This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.
Citation: Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari. Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
[1] | Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261 |
[2] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[3] | Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280 |
[4] | Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation k∑i=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181 |
[5] | Fengxia Zhang, Ying Li, Jianli Zhao . A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F). AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803 |
[6] | Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427 |
[7] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323 |
[8] | Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352 |
[9] | Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974 |
[10] | Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178 |
This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.
Let H(U) be the class of analytic functions in the open unit disc U={z∈C:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions
f(z)=a+aυzυ+aυ+1zυ+1+…(a∈C), |
we denote by H=H[1,1].
Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:
f(z)=zp+∞∑υ=p+1aυzυ(p∈N={1,2,3,..}). | (1.1) |
Upon differentiating j-times for each one of the (1.1) we obtain:
f(j)(z)=δ(p,j)zp−j+∞∑υ=p+1δ(υ,j)aυzυ−jz∈U,δ(p,j)=p!(p−j)! (p∈N, j∈N0=N∪{0}, p≥j). | (1.2) |
Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).
For f,ℏ∈H, the function f is subordinate to ℏ or the function ℏ is said to be superordinate to f in U and we write f(z)≺ℏ(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=ℏ(ω(z)), z∈U. If ℏ is univalent in U, then f(z)≺ℏ(z) iff f(0)=ℏ(0) and f(U)⊂ℏ(U). (see [7,21]).
In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order α∈C (ℜ(α)>0) is one of the most widely used operators (see [29]) given by:
(Iα0+f)(x)=1Γ(α)∫x0(x−μ)α−1f(μ)dμ(x>0;ℜ(α)>0) | (1.3) |
applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order α∈C(ℜ(α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:
(Iα0+;σ,ηf)(x)=σx−σ(α+η)Γ(α)∫x0μσ(η+1)−1(xσ−μσ)α−1f(μ)dμ | (1.4) |
(x>0;ℜ(α)>0), |
which corresponds essentially to (1.3) when σ−1=η=0, since
(Iα0+;1,0f)(x)=x−α(Iα0+f)(x)(x>0;ℜ(α)>0). |
Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν−1 and α=ρ−ν, here, we take a look at the integral operator ℑp(ν,ρ,μ) with f∈A(p) by (see [11])
ℑp(ν,ρ;ℓ)f(z)=Γ(ρ+ℓp)Γ(ν+ℓp)Γ(ρ−ν)∫10μν−1(1−μ)ρ−ν−1f(zμℓ)dμ |
(ℓ>0;ν,ρ∈R;ρ>ν>−ℓp;p∈N). |
Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:
B(α,β):={∫10μα−1(1−μ)β−1dμ(min{ℜ(α),ℜ(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,β∈C∖Z′0), |
we readily find that
ℑp(ν,ρ;ℓ)f(z)={zp+Γ(ρ+pℓ)Γ(ν+pℓ)∞∑υ=p+1Γ(ν+υℓ)Γ(ρ+υℓ)aυzυ(ρ>ν)f(z)(ρ=ν). | (1.5) |
It is readily to obtain from (1.5) that
z(ℑp(ν,ρ;ℓ)f(z))′=(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))−νℓ(ℑp(ν,ρ;ℓ)f(z)). | (1.6) |
The integral operator ℑp(ν,ρ;ℓ)f(z) should be noted as a generalization of several other integral operators previously discussed for example,
(ⅰ) If we set p=1, we get ˜I(ν,ρ;ℓ)f(z) defined by Ŕaina and Sharma ([22] with m=0);
(ⅱ) If we set ν=β,ρ=β+1 and ℓ=1, we obtain ℑβpf(z)(β>−p) it was presented by Saitoh et al.[24];
(ⅲ) If we set ν=β,ρ=α+β−δ+1, ℓ=1, we obtain ℜα,δβ,pf(z)(δ>0; α≥δ−1; β>−p) it was presented by Aouf et al. [4];
(ⅳ) If we put ν=β,ρ=α+β, ℓ=1, we get Qαβ,pf(z)(α≥0;β>−p) it was investigated by Liu and Owa [18];
(ⅴ) If we put p=1, ν=β,ρ=α+β, ℓ=1, we obtain ℜαβf(z)(α≥0;β>−1) it was introduced by Jung et al. [13];
(ⅵ) If we put p=1, ν=α−1, ρ=β−1, ℓ=1, we obtain L(α,β)f(z)(α,β∈C∖Z0,Z0={0,−1,−2,...}) which was defined by Carlson and Shaffer [8];
(ⅶ) If we put p=1, ν=ν−1, ρ=j, ℓ=1 we obtain Iν,jf(z)(ν>0;j≥−1) it was investigated by Choi et al. [10];
(ⅷ) If we put p=1, ν=α,ρ=0, ℓ=1, we obtain Dαf(z)(α>−1) which was defined by Ruscheweyh [23];
(ⅸ) If we put p=1, ν=1, ρ=m, ℓ=1, we obtain Imf(z)(m∈N0) which was introduced by Noor [21];
(ⅹ) If we set p=1, ν=β,ρ=β+1, ℓ=1 we obtain ℑβf(z) which was studied by Bernadi [5];
(ⅹⅰ) If we set p=1, ν=1, ρ=2, ℓ=1 we get ℑf(z) which was defined by Libera [17].
We state various definition and lemmas which are essential to obtain our results.
Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯U∖E(f), where
E(f)={ζ:ζ∈∂U and limz→ζf(z)=∞}, |
and satisfy f′(ζ)≠0 for ζ∈∂U∖E(f).
Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)∈H, is analytic in U. If
φ(z)+1γzφ′(z)≺h(z)(z∈U), |
where γ≠0 and Re(γ)≥0. Then
φ(z)≺Ψ(z)=γzγz∫0tγ−1h(t)dt≺h(z)(z∈U), |
and Ψ(z) is the best dominant.
Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let ψ∈C with ϰ∈C∗=C∖{0} with
Re(1+zq′′(z)q′(z))>max{0;−Reψϰ},z∈U. |
If λ(z) is analytic in U, and
ψλ(z)+ϰzλ′(z)≺ψq(z)+ϰzq′(z), |
therefore λ(z)≺q(z), and q is the best dominant.
Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δ∈C, with Re(δ)>0. If λ∈H[q(0),1]∩Q and λ(z)+δzλ′(z) is univalent in U, then
q(z)+δzq′(z)≺λ(z)+δzλ′(z), |
implies
q(z)≺λ(z) (z∈U) |
and q is the best subordinant.
For a,ϱ,c and c(c∉Z−0) real or complex number the Gaussian hypergeometric function is given by
2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+.... |
The previous series totally converges for z∈U to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].
Lemma 4. For a,ϱ and c (c∉Z−0), real or complex parameters,
1∫0tϱ−1(1−t)c−ϱ−1(1−zt)−xdt=Γ(ϱ)Γ(c−a)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); | (2.1) |
2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); | (2.2) |
2F1(a,ϱ;c;z)=(1−z)−a2F1(a,c−ϱ;c;zz−1); | (2.3) |
2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; | (2.4) |
2F1(1,1;3;azaz+1)=2(1+az)az(1−ln(1+az)az). | (2.5) |
Throughout the sequel, we assume unless otherwise indicated −1≤D<C≤1, δ>0, ℓ>0, ν,ρ∈R, ν>−ℓp, p∈N and (ρ−j)≥0. We shall now prove the subordination results stated below:
Theorem 1. Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, | (3.1) |
whenever δ∈(0,+∞)∖N. Let define the function Φj by
Φj(z)=(1−α)((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ+α(ℑp(ν+1,ρ;ℓ)f(z))(j)zp−j((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ−1, |
such that the powers are all the principal ones, i.e., log1 = 0. Whether
Φj(z)≺[p!(p−j)!]δ(1+Cz1+Dz )r, | (3.2) |
then
((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺[p!(p−j)!]δp(z), | (3.3) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;Dz1+Dz)(D≠0);2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;−Cz) (D=0), |
and [p!(p−j)!]δp(z) is the best dominant of (3.3). Moreover, there are
ℜ((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ>[p!(p−j)!]δζ, z∈U, | (3.4) |
where ζ is given by:
ζ={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;DD−1)(D≠0);2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;C) (D=0), |
then (3.4) is the best possible.
Proof. Let
ϕ(z)=((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, (z∈U). | (3.5) |
It is observed that the function ϕ(z)∈H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that
z(ℑp(ν,ρ;ℓ)f(z))(j+1)=(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))(j)−(νℓ+j)(ℑp(ν,ρ;ℓ)f(z))(j) (0≤j<p), | (3.6) |
we get
ϕ(z)+zϕ′(z)δ(ν+ℓp)αℓ≺(1+Cz1+Dz )r=q(z) (z∈U). |
We can verify that the above equation q(z) is analytic and convex in U as following
Re(1+zq′′(z)q′(z))=−1+(1−r)ℜ(11+Cz)+(1+r)ℜ(11+Dz)>−1+1−r1+|C|+1+r1+|D|≥0 (z∈U). |
Using Lemma 1, there will be
ϕ(z)≺p(z)=δ(ν+ℓp)αℓz−δ(ν+ℓp)αℓz∫0tδ(ν+ℓp)αℓ−1(1+Ct1+Dt)rdt. |
In order to calculate the integral, we define the integrand in the type
tδ(ν+ℓp)αℓ−1(1+Ct1+Dt)r=tδ(ν+ℓp)αℓ−1(CD)r(1−C−DC+CDt)r, |
using Lemma 4 we obtain
p(z)=(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;Dz1+Dz)(D≠0). |
On the other hand if D=0 we have
p(z)=2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;−Cz), |
where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).
Now, we'll verify it
inf{ℜp(z):|z|<1}=p(−1). | (3.7) |
Indeed, we have
ℜ(1+Cz1+Dz )r≥(1−Cσ1−Dσ)r (|z|<σ<1). |
Setting
ℏ(s,z)=(1+Csz1+Dsz)r (0≤s≤1; z∈U) |
and
dv(s)=δ(ν+ℓp)αℓsδ(ν+ℓp)αℓ−1ds |
where dv(s) is a positive measure on the closed interval [0, 1], we get that
p(z)=1∫0ℏ(s,z)dv(s), |
so that
ℜp(z)≥1∫0(1−Csσ1−Dsσ)rdv(s)=p(−σ) (|z|<σ<1). |
Now, taking σ→1− we get the result (3.7). The inequality (3.4) is the best possible since [p!(p−j)!]δp(z) is the best dominant of (3.3).
If we choose j=1 and α=δ=1 in Theorem 1, we get:
Corollary 1. Let 0<r≤1. If
(ℑp(ν+1,ρ;ℓ)f(z))′zp−1≺p(1+Cz1+Dz )r, |
then
ℜ((ℑp(ν,ρ;ℓ)f(z))′zp−1)>pζ1, z∈U, | (3.8) |
where ζ1 is given by:
ζ1={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+(ν+ℓp)ℓ;DD−1)(D≠0);2F1(−r,(ν+ℓp)ℓ;1+(ν+ℓp)ℓ;C) (D=0), |
then (3.8) is the best possible.
If we choose ν=ρ=0 and ℓ=1 in Theorem 1, we get:
Corollary 2. Let 0≤j<p, 0<r≤1 and as f∈A(p) assume that
f(j)(z)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let define the function Φj by
Φj(z)=[1−α(1−jp)](f(j)(z)zp−j)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zp−j)δ, | (3.9) |
such that the powers are all the principal ones, i.e., log1 = 0. If
Φj(z)≺[p!(p−j)!]δ(1+Cz1+Dz )r, |
then
(f(j)(z)zp−j)δ≺[p!(p−j)!]δp1(z), | (3.10) |
where
p1(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δpα;Dz1+Dz)(D≠0);2F1(−r,δpα;1+δpα;−Cz) (D=0), |
and [p!(p−j)!]δp1(z) is the best dominant of (3.10). Morover, there are
ℜ(f(j)(z)zp−j)δ>[p!(p−j)!]δζ2, z∈U, | (3.11) |
where ζ2 is given by
ζ2={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+δpα;DD−1)(D≠0);2F1(−r,δpα;1+δpα;C) (D=0), |
then (3.11) is the best possible.
If we put δ=1 and r=1 in Corollary 2, we get:
Corollary 3. Let 0≤j<p, and for f∈A(p) say it
f(j)(z)zp−j≠0, z∈U. |
Let define the function Φj by
Φj(z)=[(1−α(1−jp)]f(j)(z)zp−j+αf(j+1)(z)pzp−j−1. |
If
Φj(z)≺p!(p−j)!1+Cz1+Dz, |
then
f(j)(z)zp−j≺p!(p−j)!p2(z), | (3.12) |
where
p2(z)={CD+(1−CD)(1+Dz)−1 2F1(1,1;1+pα;Dz1+Dz)(D≠0);1+pp+αCz, (D=0), |
and p!(p−j)!p2(z) is the best dominant of (3.12). Morover there will be
ℜ(f(j)(z)zp−j)>p!(p−j)!ζ3, z∈U, | (3.13) |
where ζ3 is given by:
ζ3={CD+(1−CD)(1−D)−1 2F1(1,1;1+pα;DD−1)(D≠0);1−pp+αC, (D=0), |
then (3.13) is the best possible.
For C=1,D=−1 and j=1 Corollary 3, leads to the next example:
Example 1. (i) For f∈A(p) suppose that
f′(z)zp−1≠0, z∈U. |
Let define the function Φj by
Φj(z)=[1−(α−αp)]f′(z)zp−1+αf′′(z)pzp−2≺p1+z1−z, |
then
f′(z)zp−1≺p1+z1−z, | (3.14) |
and
ℜ(f′(z)zp−1)>pζ4, z∈U, | (3.15) |
where ζ4 is given by:
ζ4=−1+ 2F1(1,1;p+αα;12), |
then (3.15) is the best possible.
(ii) For p=α=1, (i) leads to:
For f∈A suppose that
f′(z)≠0, z∈U. |
Let define the function Φj by
Φj(z)=f′(z)+zf′′(z)≺1+z1−z, |
then
ℜ(f′(z))>−1+2ln2, z∈U. |
So the estimate is best possible.
Theorem 2. Let 0≤j<p, 0<r≤1 as for f∈A(p). Assume that Fα is defined by
Fα(z)=α(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))+(1−α−α(νℓ))(ℑp(ν,ρ;ℓ)f(z)). | (3.16) |
If
F(j)α(z)zp−j≺(1−α+αp)p!(p−j)!(1+Cz1+Dz )r, | (3.17) |
then
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≺p!(p−j)!p(z), | (3.18) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+(1−α+αp)α;Dz1+Dz)(D≠0);2F1(−r,(1−α+αp)α;1+(1−α+αp)α;−Cz) (D=0), |
and p!(p−j)!p(z) is the best dominant of (3.18). Moreover, there will be
ℜ((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)>p!(p−j)!η, z∈U, | (3.19) |
where η is given by:
η={(CD)r∑i≥0(−r)ii!(C−DC)i(1+D)−i 2F1(i,1;1+(1−α+αp)α;DD−1)(D≠0);2F1(−r,(1−α+αp)α;1+(1−α+αp)α;C) (D=0), |
then (3.19) is the best possible.
Proof. By using the definition (3.16) and the inequality (3.6), we have
F(j)α(z)=αz(ℑp(ν,ρ;ℓ)f(z))(j+1)+(1−α+αj)(ℑp(ν,ρ;ℓ)f(z))(j), | (3.20) |
for 0≤j<p. Putting
ϕ(z)=(p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j, (z∈U), | (3.21) |
we have that ϕ∈H. Differentiating (3.21), and using (3.17), (3.20), we get
ϕ(z)+zϕ′(z)(1−α+αp)α≺(1+Cz1+Dz )r (z∈U). |
Following the techniques of Theorem 1, we can obtain the remaining part of the proof.
If we choose j=1 and r=1 in Theorem 2, we get:
Corollary 4. For f∈A(p) let the function Fα define by 3.16. If
F′α(z)zp−1≺p(1−α+αp)1+Cz1+Dz , |
then
ℜ((ℑp(ν,ρ;ℓ)f(z))′zp−1)>pη1, z∈U, | (3.22) |
where η1 is given by:
η1={CD+(1−CD)(1−D)−1 2F1(1,1;1+1−α+αpα;DD−1)(D≠0);1−1−α+αp1+αpC (D=0), |
then (3.22) is the best possible.
Example 2. If we choose p=C=α=1 and D=−1 in Corollary 4, we obtain:
For
F(z)=(νℓ+1)(ℑ(ν+1,ρ;ℓ)f(z))−(νℓ)(ℑ(ν,ρ;ℓ)f(z)). |
If
F′(z)≺1+z1−z, |
then
ℜ((ℑ(ν,ρ;ℓ)f(z))′)>−1+2ln2, z∈U, |
the result is the best possible.
Theorem 3. Let 0≤j<p, 0<r≤1 as for θ>−p assume that Jp,θ:A(p)→A(p) defined by
Jp,θ(f)(z)=p+θzθz∫0tθ−1f(t)dt, z∈U. | (3.23) |
If
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≺p!(p−j)!(1+Cz1+Dz )r, | (3.24) |
then
(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j≺p!(p−j)!p(z), | (3.25) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+θ+p;Dz1+Dz)(D≠0);2F1(−r,θ+p;1+θ+p;Cz) (D=0), |
and p!(p−j)!p(z) is the best dominant of (3.25). Moreover, there will be
ℜ((ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j)>p!(p−j)!β, z∈U, | (3.26) |
where β is given by:
β={(CD)r∑i≥0(−r)ii!(C−DC)i(1+D)−i 2F1(i,1;1+θ+p;DD−1)(D≠0);2F1(−r,θ+p;1+θ+p;−C) (D=0), |
then (3.26) is the best possible.
Proof. Suppose
ϕ(z)=(p−j)!p!(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j, (z∈U), |
we have that ϕ∈H. Differentiating the above definition, by using (3.24) and
z(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j+1)=(θ+p)(ℑp(ν,ρ;ℓ)f(z))(j)−(θ+j)(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j) (0≤j<p), |
we get
ϕ(z)+zϕ′(z)θ+p≺(1+Cz1+Dz )r. |
Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.
If we set j=1 and r=1 in Theorem 3, we get:
Corollary 5. For θ>−p, let the operator Jp,θ:A(p)→A(p) defined by (3.25). If
(ℑp(ν,ρ;ℓ)f(z))′zp−1≺p1+Cz1+Dz , |
then
ℜ((ℑp(ν,ρ;ℓ)Jp,θ(f)(z))′zp−1)>pβ1, z∈U, | (3.27) |
where β1 is given by:
β1={CD+(1−CD)(1−D)−1 2F1(1,1;1+θ+p;DD−1)(D≠0);1−θ+p1+θ+pC (D=0), |
then (3.27) is the best possible.
Example 3. If we choose p=C=θ=1 and D=−1 in Corollary 5, we get:
If
(ℑ(ν,ρ;ℓ)f(z))′≺1+z1−z, |
then
ℜ((ℑ(ν,ρ;ℓ)J1,1(f)(z))′)>−1+4(1−ln2), |
the result is the best possible.
Theorem 4. Let q is univalent function in U, such that q satisfies
Re(1+zq′′(z)q′(z))>max{0;−δ(ν+ℓp)αℓ}, z∈U. | (3.28) |
Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺q(z)+αℓδ(ν+ℓp)zq′(z). | (3.29) |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺q(z), | (3.30) |
and q(z) is the best dominant of (3.30).
Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get
[(p−j)!p!]δΦj(z)=ϕ(z)+αℓδ(ν+ℓp)zϕ′(z). | (3.31) |
Combining (3.29) and (3.31) we find that
ϕ(z)+αℓδ(ν+ℓp)zϕ′(z)≺q(z)+αℓδ(ν+ℓp)zq′(z). | (3.32) |
The proof of Theorem 4 follows by using Lemma 2 and (3.32).
Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:
Corollary 6. Suppose that
Re(1−Dz1+Dz+(r−1)(C−D)z(1+Dz)(1+Cz))>max{0;−δ(ν+ℓp)αℓ}, z∈U. |
Let 0≤j<p, 0<r≤1 and for f∈A(p) satisfies
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), satisfies:
[(p−j)!p!]δΦj(z)≺(1+Cz1+Dz )r+αℓδ(ν+ℓp)(1+Cz1+Dz )rr(C−D)z(1+Dz)(1+Cz). |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺(1+Cz1+Dz )r, | (3.33) |
so (1+Cz1+Dz)r is the best dominant of (3.33).
Taking q(z)=1+Cz1+Dz in Theorem 4, we get:
Corollary 7. Suppose that
Re(1−Dz1+Dz)>max{0;−δ(ν+ℓp)αℓ}, z∈U. |
Let 0≤j<p, 0<r≤1 and for f∈A(p) satisfies
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), satisfies:
[(p−j)!p!]δΦj(z)≺1+Cz1+Dz +αℓδ(ν+ℓp)(C−D)z(1+Dz)2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺1+Cz1+Dz , | (3.34) |
so 1+Cz1+Dz is the best dominant of (3.34).
If we put ν=ρ=0 and ℓ=1 in Theorem 4, we get:
Corollary 8. Let q is univalent function in U, such that q satisfies
Re(1+zq′′(z)q′(z))>max{0;−δpα}, z∈U. |
For f∈A(p) satisfies
f(j)(z)zp−j≠0, z∈U. |
Let the function Φj defined by (3.9), satisfies:
[(p−j)!p!]δΦj(z)≺q(z)+αδpzq′(z). | (3.35) |
Then,
((p−j)!p!f(j)(z)zp−j)δ≺q(z), | (3.36) |
so q(z) is the best dominant of (3.36).
Taking C=1 and D=−1 in Corollaries 6 and 7 we get:
Example 4. (i) For f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺(1+z1−z)r+αℓδ(ν+ℓp)(1+z1−z)r2rz1−z2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺(1+z1−z)r, | (3.37) |
so (1+z1−z)r is the best dominant of (3.37).
(ii) For f∈A(p) say it
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺1+z1−z+αℓδ(ν+ℓp)2z1−z2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺1+z1−z, | (3.38) |
so 1+z1−z is the best dominant of (3.38).
If we put p=C=α=δ=1, D=−1 and j=0 in Corollary 8 we get:
Example 5. For f∈A suppose that
f(z)z≠0, z∈U, |
and
f′(z)≺(1+z1−z)r+(1+z1−z)r2rz1−z2. |
Then,
f(z)z≺(1+z1−z)r, | (3.39) |
and (1+z1−z)r is the best dominant of (3.39).
Remark 1. For ν=ρ=0, ℓ=p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).
Theorem 5. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and
q(z)+αℓδ(ν+ℓp)zq′(z)≺[(p−j)!p!]δΦj(z), |
then
q(z)≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.40) |
so q(z) is the best subordinate of (3.40).
Proof. Let ϕ is defined by (3.5), from (3.31) we get
q(z)+αℓδ(ν+ℓp)zq′(z)≺[(p−j)!p!]δΦj(z)=ϕ(z)+αℓδ(ν+ℓp)zϕ′(z). |
The proof of Theorem 5 followes by an application of Lemma 3.
Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:
Corollary 9. Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If
(1+Cz1+Dz )r+αℓδ(ν+ℓp)(1+Cz1+Dz )rr(C−D)z(1+Dz)(1+Cz)≺[(p−j)!p!]δΦj(z), |
then
(1+Cz1+Dz )r≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.41) |
so (1+Cz1+Dz)r is the best dominant of (3.41).
Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:
Corollary 10. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Assume that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If
1+Cz1+Dz +αℓδ(ν+ℓp)(C−D)z(1+Dz)2≺[(p−j)!p!]δΦj(z), |
then
1+Cz1+Dz ≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.42) |
so 1+Cz1+Dz is the best dominant of (3.42).
Combining results of Theorems 4 and 5, we have
Theorem 6. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H[q(0),1]∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If
q1(z)+αℓδ(ν+ℓp)zq′1(z)≺[(p−j)!p!]δΦj(z)≺q2(z)+αℓδ(ν+ℓp)zq′2(z), |
then
q1(z)≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺q2(z) |
and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.
We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator ℑp(ν,ρ;ℓ)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.
This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.
The authors declare no conflict of interest.
[1] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. |
[2] | R. Metzler, K. Joseph, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125. |
[3] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
![]() |
[4] |
F. A. Rihan, Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013 (2013), 1–11. https://doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
![]() |
[5] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional Calculus, Dordrecht, Springer, 2007. |
[6] | V. E. Tarasov, Fractional dynamics: Application of fractional Calculus to dynamics of particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010. |
[7] | M. D. Ortigueira, Fractional Calculus for scientists and engineers: Lecture notes in electrical engineering, 84, Springer, Dordrecht, 2011. |
[8] | J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270–342. |
[9] | M. I. Abbas, On the Hamdard and Riemann-Liouville fractional neutral functional integro-differential equations with finite delay, J. Pseudo-Differ. Oper., 10 (2019), 1–10. |
[10] |
M. I. Abbas, Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Math. Anal., 50 (2015), 209–219. https://doi.org/10.3103/S1068362315050015 doi: 10.3103/S1068362315050015
![]() |
[11] |
A. Atangana, B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arabian J. Geo., 9 (2016), 1–6. https://doi.org/10.1007/s12517-015-2060-8 doi: 10.1007/s12517-015-2060-8
![]() |
[12] | A. A. Kilbas, M. Saigo, RK. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., (2004), 31–49. https://doi.org/10.1080/10652460310001600717 |
[13] | M. Caputo, M. Fabrizio, A new definition of fractional derivative of without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[14] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
![]() |
[15] | R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515–526. |
[16] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
![]() |
[17] |
S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. https://doi.org/10.1006/jmaa.1998.5916 doi: 10.1006/jmaa.1998.5916
![]() |
[18] |
S. M. Jung, Hyers-Ulam stability of linear differential equations of first order Ⅱ, Appl. Math. Lett., 19 (2006), 854–858. https://doi.org/10.1016/j.aml.2005.11.004 doi: 10.1016/j.aml.2005.11.004
![]() |
[19] | D. D. Bajnov, P. S. Simeonov, Systems with impulse effect stability, theory and applications. Ellis Horwood Series in mathematics and its applications, Halsted Press, New York, 1989. |
[20] | M. Benchohra, J. Henderson, S. Ntouyas, Impulsive diferential equations and inclusions: Contemporary mathematics and its applications, Hindawi Publishing Corporation, New York, 2006. https://doi.org/10.1155/9789775945501 |
[21] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. https://doi.org/10.1142/0906 |
[22] |
A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
![]() |
[23] |
T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal.-Theor., 49 (2002), 445–54. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
![]() |
[24] |
J. E. Prussing, L. J. Wellnitz, W. G. Heckathorn, Optimal impulsive time-fixed direct-ascent interception, J. Guid. Control Dynam., 12 (1989), 487–494. https://doi.org/10.2514/3.20436 doi: 10.2514/3.20436
![]() |
[25] |
X. Liu, K. Rohlf, Impulsive control of a Lotka-Volterra system, J. Math. Cont. Inf., 15 (1998), 269–284. https://doi.org/10.1093/imamci/15.3.269 doi: 10.1093/imamci/15.3.269
![]() |
[26] |
T. Yang, L. Chua, Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE T. Circuits-I, 44 (1997), 976–988. https://doi.org/10.1109/81.633887 doi: 10.1109/81.633887
![]() |
[27] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92. |
[28] |
K. Liu, J. Wang, Y. Zhou, D. O'Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Soliton. Fract., 132 (2020), 109534. https://doi.org/10.1016/j.chaos.2019.109534 doi: 10.1016/j.chaos.2019.109534
![]() |
[29] |
J. Sheng, W. Jiang, D. Pang, S. Wang, Controllability of nonlinear fractional dynamical systems with a Mittag-Leffler kernel, Mathematics, 8 (2020), 2139. https://doi.org/10.3390/math8122139 doi: 10.3390/math8122139
![]() |
[30] |
D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos, Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
![]() |
[31] |
D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903
![]() |
[32] |
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Stat. Mech. Appl., 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
![]() |
[33] |
A. Atangana, J. F. Gomez-Aguilar, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
![]() |
[34] |
Eiman, K. Shah, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
![]() |
[35] |
K. M. Owolabi, A. Shikonogo, Fractal fractional operator method on HER2+ and breast cancer dynamics, Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
![]() |
[36] | K. M. Owolabi, Analysis and numerical simulation of cross-reaction systems with the Caputo-Fabrizio and Riezs operators, Numer. Meth. Part. D. E., 2021 (2021), 1–23. |
[37] |
E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9
![]() |
[38] |
D. Baleanu, S. S. Sajjadi, A. Jajarmi, Z. Defterli, On a nonlinear dynomical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Adv. Differ. Equ., 2021 (2021), 234. https://doi.org/10.1186/s13662-021-03393-x doi: 10.1186/s13662-021-03393-x
![]() |
[39] |
D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control and synchronization of a nonautonomous cardiac conduction System, Adv. Differ. Equ., 2021 (2021), 175. https://doi.org/10.1186/s13662-021-03320-0 doi: 10.1186/s13662-021-03320-0
![]() |
[40] |
D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a noval fractional chaotic system, Adv. Differ. Equ., 2021 (2021), 308. https://doi.org/10.1186/s13662-021-03454-1 doi: 10.1186/s13662-021-03454-1
![]() |
[41] |
M. M. Meerschaert, A. B. David, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. https://doi.org/10.1103/PhysRevE.65.041103 doi: 10.1103/PhysRevE.65.041103
![]() |
[42] | R. Schumer, A. B. David, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 1296. |
[43] |
X. Zheng, H. Wang, H. Fu, Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative, Chaos Soliton. Fract., 138 (2020), 109966. https://doi.org/10.1016/j.chaos.2020.109966 doi: 10.1016/j.chaos.2020.109966
![]() |
1. | Jian Sun, Xin Liu, Yang Zhang, Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization, 2024, 1070-5325, 10.1002/nla.2608 |