Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Superconvergence for optimal control problems governed by semilinear parabolic equations

  • In this paper, we first investigate optimal control problem for semilinear parabolic and introduce the standard L2(Ω)-orthogonal projection and the elliptic projection. Then we present some necessary intermediate variables and their error estimates. At last, we derive the error estimates between the finite element solutions and L2-orthogonal projection or the elliptic projection of the exact solutions.

    Citation: Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai. Superconvergence for optimal control problems governed by semilinear parabolic equations[J]. AIMS Mathematics, 2022, 7(5): 9405-9423. doi: 10.3934/math.2022522

    Related Papers:

    [1] Changling Xu, Hongbo Chen . A two-grid $ P_0^2 $-$ P_1 $ mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [2] Zuliang Lu, Fei Cai, Ruixiang Xu, Chunjuan Hou, Xiankui Wu, Yin Yang . A posteriori error estimates of hp spectral element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(4): 5220-5240. doi: 10.3934/math.2022291
    [3] Jinghong Liu, Qiyong Li . Pointwise superconvergence of block finite elements for the three-dimensional variable coefficient elliptic equation. AIMS Mathematics, 2024, 9(10): 28611-28622. doi: 10.3934/math.20241388
    [4] Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Fei Huang . Error estimates of variational discretization for semilinear parabolic optimal control problems. AIMS Mathematics, 2021, 6(1): 772-793. doi: 10.3934/math.2021047
    [5] Zuliang Lu, Ruixiang Xu, Chunjuan Hou, Lu Xing . A priori error estimates of finite volume element method for bilinear parabolic optimal control problem. AIMS Mathematics, 2023, 8(8): 19374-19390. doi: 10.3934/math.2023988
    [6] Jinghong Liu . $ W^{1, \infty} $-seminorm superconvergence of the block finite element method for the five-dimensional Poisson equation. AIMS Mathematics, 2023, 8(12): 31092-31103. doi: 10.3934/math.20231591
    [7] Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553
    [8] Jie Liu, Zhaojie Zhou . Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Mathematics, 2021, 6(1): 979-997. doi: 10.3934/math.2021059
    [9] Kaifang Liu, Lunji Song . A family of interior-penalized weak Galerkin methods for second-order elliptic equations. AIMS Mathematics, 2021, 6(1): 500-517. doi: 10.3934/math.2021030
    [10] Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779
  • In this paper, we first investigate optimal control problem for semilinear parabolic and introduce the standard L2(Ω)-orthogonal projection and the elliptic projection. Then we present some necessary intermediate variables and their error estimates. At last, we derive the error estimates between the finite element solutions and L2-orthogonal projection or the elliptic projection of the exact solutions.



    As we know, optimal control theory is widely used in many subjects. In the past few decades, it has attracted the attention of more and more scholars, and is also related to some specific applications, from finance to aerospace industry, from biology to medicine and so on. For example, how a spacecraft to land on the moon surface at rest with minimal fuel consumption [1]? Under what circumstances the tumor can be eliminated [2]?

    In fact, optimal control problem (OCP) for partial differential equations (PDEs) is a challenging research hotspot, and much has been done both on the mathematical analysis and on its numerical approximation. Among numerous numerical methods, finite element discretization of the state equation is widely applied. Finite element approximation of optimal control problems plays a great role in modern science, technology, engineering, etc. We can find systematic introduction of finite element methods and optimal control problems governed by PDEs, for example [6,7,28]. There have been extensive studies in error estimates, convergence of finite element approximation for OCP. Casas, Mateos and Raymond [3,4] have studied a priori error estimation of semilinear elliptic boundary control problems. Chen and Huang [5,9] have gained a priori error estimates of stochastic elliptic PDEs, both a prior and a posterior error estimates of stokes equations with H1-norm state constraint. For a posteriori error estimates of quadratic OCP governed by linear parabolic equation, see Liu and Yan [24], for optimal rates of convergence with Ritz-Galerkin approximations and numerical approximation of a parabolic time OCP, see Lasiecka and Knowles [10,11]. In particular, Liu and Yan studied the posteriori error estimates for control problems gonverned by elliptic equations [12], and extended it to the OCP dominated by parabolic equation [13] and Stokes equation [14].

    Furthermore, the superconvergence properties of OCP is a research focus in the field of optimal control problem, because superconvergence has always been an important tool to obtain high performance finite element discretization, which can provide high-precision approximate solutions. The research on superconvergence began in the late 1970s, and obtained fruitful results, see, e.g. [8,15,21,22,23,27].

    When the objective function in the OCP contains the gradient of scalar function, the mixed finite element method is an effective numerical method. In recent ten years, for the OCP of PDEs by the mixed finite element method, professor Chen's team has studied this aspect deeply, and has made a series of research achievements, such as a priori error estimation, a posteriori error estimation, L-error estimates and superconvergence etc [16,17,18,19,20,25,26].

    Among the numerous research, Chen and Dai in [27] showed the superconvergence for optimal control problems governed by semiliner elliptic equations. The purpose of this paper is to extend the superconvergence property of [27] to the semilinear parabolic control problems.

    In this paper, given the state y and the co-state p variables together with their approximations yh and ph, we say that the approx super converges if the state and co-state variables are approximated by the piecewise linear functions, the control variable is approximated by the piecewise constant functions, we can get the superconvergence properties for both the control variable and the state variables. We are interested in the following optimal control problem

    minuK{12T0(y(x,t)yd(x,t)2L2(Ω)+u(x,t)2L2(Ω))dt} (1.1)
    yt(x,t)div(A(x)y(x,t))+ϕ(y(x,t))=f(x,t)+u(x,t),xΩ,tJ, (1.2)
    y(x,t)=0,xΩ,tJ, (1.3)
    y(x,0)=y0(x),xΩ, (1.4)

    where Ω is a bounded domain in Rn with a Lipschitz boundary Ω, 0<T<+, J=[0,T], yt(x,t) denotes the partial derivative of y in time, A(x)=(aij(x))n×n(W1,(ˉΩ))n×n, such that (A(x)ξ)ξcξ2, ξRn, c>0. We assume that the function ϕ()W2,(R,R) for any R>0, ϕ(y)L2(Ω) for any yL2(J;H1(Ω)), and ϕ(y)0. Moreover, we assume that yd(x,t)C(J;L2(Ω)), y0(x)H10(Ω) and K is a nonempty closed convex set in L2(J;L2(Ω)), defined by

    K={v(x,t)L2(J;L2(Ω)):ΩT0v(x,t)dxdt0,a.e.xΩ,tJ}.

    In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with a norm m,p given by vpm,p=|α|mDαvpLp(Ω), a semi-norm ||m,p given by |v|pm,p=|α|=mDαvpLp(Ω). We set Wm,p0(Ω)={vWm,p(Ω):v|Ω=0}. For p=2, we denote Hm(Ω)=Wm,2(Ω), Hm0(Ω)=Wm,20(Ω), and m=m,2, =0,2. We denote by Ls(0,T;Wm,p(Ω)) the Banach space of all Ls integrable functions from J into Wm,p(Ω) with norm vLs(J;Wm,p(Ω))=(T0||v||sWm,p(Ω)dt)1s for s[1,), and the standard modification for s=. Similarly, one can define the spaces Hk(0,T;Wm,q(Ω)) and Ck(0,T;Wm,q(Ω)).

    The paper is organized as follows: in section 2, we briefly review the finite element method, and then the approximation schemes for the model optimal control problem will be constructed. In section 3, some intermediate error estimates which is the base of the result will be gained. In section 4, superconvergence properties for both control and state variables are derived.

    In this section, we will discuss the finite element approximation of the quadratic optimal control problem governed by semilinear parabolic equations (1.1)–(1.4). We set W=L2(J;V) with V=H10(Ω), X=L2(0,T;U) with U=L2(Ω), V=H10(Ω) and =L2(Ω). Let

    a(v,w)=Ω(A(x)v)wdx,v,wV,(f1,f2)=Ωf1f2dx,f1,f2L2(Ω).

    It follows from Friedriechs' inequality that

    a(v,v)cv2V,vV,|a(v,w)|CvVwV,v,wV.

    We denote by H1(Ω) the dual space to H10(Ω). If fH1(Ω), we note

    H1(Ω)=1,f1=supuH10(Ω),uH10(Ω)1(f,u). (2.1)

    Then the standard weak formula for the state equation reads: find y(u) such that

    (yt,w)+a(y(u),w)+(ϕ(y(u)),w)=(f+u,w),wV.

    Thus the above equation has a solution.

    We recast (1.1)–(1.4) in the following weak form: find (y,u) such that

    minuK{12T0(yyd2+u2)dt} (2.2)
    (yt,w)+a(y,w)+(ϕ(y),w)=(f+u,w),wV=H10(Ω). (2.3)

    It is well known (see, e.g., [28]) that the control problem (2.2)–(2.3) has a solution (y,u), and that if a pair (y,u) is the solution of (2.2)–(2.3), then there is a co-state pH1(J;L2(Ω))W such that the triplet (y,p,u) satisfies optimality conditions as follows:

    (yt,w)+a(y,w)+(ϕ(y),w)=(f+u,w),wV, (2.4)
    (pt,q)+a(q,p)+(ϕ(y)p,q)=(yyd,q),qV, (2.5)
    T0(u+p,vu)dt0,vK, (2.6)
    y(u)(x,0)=y0(x),  p(u)(x,T)=0xΩ. (2.7)

    Now we introduce the following significant result (see [29]).

    Lemma 2.1. [29] A necessary and sufficient condition for the optimality of a controluK with corresponding state y(u) and co-state p(u), respectively, is the following relation:

    u=max(0,ˉp)p, (2.8)

    where ˉp=T0ΩpdxdtT0Ω1dxdtdenotes the integral average on Ω×J of the function p.

    In the following, we will consider the semi-discrete finite element for the problem.

    Let Th be regular triangulations of Ω, such that ˉΩ=τThˉτ. Let h=maxτTh{hτ}, where hτ denotes the diameter of the element τ. Note two spaces as follows:

    Uh={uhU:uh|τ=constant,τTh}, (2.9)
    Vh={vhC(ˉΩ):vh|τP1,τTh,yh|Ω=0} (2.10)
    Kh:=L2(J;Uh)K, (2.11)

    where P1 is the space of polynomials of degree less than or equal to 1. In addition, c or C denotes a general positive constant independent of h.

    Now, the finite element approximation of the optimal control problem (2.2)-(2.3) is as follows:

    minuhKh{12T0(yhyd2+uh2)dt} (2.12)
    (yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh),whVh. (2.13)

    The optimal control problem (2.12)–(2.13) has a solution (yh,uh), and that if a pair (yh,uh) is the solution of (2.12)–(2.13), then there is a co-state ph such that the triplet (yh,ph,uh) satisfying the following optimal conditions:

    (yh,t,wh)+a(yh,wh)+(ϕ(yh),wh)=(f+uh,wh),whVh, (2.14)
    (ph,t,qh)+a(qh,ph)+(ϕ(yh)ph,qh)=(yhyd,qh),qhVh, (2.15)
    T0(uh+ph,vhuh)dt0,vhKh, (2.16)
    yh(uh)(x,0)=yh0(x),  ph(uh)(x,T)=0,xΩ. (2.17)

    Similar to Lemma 2.1, we can get the relationship between the control approximation uh and the co-state approximation ph, which satisfies

    uh=max(0,ˉph)ph, (2.18)

    where ¯ph=T0ΩphdxdtT0Ω1dxdt denotes the integral average on Ω×J of the function ph.

    First of all, we will introduce some intermediate variables. For any ˜uK, let (y(˜u),p(˜u)) be the solution of the following equations:

    (yt(˜u),w)+a(y(˜u),w)+(ϕ(y(˜u)),w)=(f+˜u,w),  wV, (3.1)
    (pt(˜u),q)+a(q,p(˜u))+(ϕ(y(˜u))p(˜u),q)=(y(˜u)yd,q),qV. (3.2)

    Then, for any ˜uK, let (yh(˜u),ph(˜u)) be the solution of the following equations:

    (yh,t(˜u),wh)+a(yh(˜u),wh)+(ϕ(yh(˜u)),wh)=(f+˜u,wh),whVh, (3.3)
    (ph,t(˜u),qh)+a(qh,ph(˜u))+(ϕ(yh(˜u))ph(˜u),qh)=(yh(˜u)yd,qh), qhVh. (3.4)

    Note that (y,p)=(y(u),p(u)), (yh,ph)=(yh(uh),ph(uh)).

    Now we give the standard L2(Ω)orthogonal projection Qh:UUh, for U=L2(Ω), which satisfies: for any ψU

    (ψQhψ,uh)=0,uhUh, (3.5)

    and the elliptic projection Rh:VVh, which satisfies: for all vV

    a(vRhv,vh)=0,vhVh. (3.6)

    We have the following approximation properties (see e.g., [27] and [30]):

    ψQhψsCh1+s|ψ|1,s=0,1, (3.7)
    wRhwCh2w2,for wH2(Ω). (3.8)

    Lemma 3.1. Let uL2(J;H1(Ω)), for h sufficiently small, thereexists a positive constant C such that

    y(Qhu)y(u)L2(J;H1(Ω))Ch2, (3.9)
    p(Qhu)p(u)L2(J;H1(Ω))Ch2. (3.10)

    Proof. Choose ˜u=Qhu and ˜u=u in (3.1)–(3.2), respectively, then we have the following error equations

    (yt(Qhu)yt(u),w)+a(y(Qhu)y(u),w)+(ϕ(y(Qhu))ϕ(y(u)),w)=((Qhuu),w), (3.11)
    (pt(Qhu)pt(u),q)+a(q,p(Qhu)p(u))+(ϕ(y(Qhu))p(Qhu)ϕ(y(u))p(u),q)=(y(Qhu)y(u),q), (3.12)

    for any wV and qV.

    First, choose w=y(Qhu)y(u) in (3.11), we have

    (yt(Qhu)yt(u),y(Qhu)y(u))+a(y(Qhu)y(u),y(Qhu)y(u))+(ϕ(y(Qhu))ϕ(y(u)),y(Qhu)y(u))=(Qhuu,y(Qhu)y(u)). (3.13)

    Now, we estimate the right hand side of (3.13). Using (3.7), we have

    (Qhuu,y(Qhu)y(u))=(Qhuu,y(Qhu)y(u))Cy(Qh(u))y(u)1Qhuu1Ch2u1y(Qhu)y(u)1. (3.14)

    From (3.13) and (3.14), using ϵ-Cauchy inequlity and the assumption of A and ϕ(), we have

    12ddty(Qhu)y(u)2+cy(Qhu)y(u)21(yt(Qhu)yt(u),y(Qhu)y(u))+a(y(Qhu)y(u),y(Qhu)y(u))+(ϕ(y(Qhu))ϕ(y(u)),y(Qhu)y(u))=(Qhuu,y(Qhu)y(u))Ch2y(Qhu)y(u)1Ch4+ϵy(Qhu)y(u)21. (3.15)

    Note that

    y(Qhu)(x,0)y(u)(x,0)=0,

    next, integrating the both sides of (3.15) in time from 0 to t, we get

    y(Qhu)y(u)2L(J;L2(Ω))+cy(Qhu)y(u)2L2(J;H1(Ω))Ch4,

    which implies (3.9).

    Choose q=p(Qhu)p(u) in (3.11), we have

    (pt(Qhu)pt(u),p(Qhu)p(u))+a(p(Qhu)p(u),p(Qhu)p(u))+(ϕ(y(Qhu))p(Qhu)ϕ(y(u))p(u),p(Qhu)p(u))=(y(Qhu)y(u),p(Qhu)p(u)), (3.16)

    namely,

    (pt(Qhu)pt(u),p(Qhu)p(u))+a(p(Qhu)p(u),p(Qhu)p(u))+(ϕ(y(Qhu))(p(Qhu)p(u)),p(Qhu)p(u))    =(y(Qhu)y(u),p(Qhu)p(u))+(p(u)(ϕ(y(u))ϕ(y(Qhu))),p(Qhu)p(u)). (3.17)

    Notice that

    (y(Qhu)y(u),p(Qhu)p(u))Cy(Qhu)y(u)p(Qhu)p(u)Ch2p(Qhu)p(u)1Ch4+p(Qhu)p(u)21. (3.18)

    Using the assumption for ϕ() and (3.9), we have

    (p(u)(ϕ(y(u))ϕ(y(Qhu))),p(Qhu)p(u))Cp(u)0,4ϕ(y(u))ϕ(y(Qhu)p(Qhu)p(u)0,4Cp(u)1ϕW2,y(u)y(Qhu)p(Qhu)p(u)1Ch2p(Qhu)p(u)1Ch4+p(Qhu)p(u)21, (3.19)

    where we used the embedding v0,4Cv1. Then, using (3.17), (3.18), (3.19) and the assumption for ϕ(), we have

    12ddtp(Qhu)p(u)2+cp(Qhu)p(u)21(pt(Qhu)pt(u),p(Qhu)p(u))+a(p(Qhu)ph(u),p(Qhu)p(u))+(ϕ(y(Qhu)(p(Qhu)p(u)),p(Qhu)p(u))=(y(Qhu)y(u),p(Qhu)p(u))+(p(u)(ϕ(y(u))ϕ(y(Qhu))),p(Qhu)p(u))Ch2p(Qhu)p(u)1 (3.20)
    Ch4+c2p(Qhu)p(u)21. (3.21)

    Next, we consider the given condition

    p(Qhu)(x,T)p(u)(x,T)=0, (3.22)

    then, we integrate in time from t to T in (3.11) and use Gronwall's inequality, we have

    p(Qhu)p(u)2L(J;L2(Ω))+p(Qhu)p(u)2L2(J;H1(Ω))Ch4, (3.23)

    which implies (3.10).

    Lemma 3.2. For any ˜uK, if the intermediate solution satisfies

    y(˜u),yt(˜u),p(˜u),pt(˜u)L2(J;H1(Ω))L2(J;H2(Ω)),

    and Ω is convex, then we have

    yh(˜u)Rhy(˜u)L2(J;H1(Ω))Ch2, (3.24)
    ph(˜u)Rhp(˜u)L2(J;H1(Ω))Ch2. (3.25)

    Proof. From (3.1)–(3.2) and (3.3)–(3.4), we have the following error equations:

    (yh,t(˜u)yt(˜u),wh)+a(yh(˜u)y(˜u),wh)+(ϕ(yh(˜u))ϕ(y(˜u)),wh)=0, (3.26)
    (ph,t(˜u)pt(˜u),qh)+a(qh,ph(˜u)p(˜u))+(ϕ(yh(˜u))ph(˜u)ϕ(y(˜u))p(˜u),qh)=(yh(˜u)y(˜u),qh), (3.27)

    for any whVh and qhVh. Using the definition of Rh, the above equation can be restated as

    (yh,t(˜u)Rhyt(˜u),wh)+a(yh(˜u)Rhy(˜u),wh)+(ϕ(yh(˜u))ϕ(Rh(y(˜u)),wh)=(yt(˜u)Rhyt(˜u),wh)+(ϕ(y(˜u))ϕ(Rhy(˜u)),wh), (3.28)
    (ph,t(˜u)Rhpt(˜u),wh)+a(qh,ph(˜u)Rhp(˜u))+(ϕ(yh(˜u))(ph(˜u)Rhp(˜u)),qh)=(yh(˜u)y(˜u),qh)+(Rhpt(˜u)pt(˜u),qh)+(p(˜u)(ϕ(y(˜u))ϕ(yh(˜u))),qh)+(ϕ(yh(˜u))(p(˜u)Rhp(˜u)),qh). (3.29)

    First, let wh=yh(˜u)Rhy(˜u) in (3.28), using the ϵ-Cauchy inequality and the assumptions for A and ϕ(), we have

    12ddtyh(˜u)Rhy(˜u)2+cyh(˜u)Rhy(˜u)21(yt(˜u)Rhyt(˜u),yh(˜u)Rhy(˜u))+a(yh(˜u)Rhy(˜u),yh(˜u)Rhy(˜u))+(ϕ(yh(˜u))ϕ(Rh(y(˜u)),yh(˜u)Rhy(˜u))=(yht(˜u)Rhyt(˜u),yh(˜u)Rhy(˜u))+(ϕ(y(˜u))ϕ(Rhy(˜u)),yh(˜u)Rhy(˜u))Ch2yt(˜u)2yh(˜u)Rh(y(˜u))+CϕW1,y(˜u)2yh(˜u)Rhy(˜u)Ch2yh(˜u)Rhy(˜u)1Ch4+C2yh(˜u)Rhy(˜u)21. (3.30)

    It is known that

    yh(˜u)(x,0)Rhy(˜u)(x,0)=yh0Rhy0=0,

    then integrating in time for (3.30) and using Gronwall's inequality, we have

    yh(˜u)Rhy(˜u)L(J;L2(Ω))+yh(˜u)Rhy(˜u)L2(J;H1(Ω))Ch2, (3.31)

    which implies (3.24).

    Then, let qh=ph(˜u)Rhp(˜u) in (3.29). Note that

    (yh(˜u)y(˜u),ph(˜u)Rhp(˜u))yh(˜u)y(˜u)ph(˜u)Rhp(˜u)Ch2y(˜u)2ph(˜u)Rhp(˜u)Ch2ph(˜u)Rhp(˜u)1, (3.32)

    and

    (Rhpt(˜u)pt(˜u),ph(˜u)Rhp(˜u))CRhpt(˜u)pt(˜u)ph(˜u)Rhp(˜u))Ch2pt(˜u)2ph(˜u)Rhp(˜u). (3.33)

    Using the assumption for ϕ(), we get

    (p(˜u)(ϕ(y(˜u))ϕ(yh(˜u))),ph(˜u)Rhp(˜u))Cp(˜u)0,4ϕ(y(˜u))ϕ(yh(˜u))ph(˜u)Rhp(˜u)0,4Ch2p(˜u)1ϕW2,y(˜u)2ph(˜u)Rhp(˜u)1Ch2ph(˜u)Rhp(˜u)1, (3.34)

    where we used the embedding v0,4Cv1. Then, using the definition of Rh and the assumption for ϕ(), we get

    (ϕ(yh(˜u))(p(˜u)Rhp(˜u)),ph(˜u)Rhp(˜u))CϕW1,p(˜u)Rhp(˜u)ph(˜u)Rhp(˜u)Ch2ϕW1,p(˜u)2ph(˜u)Rhp(˜u)Ch2ph(˜u)Rhp(˜u)1. (3.35)

    From (3.29) and (3.32)–(3.35), we have

    cph(˜u)Rhp(˜u)21a(ph(˜u)Rhp(˜u),ph(˜u)Rhp(˜u))+(ϕ(yh(˜u))(ph(˜u)Rhp(˜u)),ph(˜u)Rhp(˜u))=(yh(˜u)y(˜u),ph(˜u)Rhp(˜u))+(p(˜u)(ϕ(y(˜u))ϕ(yh(˜u))),ph(˜u)Rhp(˜u))+(ϕ(yh(˜u))(p(˜u)Rhp(˜u)),ph(˜u)Rhp(˜u))Ch2ph(˜u)Rhp(˜u)1. (3.36)

    Note that

    ph(˜u)(x,T)Rhp(˜u)(x,T)=0,

    then combining (3.32)–(3.36), and using the ϵ-Cauchy inequality and the assumptions for A and ϕ(), (3.29) can be rewritten as

    12ddtph(˜u)Rhp(˜u)2+cph(˜u)Rhp(˜u)21Ch4+12ph(˜u)Rhp(˜u)2. (3.37)

    Integrating the above inequality in time and using Gronwall's inequality, we have

    ph(˜u)Rhp(˜u)L(J;W)+ph(˜u)Rhp(˜u)L2(J;H1(Ω))Ch2, (3.38)

    which implies (3.25).

    Lemma 3.3. For ˜uL2(J;H1(Ω)), assumep(˜u),pt(˜u),y(˜u),yt(˜u)L2(J;H1(Ω))L2(J;H2(Ω)), then we have theestimate

    p(˜u)ph(˜u)L2(J;H1(Ω))Ch2. (3.39)

    Proof. After rewriting

    p(˜u)ph(˜u)=p(˜u)Rhp(˜u)+Rhp(˜u)Rhp(Qh˜u)+Rhp(Qh˜u)ph(Qh˜u)+ph(Qh˜u)ph(˜u),

    from Lemma 3.1 and assumption of p, it is known that

    Rhp(˜u)Rhp(Qh(˜u))L2(J;H1(Ω))Ch2,

    and from Lemma 3.2, we get

    ph(Qh˜u)Rhp(Qh˜u)L2(J;H1(Ω))Ch2, (3.40)

    so we have

    p(˜u)ph(˜u)L2(J;H1(Ω))p(˜u)Rhp(˜u)L2(J;H1(Ω))+Rhp(˜u)Rhp(Qh˜u)L2(J;H1(Ω))+Rhp(Qh˜u)ph(Qh˜u)L2(J;H1(Ω))+ph(Qh˜u)ph(˜u)L2(J;H1(Ω))Ch2+ph(Qh˜u)ph(˜u)L2(J;H1(Ω)).

    Choose ˜u=Qh˜u, wh=yh(Qh˜u)yh(˜u) in (3.3), and let qh=ph(Qh˜u)ph(˜u) in (3.4), then we obtain the following error equations

    (yh,t(Qh˜u)yh,t(˜u),yh(Qh˜u)yh(˜u))+(ϕ(yh(Qh˜u))ϕ(yh˜u),yh(Qh˜u)yh(˜u))+a(yh(Qh˜u)yh(˜u),yh(Qh˜u)yh(˜u))=(B(Qh˜u˜u),yh(Qh˜u)yh(˜u)), (3.41)
    (ph,t(Qh˜u)ph,t(˜u),ph(Qh˜u)ph(˜u))+(ϕ(yh(Qh˜u))ph(Qh˜u)ϕ(yh(˜u)ph(˜u),ph(Qh˜u)ph(˜u))+a(ph(Qh˜u)ph(˜u),ph(Qh˜u)ph(˜u))=(yh(Qh˜u)yh(˜u),ph(Qh˜u)ph(˜u)). (3.42)

    Then from equality (3.41), using ϵ-Cauchy inequality and (3.7), we derive

    12ddtyh(Qh˜u)yh(˜u)2+cyh(Qh˜u)yh(˜u)21(B(Qh˜u˜u),yh(Qh˜u)yh(˜u))=(Qh˜u˜u,B(yh(Qh˜u)yh(˜u)))C˜uQh˜u1B(y(˜u)y(Qh˜u))1Ch2yh(Qh˜u)yh(˜u)1Ch4+ϵyh(Qh˜u)yh(˜u)21. (3.43)

    Note that

    yh(Qh˜u)(x,0)Qh(˜u)(x,0)=0,

    next, integrating both sides of (3.43) in time, we obtain

    yh(Qh˜u)yh(˜u)2L(J;U)+cyh(Qh˜u)yh(˜u)2L2(J;H1(Ω))Ch4,

    and obviously

    yh(Qh˜u)yh(˜u)L2(J;H1(Ω))Ch2. (3.44)

    Next, we consider the equality (3.42) similar to the above idea.

    (ph,t(Qh˜u)ph,t(˜u),ph(Qh˜u)ph(˜u))+(ϕ(yh(Qh˜u))(ph(Qh˜u)ph(˜u),ph(Qh˜u)ph(˜u))+a(ph(Qh˜u)ph(˜u),ph(Qh˜u)ph(˜u))=(yh(Qh˜u)yh(˜u),ph(Qh˜u)ph(˜u))+(ph(˜u)(ϕ(yh(˜u))ϕ(yh(Qh(˜u))),ph(Qh(˜u))ph(˜u)). (3.45)

    Note that

    (yh(Qh˜u)y(˜u),ph(Qh˜u)ph(˜u))Cyh(Qh˜u)yh(˜u)ph(Qh˜u)p(˜u)  Cyh(Qh˜u)yh(˜u)21+ph(Qh˜u)ph(˜u)21. (3.46)

    Using the assumption for ϕ() and (3.9), we get

    (ph(˜u)(ϕ(yh(˜u))ϕ(yh(Qh˜u))),ph(Qh˜u)ph(˜u))Cph(˜u)0,4ϕ(yh(˜u))ϕ(yh(Qh˜u)ph(Qh˜u)ph(˜u)0,4Cph(˜u)1ϕW2,yh(˜u)yh(Qh˜u)ph(Qh˜u)ph(˜u)1Cyh(Qh˜u)yh(˜u)21+ph(Qh˜u)p(˜u)21, (3.47)

    where we used the embedding v0,4Cv1. Then, using (3.45), (3.46), (3.47) and the assumption for ϕ(), we have

    12ddtph(Qh˜u)ph(˜u)2+cph(Qh˜u)ph(˜u)21(pht(Qh˜u)pht(˜u),ph(Qh˜u)ph(˜u))+a(ph(Qh˜u)ph(˜u),ph(Qh˜u)ph(˜u))+(ϕ(yh(Qh˜u)(ph(Qh˜u)ph(˜u)),ph(Qh˜u)ph(˜u))=(yh(Qh˜u)yh(˜u),ph(Qh˜u)ph(˜u))+(ph(˜u)(ϕ(yh(˜u))ϕ(yh(Qh˜u))),ph(Qh˜u)ph(˜u))Cyh(Qh˜u)yh(˜u)21+C2ph(Qh˜u)ph(˜u)21. (3.48)

    Next, we consider the given condition

    ph(Qh˜u)(x,T)ph(˜u)(x,T)=0, (3.49)

    then, we integrate in time for (3.48) and use Gronwall's inequality and (3.44), we have

    ph(Qh˜u)ph(˜u)2L(J;L2(Ω))+ph(Qh˜u)ph(˜u)2L2(J;H1(Ω))Ch4, (3.50)

    which implies (3.39).

    Let y(u) and yh(uh) are the solutions of (2.3) and (2.13), respectively. Let

    J(u)={12T0(ppd2+yyd2+u2)dt},Jh(uh)={12T0(ph(uh)pd2+yh(uh)yd2+uh2)dt}.

    Then, the simplified problems of (2.2) and (2.12) read as

    minuK{J(u)}, (3.51)

    and

    minuhKh{Jh(uh)}, (3.52)

    respectively. It can be shown that

    (J(u),v)=T0(u+p,v)dt,(J(uh),v)=T0(uh+p(uh),v)dt,(J(Qhu),v)=T0(Qhu+p(Qhu),v)dt,(Jh(uh),v)=T0(uh+ph,v)dt,

    where p(uh) and p(Qhu) are solutions of (3.1)–(3.2) for ˜u=uh and ˜u=Qhu, respectively.

    In many application, J() is uniform convex near the solution u. The convexity of J() is bound up with the second order sufficient conditions of the control problem, which are supposed in many studies on numerical methods of the problem. Next, there is a constant c>0, independent of h, such that

    (J(Qhu)J(uh),Qhuuh)cQhuuh2L2(J;U), (3.53)

    where u and uh are solutions of (3.51) and (3.52) respectively, Qhu is the orthogonal projection of u which is introduced in (3.5). From beginning to end, we will use the above inequality in this paper. More discussion of this can be found in [3,4].

    In this section, superconvergence for both the control variable and the state variables will be discussed. Let πc defined in [31] is the average operator such that πcu=Qhu. Let

    Ω+={τ:τΩ,u|τ>0},Ω0={τ:τΩ,u|τ=0},Ω=Ω(Ω+Ω0).

    In this paper, we assume that u and Th are regular such that meas(Ω) = meas(Ωb)Ch.

    Theorem 4.1. Let u be the solution of (2.4)–(2.6) anduh be the solution of (2.14)–(2.16). Weassume that the exact control and state solution satisfy

    u, u+pL2(J;W1,(Ω)),

    and

    y(u),  p(u)(L2(J;H2(Ω)).

    Then, we have

    QhuuhL2(J;U)Ch32. (4.1)

    Proof. Set v=uh in (2.6) and vh=Qhu in (2.16), and add the two inequalities, then we get

    T0{(uh+phup,Qhuuh)+(u+p,Qhuu)}dt0. (4.2)

    By using the definition of Qh and (4.2), we get

    T0(Qhuuh,Qhuuh)dt=T0(uuh,Qhuuh)dtT0{(php,Qhuuh)+(u+p,Qhuu)}dt. (4.3)

    For the first term of (4.3), we separate it into three parts,

    T0(php,Qhuuh)dt=T0(php(uh),Qhuuh)dt+T0(p(uh)p(Qhu),Qhuuh)dt+T0(p(Qhu)p(u),Qhuuh)dt, (4.4)

    from (4.3)–(4.4), we get that

    T0{(Qhuuh,Qhuuh)(p(uh)p(Qhu),Qhuuh)}dtT0(php(uh),Qhuuh)dt+T0(p(Qhu)p(u),Qhuuh)dt+T0(u+p,Qhuu)dt. (4.5)

    We can estimate the following by ϵ-Cauchy inequality

    T0(p(uh)ph,Qhuuh)dtCT0p(uh)phQhuuhdtT0p(uh)ph21dt+ϵT0Qhuuh2dt=p(uh)ph2L2(J;H1Ω)+ϵQhuuh2L2(J;U) (4.6)

    and

    T0(p(Qhu)p(u),Qhuuh)dtCT0p(Qhu)p(u)QhuuhdtT0p(Qhu)p(u)2dt+ϵT0Qhuuh2dt=p(Qhu)p(u)2L2(J;U)+Qhuuh2L2(J;U). (4.7)

    For the second term of (4.3)

    T0(u+p,Qhuu)dt=T0{Ω++Ω0+Ωb(u+p,Qhuu)dx}dt.

    Obviously, (Qhuu)|Ω0=0. From (2.6), we have pointwise a.e. (u+p)0, we set ˜u|Ω+=0 and ˜u|ΩΩ+=u, so that (u+p,u)|Ω+0. So, (u+p)|Ω+=0. Then

    T0(u+p,Qhuu)dt=T0(u+p,Qhuu)ΩbdtT0(u+pπc(u+p),Qhuu)ΩbdtCh2T0u+p1,Ωbu1,ΩbdtCh2T0u+p1,u1,meas(Ωb)dtCh3. (4.8)

    According to (3.53), the left hand of (4.5) can be restated as:

    T0{(Qhuuh,Qhuuh)(p(uh)p(Qhu),Qhuuh)}dt=T0{(Qhu+p(Qhu),Qhuuh)(uh+p(uh),Qhuuh)}dt=T0(J(Qhu)J(uh),Qhuuh)dtcQhuuh2L2(J;U). (4.9)

    Then, combining (3.10), (3.39) and (4.5)–(4.9), we have

    QhuuhL2(J;U)Ch32,

    which completes the proof of Theorem 4.1.

    Theorem 4.2. Let u be the solution of (2.4)–(2.6), uhbe the solution of (2.14)–(2.16) and Ωis convex. We assume that the exact control and state solutionsatisfy

    u, u+pL2(J;W1,(Ω)),

    and

    y(u), p(u)L2(J;H1(Ω))L2(J;H2(Ω)).

    Then, we have

    yhRhyL2(J;H1(Ω))Ch32, (4.10)
    phRhpL2(J;H1(Ω))Ch32. (4.11)

    Proof. From (2.4)–(2.5) and (2.14)–(2.15), We have the following error equations

    (yh,tyt,wh)+a(yhy,wh)+(ϕ(yh)ϕ(y),wh)=(uhu,wh),whVh, (4.12)
    (ph,tpt,qh)+a(qh,php)+(ϕ(yh)phϕ(y)p,qh)=(yhy,qh),qhVh. (4.13)

    Using the definition of Rh, we have

    (yh,tRhyt,wh)+a(yhRhy,wh)+(ϕ(yh)ϕ(Rhy),wh)=(ytRhyt,wh)+(uhu,wh)+(ϕ(y)ϕ(Rhy),wh), (4.14)
    (ph,tRhpt,qh)+a(qh,phRhp)+(ϕ(yh)(phRhp),qh)=(Rhptpt,qh)+(yhy,qh)+(ϕ(yh)(pRhp),qh)+(p(ϕ(y)ϕ(yh)),qh), (4.15)

    for any wh and qhVh.

    First, taking wh=yhRhy in (4.14) and using the assumption of ϕ(), we have

    12ddtyhRhy2+cyhRhy21(yhtRhyt,yhRhy)+a(yhRhy,yhRhy)+(ϕ(yh)ϕ(Rhy),yhRhy)=(ytRhyt,yhRhy)+(uhQhu,yhRhy)+(Qhuu,yhRhy)+(ϕ(y)ϕ(Rhy),yhRhy)C(ytRhytyhRhy+uhQhuyhRhy+Qhuu1yhRhy1+ϕ1,yRhyyhRhy)C(h2yhRhy+uhQhuyhRhy1+h2u1yhRhy1+h2ϕ1,y2yhRhy)C(h4+h3+yhRhy21+yhRhy21)Ch3+ϵyhRhy21. (4.16)

    Note that

    yh(x,0)Rhy(x,0)=0,

    integrating in time and using Gronwall's inequality, we estimate

    yhRhy2L(J;U)+yhRhy2L2(J;H1(Ω))Ch3, (4.17)

    which implies (4.10).

    Then, we take qh=phRhp in (4.15). Notice that

    (Rhptpt,phRhp)Ch2phRhp1,

    and

    (yhy,phRhp)=(yhRhy,phRhp)+(Rhyy,phRhp)C(h4+yhRhy21+phRhp21). (4.18)

    Using the definition of Rh and the assumption for ϕ(), we have

    (ϕ(yh)(pRhp),phRhp)Ch2ϕ1,p2phRhpCh2phRhp1C(h4+phRhp21), (4.19)

    and

    (p(ϕ(y)ϕ(yh)),phRhp)Cϕ2,(p(yyh),phRhp)Cϕ2,yyhp0,4phRhp0,4Cϕ2,(yRhy+Rhyyh)p1phRhp1C(h4+Rhyyh21+phRhp21). (4.20)

    From (4.15) and (4.18)–(4.20), we have

    12ddtphRhp2+cphRhp21(ph,tRhpt,qh)+a(phRhp,phRhp)+(ϕ(yh)(phRhp),phRhp)=(Rhptpt,phRhp)+(yhy,phRhp)+(ϕ(yh)(pRhp),phRhp)+(p(ϕ(y)ϕ(yh)),phRhp)C(h4+yhRhy21+phRhp21). (4.21)

    Note that

    ph(x,T)Rhp(x,T)=0,

    integrating in time and using Gronwall's inequality and (4.10), we estimate

    phRhp2L(J;U)+phRhp2L2(J;H1(Ω))Ch3, (4.22)

    which implies (4.11).

    In this paper, we present finite element approximation method for solving semilinear parabolic OCP. When the state and co-state variables are approximated by the piecewise linear functions, the control variable is approximated by the piecewise constant functions, superconvergence properties for both the control variable and the state variables are discussed. In our future work, we shall use this method to deal with hyperbolic optimal control problems, including linear and nonlinear styles.

    This work is supported by Guangdong Basic and Applied Basic Research Foundation of Joint Fund Project (2021A1515111048), Science Research Team Project in Guangzhou Huashang College (2021HSKT01), National Science Foundation of China (11201510), National Social Science Fund of China (19BGL190), China Postdoctoral Science Foundation (2017T100155, 2015M580197), Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601035), and Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0280) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202001201).

    The authors declare no conflict of interest.



    [1] F. Gazzola, E. M. Marchini, The moon lander optimal control problem revisited, Math. Eng., 3 (2021), 1–14. https://doi.org/10.3934/mine.2021040 doi: 10.3934/mine.2021040
    [2] T. Burden, J. Ernstberger, K. R. Fister, Optimal control applied to immunotherapy, Discrete Cont. Dyn.-B, 4 (2004), 135–146. https://doi.org/10.3934/dcdsb.2004.4.135 doi: 10.3934/dcdsb.2004.4.135
    [3] E. Casas, M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints, J. Control Optim., 40 (2002), 1431–1454. https://doi.org/10.1137/S0363012900382011 doi: 10.1137/S0363012900382011
    [4] E. Casas, J. P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586–1611. https://doi.org/10.1137/050626600 doi: 10.1137/050626600
    [5] Y. Chen, F. Huang, Spectral method approximation of flow optimal control problems with H1-norm state constraint, Numer. Math.: Theory, Methods Appl., 10 (2017), 614–638. https://doi.org/10.4208/nmtma.2017.m1419 doi: 10.4208/nmtma.2017.m1419
    [6] P. Neittaanmaki, D. Tiba, Optimal control of nonlinear parabolic systems: theory, Algorithms and Applications, CRC Press, 1994.
    [7] D. Tiba, Lectures on the optimal control of elliptic equations, University of Jyv¨askyl¨a, Department of Mathematics, 1995.
    [8] Y. Tang, Y. Hua, Convergence and superconvergence of variational discretization for parabolic bilinear optimization problems, J. Ineq. Appl., 1 (2019), 1–13. https://doi.org/10.1186/s13660-019-2195-3 doi: 10.1186/s13660-019-2195-3
    [9] F. Huang, Y. Chen, Y. Huang, A priori error estimates of a meshless method for optimal control problems of stochastic elliptic PDEs, Int. J. Comp. Math., 96 (2019), 1048–1065. https://doi.org/10.1080/00207160.2018.1483022 doi: 10.1080/00207160.2018.1483022
    [10] I. Lasiecka, Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control Optim., 22 (1984), 477–500. https://doi.org/10.1137/0322029 doi: 10.1137/0322029
    [11] G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), 414–427. https://doi.org/10.1137/0320032 doi: 10.1137/0320032
    [12] W. Liu, N. Yan, A posteriori error estimates for optimal boundary control, SIAM J. Numer. Anal., 39 (2001), 73–99. https://doi.org/10.1137/S0036142999352187 doi: 10.1137/S0036142999352187
    [13] W. Liu, H. Ma, T. Tang, N. Yan, A posteriori error estimates for Discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal., 42 (2006), 1032–1061. https://doi.org/10.1137/S0036142902397090 doi: 10.1137/S0036142902397090
    [14] W. Liu, N. Yan, A posteriori error estimates for control problems gonverned by Stokes equations, SIAM J. Numer. Anal., 40 (2002), 1850–1869. https://doi.org/10.1137/S0036142901384009 doi: 10.1137/S0036142901384009
    [15] T. Hou, Y. Chen, Superconvergence of RT1 mixed finite element approximations for elliptic control problems, Sci. China Math., 56 (2013), 267–281. https://doi.org/10.1007/s11425-012-4461-4 doi: 10.1007/s11425-012-4461-4
    [16] Z. Lu, Y. Chen, A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech., 1 (2009), 242–256.
    [17] Y. Chen, W. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Compu. Appl. Math., 211 (2008), 76–89. https://doi.org/10.1016/j.cam.2006.11.015 doi: 10.1016/j.cam.2006.11.015
    [18] Z. Lu, Y. Chen, L-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations, Sibirskii Zhurnal Vychislitel'noi Matematiki, 12 (2009), 91–105.
    [19] X. Xing, Y. Chen, L-error estimates for general optimal control problem by mixed finite element methods, Int J Numer Anal Model, 5 (2008), 441–456. https://doi.org/10.1038/456441a doi: 10.1038/456441a
    [20] Y. Chen, H. Leng, W. Yang, Error estimates of pseudostress-velocity MFEM for optimal control problems governed by stokes equations, Appl. Numer. Math., 135 (2019), 407–422. https://doi.org/10.1016/j.apnum.2018.09.009 doi: 10.1016/j.apnum.2018.09.009
    [21] T. Hou, H. Leng, Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations, Appl. Numer. Math., 138 (2019), 78–93. https://doi.org/10.1016/j.apnum.2018.12.008 doi: 10.1016/j.apnum.2018.12.008
    [22] Y. Dai, Y. Chen, Superconvergence for general convex optimal control problems governed by semilinear parabolic equations, Int. Scholarly Research Notices, (2014), 364–375. https://doi.org/10.1155/2014/579047
    [23] C. Hou, Y. Chen, Z. Lu, Superconvergence property of finite element methods for parabolic optimal control problems, J. Indus. Manag. Optim., 7 (2011), 927–945. https://doi.org/10.3934/jimo.2011.7.927 doi: 10.3934/jimo.2011.7.927
    [24] W. Liu, N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), 497–521. https://doi.org/10.1007/s002110100380 doi: 10.1007/s002110100380
    [25] X. Xing, Y. Chen, Superconvergence of mixed methods for optimal control problems governed by parabolic equations, Adva. Appl. Math. Mech., 3 (2011), 401–419. https://doi.org/10.4208/aamm.10-m1006 doi: 10.4208/aamm.10-m1006
    [26] Y. Chen, Y. Wang, Y. Huang et al, Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems, Appl. Numer. Math., 144 (2019), 204–222. https://doi.org/10.1016/j.apnum.2019.04.015 doi: 10.1016/j.apnum.2019.04.015
    [27] Y. Chen, Y. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comp., 39 (2019), 206–221. https://doi.org/10.1007/s10915-008-9258-9 doi: 10.1007/s10915-008-9258-9
    [28] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer Verlag, Berlin, 1971. https://doi.org/10.1007/978-3-642-65024-6
    [29] Y. Chen, N. Yi, W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [30] Y. Kwon, F. A. Milner, L-Error Estimates for Mixed Methods for Semilinear Second-Order Elliptic Equations, J. Numer. Anal., 25 (1988), 46–53. https://doi.org/10.1137/0725005 doi: 10.1137/0725005
    [31] R. Li, W. Liu, N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comp., 33 (2007), 155–182. https://doi.org/10.1007/s10915-007-9147-7 doi: 10.1007/s10915-007-9147-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1897) PDF downloads(65) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog