γ˜q(μ+1),t,s∈Tt0(q,h), | (2.8) |
where μ∈R,˜q=1q.
Lemma 2.6. Let μ≠−1,−2,−3,⋯. For s∈Tσ(a)(q,h), the following fractional equalities can be derived: (1) ˆhμ(s,s)=0; (2) τ∇(q,h)ˆhμ(s,τ)=−ˆhμ−1(s,ρ(τ)); (3) ∫saˆhμ(s,ρ(τ))∇(q,h)τ=ˆhμ+1(s,a).
Lemma 2.7. ([12] q-Pascal rules) Property of the q-binomial coefficients:
[ml]˜q=[m−1l−1]˜q+˜ql[m−1l]˜q. | (2.9) |
Lemma 2.7 is valuable in proving the monotony of the function Φ in Eq (3.1).
Definition 2.8. [12] Assume f:Tσ(a)(q,h)→R and s=σm(a),m≥1. Then, the nabla (q,h)-integral of f from a to s is defined by
∫saf(τ)∇τ:=m∑j=1f(σj(a))ν(σj(a)) | (2.10) |
with the standard convention that ∫aaf(τ)∇τ=0.
Definition 2.9. [12] The definition of μ-th (μ∈R+) nabla (q,h)-fractional integral is given by
a∇−μ(q,h)f(t):=∫taˆhμ−1(t,ρ(τ))f(τ)∇τ=n∑j=1ˆhμ−1(σn(a),σj−1(a))f(σj(a))ν(σj(a)). | (2.11) |
Definition 2.10. [12] The μ-th(m−1<μ≤m,m∈Z+) Riemann-Liouville (R-L) nabla (q,h)-fractional difference of function f can be defined by
a∇μ(q,h)f(t):=∇m(q,h)a∇−(m−μ)(q,h)f(t). | (2.12) |
Particularly, for 0<μ<1, one has
a∇μ(q,h)f(t):=∇(q,h)a∇−(1−μ)(q,h)f(t). | (2.13) |
Definition 2.11. [12] The μ-th(m−1<μ≤m,m∈Z+) Caputo nabla (q,h)-fractional difference of function f can be introduced as
Ca∇μ(q,h)f(t):=a∇−(m−μ)(q,h)∇m(q,h)f(t). | (2.14) |
Particularly, for 0<μ<1, one has
Ca∇μ(q,h)f(t):=a∇−(1−μ)(q,h)∇(q,h)f(t). |
Lemma 2.12. [38, Theorem 3.39] Given two functions u,v:Tσ(a)(q,h)→R. Then, the integration by parts formula in fractional calculus is obtained as
∫tau(ρ(τ))∇(q,h)v(τ)∇(q,h)τ=u(τ)v(τ)|tτ=a−∫tav(τ)∇(q,h)u(τ)∇(q,h)τ,t∈Tσ(a)(q,h). | (2.15) |
Lemma 2.13. Assume 0<μ<1, and y:˜Ta(q,h)→R. Then,
Ca∇μ(q,h)y(t)=−ˆh−μ(t,a)y(a)+∫taˆh−μ−1(t,ρ(s))y(s)∇(q,h)s. | (2.16) |
Proof. By Definition 2.11, one has
Ca∇μ(q,h)y(t)=a∇−(1−μ)(q,h)∇(q,h)y(t)=∫taˆh−μ(t,ρ(s))∇(q,h)y(s)∇(q,h)s(2.15)=∫taˆh−μ−1(t,ρ(s))y(s)∇(q,h)s+ˆh−μ(t,s)y(s)|ts=a=∫taˆh−μ−1(t,ρ(s))y(s)∇(q,h)s−ˆh−μ(t,a)y(a), |
where, by convention, ˆh−μ(t,t)=0.
Lemma 2.14. [12] If μ∈R,t,s∈Tt0(q,h), t=σn(s) (n∈N), then,
ˆhμ(t,s)=(ν(t))μ[μ+n−1n−1]˜q. | (2.17) |
Lemma 2.15. [38] Assume x:˜Tσ(a)(q,h)→R, and ν,μ>0. Then,
a∇−ν(q,h)a∇−μ(q,h)x(t)=a∇−ν−μ(q,h)x(t). | (2.18) |
Lemma 2.16. [38] For μ-th(m−1<μ<m,m∈Z+), and x:˜Tσ(a)(q,h)→R, it follows:
a∇−(m−μ)(q,h)a∇m−μ(q,h)x(t)=x(t). | (2.19) |
Lemma 2.17. [37] For μ-th(m−1<μ<m,m∈Z+), and x:˜Ta(q,h)→R, one has
a∇−(m−μ)(q,h)Ca∇m−μ(q,h)x(t)=x(t)−x(a). | (2.20) |
From Lemmas 2.13 and 2.14, we have the following lemma:
Lemma 2.18. Assume x:Tσ(a)(q,h)→R and t=σn(a),n≥1, 0<μ<1. For n≥1, it follows:
Ca∇μ(q,h)x(t)=(ν(σn(a)))−μx(σn(a))−(ν(σn(a)))−μ[−μ+n−1n−1]˜qx(a)+n−1∑i=1(ν(σn(a)))−μ−1[−μ+i−1i]˜qx(σn−i(a))ν(σn−i(a)). | (2.21) |
Proof. For simplicity, we denote x(σn(a)):=x(n). Owing to Lemma 2.13, it follows:
Ca∇μ(q,h)x(n)=−ˆh−μ(t,a)y(a)+∫taˆh−μ−1(t,ρ(s))y(s)∇(q,h)s=−ˆh−μ(σn(a),a)x(a)+n∑i=1ˆh−μ−1(σn(a),σi−1(a))x(σi(a))ν(σi(a))=−ˆh−μ(σn(a),a)x(a)+ˆh−μ−1(σn(a),σn−1(a)ν(σn(a))x(n)+n−1∑i=1(ν(σn(a)))−μ−1[−μ+i−1i]˜qx(σn−i(a))ν(σn−i(a)).=(ν(σn(a)))−μx(σn(a))−(ν(σn(a)))−μ[−μ+n−1n−1]˜qx(a)+n−1∑i=1(ν(σn(a)))−μ−1[−μ+i−1i]˜qx(σn−i(a))ν(σn−i(a)). |
Lemma 2.19. Let u(σn(a)) and v(σn(a)) be nonnegative functions, β>0 and n∈N1. If u(σi(a))≤v(σi(a)) for 1≤i≤n, then,
a∇−β(q,h)u(σn(a))≤a∇−β(q,h)v(σn(a)). |
Proof. Owing to Definition 2.9, one has
a∇−β(q,h)u(σn(a))=∫σn(a)aˆhβ−1(σn(a),ρ(s))u(s)∇(q,h)s=n∑i=1ˆhν−1(σn(a),σi−1(a))u(σi(a))ν(σi(a))=n−1∑i=1ˆhν−1(σn(a),σi−1(a))u(σi(a))ν(σi(a))+(ν(σn(a)))βu(σn(a)). |
Similarly, we can derive
a∇−β(q,h)v(σn(a))=n−1∑i=1ˆhν−1(σn(a),σi−1(a))v(σi(a))ν(σi(a))+(ν(σn(a)))βv(σn(a)). |
For β>0,1≤i≤n−1, it has
ˆhβ−1(σn(a),σi−1(a))(2.17)=(ν(σn(a)))β−1[β−1+n−in−i]˜q(2.6)=(ν(σn(a)))β−1Γ˜q(ν+n−i)Γ˜q(n−i+1)Γ˜q(β)(2.5)=(ν(σn(a)))β−1(˜qn−i+1,˜q)∞(˜qβ,˜q)∞(˜qα+n−i,˜q)∞=(ν(σn(a)))β−1∞∏k=0(1−˜qn−i+1+k)∞∏k=0(1−˜qβ+k)∞∏k=0(1−˜qβ+n−i+k)>0. |
Thus, for 1≤i≤n−1, one has
ˆhβ−1(σn(a),σi−1(a))u(σi(a))ν(σi(a))≤ˆhβ−1(σn(a),σi−1(a))v(σi(a))ν(σi(a)), |
and
(ν(σn(a)))βu(σn(a))≤(ν(σn(a)))βv(σn(a)). |
Therefore, a∇−β(q,h)u(σn(a))≤a∇−β(q,h)v(σn(a)).
In this section, a new (q,h)-fractional Bihari inequality is developed.
According to the proof of Lemma 3.1 of [24], the discrete (q,h)-fractional Bihari inequality can be further generalized as follows:
Lemma 3.1. Assume x:[0,∞)→[0,∞), 0<μ<1. Let x be a continuous and nondecreasing function with x(0)=0. For any positive sequence {V(σn(a))|n∈N0}, Φ(u) is a solution to Eq (3.1),
Ca∇μ(q,h)Φ(V(σn(a)))=Ca∇μ(q,h)V(σn(a))x(V(σn(a))). | (3.1) |
If 0<m2<m1, then Φ(m2)<Φ(m1).
Proof. For simplicity, we denote V(σi(a)):=Vi, where i∈{0,1,2,3,⋯,n}.
By Lemma 2.18, it follows:
Ca∇μ(q,h)Φ(Vn)=(ν(σn(a)))−μΦ(Vn)−(ν(σn(a)))−μ[n−μ−1n−1]˜qΦ(V0)+n−1∑i=1(ν(σn(a)))−μ−1[i−μ−1i]˜qν(σn−i(a))Φ(Vn−i),Ca∇μ(q,h)Vn=(ν(σn(a)))−μVn−(ν(σn(a)))−μ[n−μ−1n−1]˜qV0+n−1∑i=1(ν(σn(a)))−μ−1[i−μ−1i]˜qν(σn−i(a))Vn−i. |
According to Eq (3.1), one has
(ν(σn(a)))−μΦ(Vn)−(ν(σn(a)))−μ[n−μ−1n−1]˜qΦ(V0)+n−1∑i=1(ν(σn(a)))−μ−1[i−μ−1i]˜qν(σn−i(a))Φ(Vn−i)=(ν(σn(a)))−μVn−(ν(σn(a)))−μ[n−μ−1n−1]˜qV0+n−1∑i=1(ν(σn(a)))−μ−1[i−μ−1i]˜qν(σn−i(a))Vn−i, |
which leads easily to
Φ(Vn)=Vnx(Vn)+[n−μ−1n−1]˜q(Φ(V0)−V0x(Vn))+n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(σn−i(a))(Vn−ix(Vn)−Φ(Vn−i)). | (3.2) |
In particular, we take a sequence {Vj} that satisfies the following conditions:
Vj={m1,if 0≤j≤n−1,m2,if j≥n, |
where 0<m2<m1.
For 0<m2<m1, attending to Eq (3.2), it follows:
Φ(m2)=Φ(Vn)=m2x(m2)+[n−μ−1n−1]˜q(Φ(m2)−m1x(m2))+n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(σn−i(a))(m1x(m2)−Φ(m1))=m2x(m2)+m1x(m2)(n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(σn−i(a))−[n−μ−1n−1]˜q)+Φ(m1)(−n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(σn−i(m1))+[n−μ−1n−1]˜q)=m2x(m2)+m1x(m2)(n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(ρi(σn(a)))−[n−μ−1n−1]˜q)+Φ(m1)(−n−1∑i=1[i−μ−1i]˜q(ν(σn(a)))−1ν(ρi(σn(a)))+[n−μ−1n−1]˜q)Remark2.3(2)=m2x(m2)+m1x(m2)(n−1∑i=1[i−μ−1i]˜q˜qi−[n−μ−1n−1]˜q)+Φ(m1)(−n−1∑i=1[i−μ−1i]˜q˜qi+[n−μ−1n−1]˜q)(2.9)=m2x(m2)+m1x(m2)(n−1∑i=1[i−μi]˜q−n−1∑i=1[i−μ−1i−1]˜q−[n−μ−1n−1]˜q)+Φ(m1)(−n−1∑i=1[i−μi]˜q+n−1∑i=1[i−μ−1i−1]˜q+[n−μ−1n−1]˜q)=m2x(m2)−m1x(m2)+Φ(m1). | (3.3) |
Thus, for 0<m2<m1, one has Φ(m2)<Φ(m1). The proof is completed.
Remark 3.2. If 0<m2<m1, and Φ(m2) is defined as (3.3), one has
limm2→0+Φ(m2)=−∞, |
which is critical in the proof of the uniqueness theorem.
Remark 3.3. According to equality (3.2), we can clarify the existence of a solution to Eq (3.1).
Theorem 3.4. (Discrete (q,h)-fractional Bihari inequality) Suppose 0<μ<1, u(t):˜Ta(q,h)→[0,+∞), and c>0 is a constant. Assume [0,+∞)→[0,+∞), and ϕ is a continuous and nondecreasing function with ϕ(0)=0. If
u(t)≤c+a∇−μ(q,h)ϕ(u(t)),t∈(q,h)˜TTσ(a), | (3.4) |
where T∈˜Tσ(a)(q,h), then,
u(t)≤Φ−1(Φ(c)+ˆhμ(t,a)),t∈(q,h)˜TTσ(a), | (3.5) |
where Φ(u) is a solution to
Ca∇μ(q,h)Φ(V(σn(a)))=Ca∇μ(q,h)V(σn(a))ϕ(V(σn(a))) |
for any positive sequence {V(σn(a))|n∈N0}.
Proof. Let v(t) be the right-hand side of the inequality (3.4), namely
v(t)=c+a∇−μ(q,h)ϕ(u(t)),t∈(q,h)˜TTσ(a). |
It follows that
u(t)≤v(t),t∈(q,h)˜TTσ(a). | (3.6) |
For t∈(q,h)˜TTσ(a), one has
Ca∇μ(q,h)v(t)=a∇−(1−μ)(q,h)∇(q,h)v(t)=a∇−(1−μ)(q,h)∇(q,h)(c+a∇−μ(q,h)ϕ(u(t)))=a∇−(1−μ)(q,h)∇(q,h)a∇−μ(q,h)ϕ(u(t))(2.13)=a∇−(1−μ)(q,h)a∇1−μ(q,h)ϕ(u(t))(2.19)=ϕ(u(t)). |
Combining the monotonicity of ϕ and the inequality (3.6) yields
Ca∇μ(q,h)v(t)≤ϕ(v(t)),t∈(q,h)˜TTσ(a). |
Therefore,
Ca∇μ(q,h)Φ(v(t))=Ca∇μ(q,h)v(t)ϕ(v(t))≤ϕ(v(t))ϕ(v(t))=1,t∈(q,h)˜TTσ(a). | (3.7) |
Using Lemma 2.19 on the inequality (3.7), one has
a∇−μ(q,h)Ca∇μ(q,h)Φ(v(t))≤ˆhμ(t,a),t∈(q,h)˜TTσ(a), | (3.8) |
where we use
a∇−μ(q,h)1=∫t0ˆhμ−1(t,ρ(τ))∇(q,h)τLem.2.6=ˆhμ(t,a). |
By Lemma 2.17, we get
Φ(v(t))≤Φ(v(a))+ˆhμ(t,a),t∈(q,h)˜TTσ(a). | (3.9) |
Using the monotonicity of Φ and the inequality (3.9) obtains
v(t)≤Φ−1(Φ(v(a))+ˆhμ(t,a)),t∈(q,h)˜TTσ(a). |
Consequently,
u(t)≤v(t)≤Φ−1(Φ(c)+ˆhμ(t,a)),t∈(q,h)˜TTσ(a). |
This completes the proof.
In this section, by using the discrete (q,h)-fractional Bihari inequality, the uniqueness and finite-time stability of solutions to the fractional (q,h)-difference equation are derived.
Consider the fractional (q,h)-difference initial value problem
Ca∇μ(q,h)y(t)=g(y(t)),t∈(q,h)˜TTσ(a),y(a)=y0, | (4.1) |
where 0<μ<1, g:R→[0,+∞), y(t):˜Tσ(a)(q,h)→R, T∈˜Tσ(a)(q,h).
Theorem 4.1. (Uniqueness theorem) If a solution of the (q,h)-fractional difference initial value problem (FDIVP) (4.1) exists, then the Eq (4.1) has a unique solution on (q,h)˜TTσ(a) if the function f satisfies:
|g(y(t))−g(˜y(t))|≤ϕ(|y(t)−˜y(t)|), | (4.2) |
where ϕ(u):[0,∞)→[0,∞), ϕ is a continuous and nondecreasing function with ϕ(0)=0.
Proof. Assume that y(t) and ˜y(t) are solutions of Eq (4.1). Applying the operator a∇−μ(q,h) on both sides of Eq (4.1), we obtain:
a∇−μ(q,h)Ca∇μ(q,h)y(t)=y(t)−y0=a∇−μ(q,h)g(y(t)), |
which implies
y(t)=y0+a∇−μ(q,h)g(y(t)). |
Similarly, we get
˜y(t)=y0+a∇−μ(q,h)g(˜y(t)). |
Thus,
|y(t)−˜y(t)|≤a∇−μ(q,h)|g(y(t))−g(˜y(t))|≤a∇−μ(q,h)ϕ(|y(t)−˜y(t)|)<ε+a∇−μ(q,h)ϕ(|y(t)−˜y(t)|). |
Due to Theorem 3.4, it becomes
|y(t)−˜y(t)|<Φ−1(Φ(ε)+ˆhμ(t,a)),t∈(q,h)˜TTσ(a), |
where Φ(u) is a solution of
Ca∇μ(q,h)Φ(V(σn(a)))=Ca∇μ(q,h)V(σn(a))ϕ(V(σn(a))) |
for any positive sequence {V(σn(a))|n∈N0}. According to Remark 3.2, one has
limε→0+Φ(ε)=−∞. |
From here, it follows:
limξ→−∞Φ−1(ξ)=0. |
Hence,
limε→0+Φ−1(Φ(ε)+ˆhμ(t,a))=0 | (4.3) |
for t∈(q,h)˜TTσ(a). Since ε is arbitrary, Eq (4.3) means that y(t)=˜y(t) for t∈(q,h)˜TTσ(a). Thus, the uniqueness theorem is proved.
Definition 4.2. [27,32] The fractional difference initial value problem (4.1) is finite-time stable w.r.t. {T,δ,ϵ} with 0<δ<ϵ if and only if ‖x0‖<δ implies ‖x(t)‖<ϵ for any t∈(q,h)˜TTσ(a).
Theorem 4.3. Let 0<μ<1 and g:R→[0,+∞), where g is a continuous and nondecreasing function with g(0)=0. If
δ+ϕ(δ)ˆhα(t,a)≤ϵ,t∈(q,h)˜TTσ(a), | (4.4) |
for 0<δ<ϵ and T∈˜Tσ(a)(q,h), then the system (4.1) is finite-time stable w.r.t {T,δ,ϵ}, where Ψ(u) is a solution of
Ca∇μ(q,h)Ψ(V(σn(a)))=Ca∇μ(q,h)V(σn(a))g(V(σn(a))) |
for any positive sequence {V(σn(a))|n∈N0}.
Proof. Applying the operator a∇−μ(q,h) on both sides of (4.1) yields
a∇−μ(q,h)Ca∇μ(q,h)y(t)=y(t)−y0=a∇−μ(q,h)g(y(t)), |
which implies
|y(t)|≤|y0|+|a∇−μ(q,h)g(y(t))|<δ+a∇−μ(q,h)g(|y(t)|). |
According to Theorem 3.4, one has
|y(t)|<Ψ−1(Ψ(δ)+ˆhμ(t,a)),t∈(q,h)˜TTσ(a), |
where Ψ(u) is a solution of
Ca∇μ(q,h)Ψ(V(σn(a)))=Ca∇μ(q,h)V(σn(a))g(V(σn(a))) |
for any positive sequence {V(σn(a))|n∈N0}.
Formula (3.3) and inequality (4.4) lead to
Ψ(δ)−Ψ(ϵ)=δ−ϵg(δ)≤−ˆhμ(t,a), |
where t∈(q,h)˜TTσ(a). Thus,
Ψ(δ)+ˆhμ(t,a)≤Ψ(ϵ),t∈(q,h)˜TTσ(a). |
By using Lemma 3.4, one has
|x(t)|<Ψ−1(Ψ(δ)+ˆhμ(t,a))≤ϵ,t∈(q,h)˜TTσ(a). |
This ends the proof.
In the last section, a nonlinear example is provided to numerically illustrate the results.
Example 5.1. Consider the Caputo nabla fractional difference equation
C1∇0.5(2,1)x(t)=x13(t),t∈(2,1)˜TTσ(1)x(1)=0.0005, | (5.1) |
where T∈˜Tσ(1)(2,1). We have g(x(t))=x13(t) and δ=0.001. To begin, we need to prove the existence and uniqueness of the solution to (5.1). Let t=σn(1), where t∈(2,1)˜TTσ(1). According to (2.21), we have
C1∇0.5(q,h)x(t)=(ν(σn(1)))−0.5x(σn(1))−(ν(σn(1)))−0.5[−0.5+n−1n−1]˜qx(1)+n−1∑i=1(ν(σn(1)))−0.5−1[−0.5+i−1i]˜qx(σn−i(1))ν(σn−i(1))=x13(σn(1)). |
For simplicity, we define x(σn(1)):=xn, then,
(ν(σn(1)))−0.5xn−x13n−(ν(σn(1)))−0.5[−0.5+n−1n−1]˜qx0+n−1∑i=1(ν(σn(1)))−0.5−1[−0.5+i−1i]˜qν(σn−i(1))xn−i=0. |
Let
φn(xn)=(ν(σn(1)))−0.5xn−x13n−(ν(σn(1)))−0.5[−0.5+n−1n−1]˜qx0+n−1∑i=1(ν(σn(1)))−0.5−1[−0.5+i−1i]˜qν(σn−i(1))xn−i. | (5.2) |
Let
φn(xn)=0(n∈N1). | (5.3) |
Next, we will discuss the existence of a positive solution xn to Eq (5.3) using the concept of strong induction. Assume xi>0 for i∈Nk−11.
Since [−0.5+k−1k−1]˜q>0 and [−0.5+i−1i]˜q<0, xi>0 for i∈Nk−11, one has
φk(0)=−(ν(σk(1)))−α[−0.5+k−1k−1]˜qx0+k−1∑i=1(ν(σk(1)))−0.5−1[−0.5+i−1i]˜qν(σk−i(1))xk−i<0. |
From Eq (5.2), we have limxk→+∞φk(xk)=+∞. Note that φk(xk) is continuous with respect to xk, thus, the existence of a positive solution xn to Eq (5.3) is obtained.
Then, applying Theorem 4.1, the uniqueness of the solution to Eq (5.1) is proven.
We assume that there are two positive solutions z(t) and ˜z(t) to Eq (5.1) with z(1)=˜z(1)=0.0005, hence, we obtain the following inequality:
|g(z(t))−g(˜z(t))|=|z13(t)−˜z13(t)|=|z(t)−˜z(t)|z23(t)+z13(t)˜z13(t)+˜z23(t)≤|z(t)−˜z(t)||z(t)−˜z(t)|23=|z(t)−˜z(t)|13=ϕ(|z(t)−˜z(t)|), |
where ϕ(|z(t)|)=|z(t)|13. By Theorem 4.1, we obtain that the solution to Eq (5.1) is unique.
Finally, using the criterion (4.4) in Theorem 4.3, the largest possible bounds ϵ of the system (5.1) are shown in Table 1.
T | 3 | 7 | 15 | 31 | 63 |
ϵ | 0.143 | 0.260 | 0.403 | 0.593 | 0.854 |
In this paper, we have studied the discrete fractional Bihari inequality and applied it to obtain the uniqueness and finite-time stability of solutions of fractional difference equations with non-Lipschitz nonlinearities. In addition, we have provided an example to illustrate the effectiveness and rationality of the uniqueness and finite-time stability numerically.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
In acknowledgement of their valuable comments and constructive suggestions, the authors would like to thank the editor and the anonymous referees for their contributions to the improvement of the original manuscript. This work has received support from the Doctoral Research Launch Fund (XJ2022001601) from Hubei University of Technology.
The authors declare that they have no competing interests.
[1] |
Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372 (2020), 124995. https://doi.org/10.1016/j.amc.2019.124995 doi: 10.1016/j.amc.2019.124995
![]() |
[2] |
C. J. Xu, W. Ou, Y. C. Pang, Q. Y. Cui, Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, Match-Commun. Math. Co., 91 (2024), 367–413. https://doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X
![]() |
[3] |
W. Ou, C. J. Xu, Q. Y. Cui, Y. C. Pang, Z. X. Liu, J. W. Shen, Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
![]() |
[4] |
W. G. Alharbi, A. F. Shater, A. Ebaid, C. Cattani, M. Areshi, M. M. Jalal, et al., Communicable disease model in view of fractional calculus, AIMS Mathematics, 8 (2023), 10033–10048. http://doi.org/10.3934/math.2023508 doi: 10.3934/math.2023508
![]() |
[5] |
M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
![]() |
[6] |
Y. Z. Pei, S. P. Li, C. G. Li, Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311–321. https://doi.org/10.1007/s11071-010-9805-4 doi: 10.1007/s11071-010-9805-4
![]() |
[7] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6946-9 |
[8] |
A. de Médicis, P. Leroux, Generalized Stirling numbers, convolution formulae and p,q-analogues, Can. J. Math., 47 (1995), 474–499. https://doi.org/10.4153/CJM-1995-027-x doi: 10.4153/CJM-1995-027-x
![]() |
[9] |
V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal., 42 (1992), 171–201. https://doi.org/10.1016/0047-259X(92)90042-E doi: 10.1016/0047-259X(92)90042-E
![]() |
[10] |
R. J. Finkelstein, The q-coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. http://doi.org/10.1063/1.531532 doi: 10.1063/1.531532
![]() |
[11] |
J. Čermák, L. Nechvátal, On (q,h)-analogue of fractional calculus, J. Nonlinear Math. Phy., 17 (2010), 51–68. http://doi.org/10.1142/S1402925110000593 doi: 10.1142/S1402925110000593
![]() |
[12] |
J. Čermák, T. Kisela, L. Nechvátal, Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., 2011 (2011), 565067. http://doi.org/10.1155/2011/565067 doi: 10.1155/2011/565067
![]() |
[13] | B. G. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional q-differences, Dynam. Syst. Appl., 25 (2016), 47–60. |
[14] |
B. G. Jia, S. Y. Chen, L. Erbe, A. Peterson, Liapunov functional and stability of linear nabla (q,h)-fractional difference equations, J. Differ. Equ. Appl., 23 (2017), 1974–1985. http://doi.org/10.1080/10236198.2017.1380634 doi: 10.1080/10236198.2017.1380634
![]() |
[15] |
M. Wang, F. F. Du, C. R. Chen, B. G. Jia, Asymptotic stability of (q,h)-fractional difference equations, Appl. Math. Comput., 349 (2019), 158–167. http://doi.org/10.1016/j.amc.2018.12.039 doi: 10.1016/j.amc.2018.12.039
![]() |
[16] |
C. J. Xu, Z. X. Liu, P. L. Li, J. L. Yan, L. Y. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. http://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
![]() |
[17] |
K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. http://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676
![]() |
[18] |
C. J. Xu, Y. C. Pang, Z. X. Liu, J. W. Shen, M. X. Liao, P. L. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. http://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
![]() |
[19] |
C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 2023 (2023), 1–31. http://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
![]() |
[20] |
Q. Y. Cui, C. J. Xu, W. Ou, Y. C. Pang, Z. X. Liu, P. L. Li, et al., Bifurcation behavior and hybrid controller design of a 2d Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. http://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
![]() |
[21] |
M. Chinnamuniyandi, S. Chandran, C. J. Xu, Fractional order uncertain bam neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313. http://doi.org/10.3233/JIFS-234744 doi: 10.3233/JIFS-234744
![]() |
[22] |
P. L. Li, R. Gao, C. J. Xu, J. W. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on hopf bifurcation of a type of bam neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. http://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
![]() |
[23] |
K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. http://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
![]() |
[24] |
M. Wang, B. G. Jia, C. R. Chen, X. J. Zhu, F. F. Du, Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-lipschitz nonlinearities, Appl. Math. Comput., 376 (2020), 125118. http://doi.org/10.1016/j.amc.2020.125118 doi: 10.1016/j.amc.2020.125118
![]() |
[25] |
M. P. Lazarević, D. L. Debeljković, Z. L. Nenadić, S. A. Milinković, Finite-time stability of delayed systems, IMA J. Math. Control I., 17 (2000), 101–109. http://doi.org/10.1093/imamci/17.2.101 doi: 10.1093/imamci/17.2.101
![]() |
[26] |
M. P. Lazarević, D. L. Debeljković, Finite time stability analysis of linear autonomous fractional order systems with delayed state, Asian J. Control, 7 (2005), 440–447. http://doi.org/10.1111/j.1934-6093.2005.tb00407.x doi: 10.1111/j.1934-6093.2005.tb00407.x
![]() |
[27] |
M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011
![]() |
[28] |
Y. Yang, G. P. Chen, Finite-time stability of fractional order impulsive switched systems, Int. J. Robust Nonlin., 25 (2015), 2207–2222. https://doi.org/10.1002/rnc.3202 doi: 10.1002/rnc.3202
![]() |
[29] |
R. Rakkiyappan, G. Velmurugan, J. D. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78 (2014), 2823–2836. https://doi.org/10.1007/s11071-014-1628-2 doi: 10.1007/s11071-014-1628-2
![]() |
[30] |
G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci., 57 (2018), 299–308. https://doi.org/10.1016/j.cnsns.2017.09.001 doi: 10.1016/j.cnsns.2017.09.001
![]() |
[31] |
F. F. Du, B. G. Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., 98 (2019), 233–239. https://doi.org/10.1016/j.aml.2019.06.017 doi: 10.1016/j.aml.2019.06.017
![]() |
[32] |
F. F. Du, J. G. Lu, New criterion for finite-time stability of fractional delay systems, Appl. Math. Lett., 104 (2020), 106248. https://doi.org/10.1016/j.aml.2020.106248 doi: 10.1016/j.aml.2020.106248
![]() |
[33] |
F. F. Du, B. G. Jia, Finite-time stability of nonlinear fractional order systems withn a constant delay, Journal of Nonlinear Modeling and Analysis, 2 (2020), 1–13. http://doi.org/10.12150/jnma.2020.1 doi: 10.12150/jnma.2020.1
![]() |
[34] |
A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, et al., Hyers-Ulam-Mittag-Leffler stability of fractional differentialn equations with two caputo derivative using fractional fourier transform, AIMS Mathematics, 7 (2022), 1791–1810. http://doi.org/10.3934/math.2022103 doi: 10.3934/math.2022103
![]() |
[35] |
M. M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equation, Appl. Math. Comput., 324 (2018), 254–265. http://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
![]() |
[36] | G. Deekshitulu, J. J. Mohan, Fractional difference inequalities of Bihari type, Communications in Applied Analysis, 14 (2010), 343–354. |
[37] |
M. R. S. Rahmat, M. S. M. Noorani, Caputo type fractional difference operator and its application on discrete time scales, Adv. Differ. Equ., 2015 (2015), 160. https://doi.org/10.1186/s13662-015-0496-5 doi: 10.1186/s13662-015-0496-5
![]() |
[38] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, Cham: Springer, 2015. http://doi.org/10.1007/978-3-319-25562-0 |
T | 3 | 7 | 15 | 31 | 63 |
ϵ | 0.143 | 0.260 | 0.403 | 0.593 | 0.854 |