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1. Introduction

As we know, optimal control theory is widely used in many subjects. In the past few decades, it
has attracted the attention of more and more scholars, and is also related to some specific applications,
from finance to aerospace industry, from biology to medicine and so on. For example, how a spacecraft
to land on the moon surface at rest with minimal fuel consumption [1]? Under what circumstances the
tumor can be eliminated [2]?

In fact, optimal control problem (OCP) for partial differential equations (PDEs) is a challenging
research hotspot, and much has been done both on the mathematical analysis and on its numerical
approximation. Among numerous numerical methods, finite element discretization of the state
equation is widely applied. Finite element approximation of optimal control problems plays a great
role in modern science, technology, engineering, etc. We can find systematic introduction of finite
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element methods and optimal control problems governed by PDEs, for example [6,7,28]. There have
been extensive studies in error estimates, convergence of finite element approximation for OCP. Casas,
Mateos and Raymond [3, 4] have studied a priori error estimation of semilinear elliptic boundary
control problems. Chen and Huang [5, 9] have gained a priori error estimates of stochastic elliptic
PDEs, both a prior and a posterior error estimates of stokes equations with H'-norm state constraint.
For a posteriori error estimates of quadratic OCP governed by linear parabolic equation, see Liu
and Yan [24], for optimal rates of convergence with Ritz-Galerkin approximations and numerical
approximation of a parabolic time OCP, see Lasiecka and Knowles [10, 11]. In particular, Liu and
Yan studied the posteriori error estimates for control problems gonverned by elliptic equations [12],
and extended it to the OCP dominated by parabolic equation [13] and Stokes equation [14].

Furthermore, the superconvergence properties of OCP is a research focus in the field of optimal
control problem, because superconvergence has always been an important tool to obtain high
performance finite element discretization, which can provide high-precision approximate solutions.
The research on superconvergence began in the late 1970s, and obtained fruitful results, see, e.g.
[8,15,21-23,27].

When the objective function in the OCP contains the gradient of scalar function, the mixed finite
element method is an effective numerical method. In recent ten years, for the OCP of PDEs by the
mixed finite element method, professor Chen’s team has studied this aspect deeply, and has made a
series of research achievements, such as a priori error estimation, a posteriori error estimation, L*-
error estimates and superconvergence etc [16-20, 25,26].

Among the numerous research, Chen and Dai in [27] showed the superconvergence for optimal
control problems governed by semiliner elliptic equations. The purpose of this paper is to extend the
superconvergence property of [27] to the semilinear parabolic control problems.

In this paper, given the state y and the co-state p variables together with their approximations y;, and
P, we say that the approx super converges if the state and co-state variables are approximated by the
piecewise linear functions, the control variable is approximated by the piecewise constant functions,
we can get the superconvergence properties for both the control variable and the state variables. We
are interested in the following optimal control problem

1
mip {5 fo (150 = vt Dl g + e Dl ) (1.1)
vi(x, 1) = div(A(x)Vy(x, 1)) + ¢(y(x, 1)) = f(x, 1) + u(x, 1), x € Q,t € J, (1.2)
y(x,t) =0, xe o, ted, (1.3)
y(x,0) = yo(x), x e, (1.4)

where Q is a bounded domain in R” with a Lipschitz boundary 0Q, 0 < T < +oo, J = [0, T], y,(x,1)
denotes the partial derivative of y in time, A(x) = (a;;(X))uxn € (Wh=(Q))™", such that (A(x)€) - € > ¢ |
E2,VE€eR", ¢ > 0. We assume that the function ¢(-) € W>*(-R, R) for any R > 0, ¢'(y) € L*(Q) for
any y € L*(J; H'(Q)), and ¢’(y) > 0. Moreover, we assume that y,(x, 1) € C(J; L*(Q)), yo(x) € Hy(Q)
and K is a nonempty closed convex set in L*(J; L*(Q)), defined by

T
K = { v(x, 1) € L2(J; LA(Q)) : f f v(x,)dxdt >0, ae xeQ,tel] }
QJO
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In this paper, we adopt the standard notation W"?(€2) for Sobolev spaces on € with a norm || -

Il given by |VIln., = |IZ IIDQVIIZ,(Q), a semi-norm | - |,,, given by |}, = ||Z—: IID"vII’L’p(Q). We set
Wy (Q) = {v € W™P(Q) : vlso = 0}. For p = 2, we denote H™(Q) = W™*(Q), HNQ) = W(’)"’z(Q),
and || - |l = Il * llm2s Il -1l = |l - llo2. We denote by L*(0,T; W™P()) the Banach space of all L*

1
integrable functions from J into W7 (Q) with norm |[V||.«j.wmr(q) = ( fOT IIVII‘;‘,,W(Q)GII)E for s € [1, o),
and the standard modification for s = co. Similarly, one can define the spaces H*(0, T; W™4(Q)) and
CX0, T; W™4(Q)).

The paper is organized as follows: in section 2, we briefly review the finite element method, and
then the approximation schemes for the model optimal control problem will be constructed. In section
3, some intermediate error estimates which is the base of the result will be gained. In section 4,
superconvergence properties for both control and state variables are derived.

2. Finite element method for optimal control problems
In this section, we will discuss the finite element approximation of the quadratic optimal control

problem governed by semilinear parabolic equations (1.1)—(1.4). We set W = L*(J;V) with V =
Hy(Q), X = L*(0, T; U) with U = LX), I - llv = | - g1y and I - | = 11 - [l 2 Let

a(v,w) = f(A(x)Vv) - Vwdx, Yv,we,
Q

(et = [ fi- Vhi f e Q).
Q
It follows from Friedriechs’ inequality that
a@,v) = c|vlly, YveV,
la(v, w)l < Clvllvliwlly, Yv,weV.

We denote by H™'(Q) the dual space to H)(Q). If f € H™'(Q), we note

-l = -l ANl = sup  (fou). 2.1)

1
WEH{ (@)l 1 <1

Then the standard weak formula for the state equation reads: find y(«) such that
e w) + aly(), w) + (@), w) = (f +u,w),  YwelV.

Thus the above equation has a solution.
We recast (1.1)—(1.4) in the following weak form: find (y, #) such that

(1T 2 2
min{3 [ (s =5l + 1) (22)
e w) +aly,w) + (), w) = (f + u,w), YweV = Hé(Q). (2.3)
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It is well known (see, e.g., [28]) that the control problem (2.2)—(2.3) has a solution (y, u), and that
if a pair (y, u) is the solution of (2.2)—(2.3), then there is a co-state p € H'(J; L*(€)) N W such that the
triplet (y, p, u) satisfies optimality conditions as follows:

e, w) +aly,w) + (¢(y), w) = (f +u,w), YwevV, 2.4)
—(pnq) +alg,p)+ @ Mp,q) = —Ya.q), Vg€V, (2.5)
T
f (u+ p,v—uwydt >0, Vv € K, (2.6)
0
yu)(x,0) = yo(x), pu)(x,T)=0 Vx e Q. 2.7)

Now we introduce the following significant result (see [29]).

Lemma 2.1. [29] A necessary and sufficient condition for the optimality of a control u € K with
corresponding state y(u) and co-state p(u), respectively, is the following relation:

u = max(0, p) — p, (2.8)

fOT fQ pdxdt
I f 1dxdt

In the following, we will consider the semi-discrete finite element for the problem.
Let 7" be regular triangulations of Q, such that Q = U 7. Let h = max{h,}, where h, denotes the

where p = denotes the integral average on Q X J of the function p.

TeTh TeTh
diameter of the element 7. Note two spaces as follows:
U" = {u, € U : w|, = constant, 7 € 7"}, (2.9)
Vi ={v, € CQ) vyl € Pr.T € T, yilon = 0} (2.10)
K":=*(J;U"YNK, (2.11)

where P is the space of polynomials of degree less than or equal to 1. In addition, ¢ or C denotes a
general positive constant independent of 4.
Now, the finite element approximation of the optimal control problem (2.2)-(2.3) is as follows:

T
min {3 fo (I = valP + lislP) | 2.12)
Ones wi) + aQyns wi) + (@Qn), wi) = (f + up, wa), Y, € V. (2.13)

The optimal control problem (2.12)—(2.13) has a solution (yy, u;,), and that if a pair (yy, u;) is the
solution of (2.12)—(2.13), then there is a co-state p;, such that the triplet (yy, p,,u;) satisfying the
following optimal conditions:

Vs wi) + aQyn, wi) + (@), wi) = (f + up, wi), Ywy, € V", (2.14)
—(Phss qn) + a(qn, pr) + (& O qn) = On = Yasqn)s  Yagn € V7, (2.15)
T
f (U + pn, vy — up)dt > 0, Vv, € K", (2.16)
0
yr()(x,0) = ya(x), pu(up)(x,T) = 0, Vx e Q. (2.17)
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Similar to Lemma 2.1, we can get the relationship between the control approximation u, and the co-
state approximation pj, which satisfies

up = max(0, py) = pa, (2.18)

" [ pudxd . .
where p;, = b_o prc denotes the integral average on Q X J of the function p,.

T ey 1dxd

3. Intermediate error estimates

First of all, we will introduce some intermediate variables. For any & € K, let (y(it), p(it)) be the
solution of the following equations:

(@), w) + a(y(@), w) + (p(y(@)), w) = (f + ii,w), YweV, 3.1
—(p(@t), q) + a(q, p(iv)) + (¢’ (@) p(it), q) = (Y(@K) — ya.q), Vg€ V. (3.2)

Then, for any i € K, let (y,(it), px(it)) be the solution of the following equations:

(@), wy) + aCy(it), wy) + (@(u(@n)), wy) = (f + it, wy), Yw, € VA, (3.3)
—(Puii), gn) + alqn, pa(i)) + (¢’ Gu(@)pi(iD), qr) = Gu(@) — yas qn), Yaqn € V" 3.4)

Note that (y’ p) = (y(u)’ p(”)), (Yh, Ph) = (yh(uh)9 ph(uh))
Now we give the standard L?(Q)—orthogonal projection Q;, : U — U", for U = L*(Q), which

satisfies: for any ¢ € U
W — On,up) = 0, Yuy € U, (3.5)
and the elliptic projection R, : V — V", which satisfies: for all v € V
av—Ryw,vy) =0, v, eV (3.6)
We have the following approximation properties (see e.g., [27] and [30]):

I — OQnll_s < Ch'™* |y, s=0,1, (3.7)
lw = Rywl|| < CH*[|w|», for w € H*(Q). (3.8)

Lemma 3.1. Let u € L*(J; H(Q)), for h sufficiently small, there exists a positive constant C such that

[y(Qnut) — )’(u)”LZ(J;Hl(Q)) < Chz, (3.9)
lp(Qru) — pWl 2.1 @) < Ch*. (3.10)

Proof. Choose it = Quu and &t = u in (3.1)-(3.2), respectively, then we have the following error
equations

(@) = yi(w), w) + a(y(Qnue) = y(u), w) + (F((Qpu)) = ¢(y(w)), w)
= (Qnu — u), w), (3.11)
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— (p(Qn) — pi(w), @) + alg, p(Qpu) — p(w)) + (¢" (N Qu)) p(Qpu) — ¢'(y(u))p(u), q)

= ((Qnu) — y(u), q),

foranywe Vandge V.
First, choose w = y(Qpu) — y(u) in (3.11), we have

O(Qnue) = yi(u), y(Qput) = y(u)) + a(y(Qnut) = y(u), y(Qnut) — y(u))
+HO(Qn) = ¢(y(u)), y(Qnt) = y(u)) = (Qnut — u, y(Qput) — y(u0)).

Now, we estimate the right hand side of (3.13). Using (3.7), we have

(Qpu — u, y(Qput) — y(w)) =(Qnut — u, y(Qntt) — y(u))
<Clly(Qn@)) = ylly - |Qnte — ull-y
<CRjully - ly(@nu) = y(@)|s.

From (3.13) and (3.14), using e-Cauchy inequlity and the assumption of A and ¢(:), we have

%%Ily(Qhu) — Y@ + clly(Quu) — yw)II;
< (Onu) = y: (), y(Qntt) — y(u)) + a(y(Qput) — y(u), y(Opu) — y(u))
+HP(Qntt)) — (y(u)), Y(Oput) — y(u))
= (Qnu — u, Y(Quu) — y(u))
< CIP|ly(Quu) =yl
< Ch* + €lly(Qnu) — yWII;.

Note that

Y(Qnu)(x,0) = y(u)(x,0) =0,

next, integrating the both sides of (3.15) in time from O to 7, we get

||}’(Qhu) - y(u)||iw(‘];L2(Q)) + C”)’(Qhu) - y(u)”iZ(‘];Hl(Q)) < Ch4,

which implies (3.9).
Choose g = p(Qpu) — p(u) in (3.11), we have

— (pi(Qn1) = p:i(w), p(Qpu) — p(w)) + a(p(Qpu) — p(u), p(Qpu) — p(u))
+ (&' (@) p(Qnin) — ¢ (y() p(w), p(Qnut) — p(u))
= ((Qnut) = y(u), p(Qpu) = p(u)),

namely,

— (p(Qnu) = pi(u), p(Opu) — p(u)) + a(p(Qnu) — p(u), p(Qpu) — p(u))
+(' (Qnu))(p(Qnu) — p(u)), p(Quu) — p(u))
= (y(Qnut) = y(u), p(Qpu) — p(u))

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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+(p)(¢' (Y(w)) — ¢'(¥(Onu))), p(Qput) — p(u)). (3.17)
Notice that
(V(Qnu) — y(u), p(Qnu) — p(w)) <Cl[y(Qpu) — y@)|| - [| p(Qntt) — p()|

<CH||p(Quu) = pw)ll,
<Ch* + ||p(Quue) = p)lly. (3.18)

Using the assumption for ¢(-) and (3.9), we have

(p(u)(¢' (y(w)) — ¢"(Y(Ont1))), p(Ontt) — p(u))
< Cliplloallg" () — ¢" (Qu)ll - lp(Qnte) — p()llo.a
< Cllp@)hligllwzelly(u) — y(Qu)ll - [|p(Qnt) — p(u)lly
< CR?||p(Quut) — p(w)l;
< Ch* + lp(Quu) — p)lly, (3.19)
where we used the embedding ||v|p4 < C||v|l;. Then, using (3.17), (3.18), (3.19) and the assumption
for ¢(-), we have
—%%Ilp(Qhu) — p)I* + cllp(Qu) — p)II;
< = (p(Qnu) — pi(u), p(Qnu) — p(u)) + a(p(Qnu) — pr(u), p(Qnu) — p(u))
+(¢' ((Qnu)(p(Qnu) — p()), p(Qpu) — p(u))
= (Qnut) — y(u), p(Qnu) — p(u))
+(p(u) (¢’ (y(w) — ¢'(( Qi) p(Qput) — p(u))
< CR?||p(Quut) — pw)l; (3.20)
< Chn'+ %HP(Qhu) - pli. (3.21)

Next, we consider the given condition

p(Qnu)(x, T) = p(u)(x,T) = 0, (3.22)

then, we integrate in time from 7 to 7" in (3.11) and use Gronwall’s inequality, we have

||p(Qhu) - p(u)”ioo(‘];LZ(Q)) + ”p(Qhu) - p(u)”iZ(J;HI(Q)) < Ch4, (323)

which implies (3.10). O
Lemma 3.2. For any ii € K, if the intermediate solution satisfies

@), yi(@), p(a), pi(@) € L*(J3 H'(Q)) N LA(J; H* (),
and Q is convex, then we have

(@) = Ry @211y < Ch?, (3.24)
lpn(it) — Ryp(@) 2.1 ) < Ch?. (3.25)

AIMS Mathematics Volume 7, Issue 5, 9405-9423.
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Proof. From (3.1)—(3.2) and (3.3)—(3.4), we have the following error equations:

(@) = yi (i), wy) + a(yp(it) — y(it), wy) + (d(ya(i)) — ¢(y(i)), wy) = 0, (3.26)
— (i) = pit), gn) + alqp, pu(it) — p(in)) + (&' (p (@) pp(it) — ¢ (@) p(it), qp)
= (yn(@t) — y(@), qn), (3.27)

for any w;, € V}, and ¢, € V. Using the definition of R;, the above equation can be restated as

(@) = Ryy (i), wy) + a(yn(it) = Ryy(it), wp) + (¢(yu(@D)) — p(R(y(it)), wy)
= (@) = Ryy (it), wp) + (p(y(&0)) — p(Ryy(i1)), wp), (3.28)
— (pns(@t) = Ry p:(it), wp) + a(qn, pa(it) — Ryp(it)) + (¢'yn(@))(p(it) — Ryp(it)), qn)
= (@) — y(@), qn) + (Rpp(it) — p:(), gn)
+(p@) (¢’ V(@) — ¢ (Ya(@D))), gn) + (&' (@) (p(@) = Ry, p(@D)), qn)- (3.29)

First, let w, = y,(&t) — R,y(it) in (3.28), using the e-Cauchy inequality and the assumptions for A and
#(-), we have

ld, . . - -
5 () = Ryy@ + cllyn(@) — Ryy(@)I}

< (@) = Ryy (@), yn(it) — Ryy(it))
+a(y(it) — Rpy(@t), yn(it) — Ry (i) + (@(yn(it)) — (R (y(@0)), yn(it) — Ry (it))
= (V@) — Ryy, (@), yn(it) — Ryy(it)) + (p(y(it)) — p(Ryy(it)), yn(it) — Ryy(it))
< CR |y @)llallyn(@) — Ry @)l + Cligllwrlly@llz - lys(@) — Ryy @)l
< CI?|lyn(it) — Ryy (@)l

< Ch* + S @ - R @I, (3:30)
It is known that
Yi(@)(x,0) = Ryy(@)(x, 0) = yg ~ Riyo = 0,
then integrating in time for (3.30) and using Gronwall’s inequality, we have

lyn(it) — Rhy(a)”L“’(J;Lz(Q)) + |lyn(@t) — Rh)’(ﬁ)”LZ(J;Hl(Q)) < Chz, (3.31)

which implies (3.24).
Then, let g, = py(it) — Ryp(it) in (3.29). Note that

(@) = y(@), pp(@t) = Ryp(@t)) <llyn(it) — y(@)l| - [[pa(it) = Ry p(@)|
<CR|y(@)lz - 1|pa(@) = Ryp(@)||
<Ch?||pu(@) = Ryp(@)h, (3.32)

and
(Ryp(@t) — pi(@t), pp(it) — Ryp(it)) <C||Rp,p;(&t) — p@)|| - [|pn(@t) — Ry p(@))|
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<CH||p(@)llz - |pr(@) — Ry p(@)|l. (3.33)

Using the assumption for ¢(-), we get

(p@@)(¢' (@) — ¢"(yu(i))), pi(it) — Ry p(it))
< Clip@lloalle’ (@) = ¢ Gu@)I - 11pn(i) = Ryp(i)llos
< CR2Ip@)lly - Igllwe=lly@lla - lpa(i) = Rap(@liy
< CR||pu(@) = Ryp(@)ly, (3.34)

where we used the embedding |[v[|p4 < C|[v||;. Then, using the definition of R;, and the assumption for
#(-), we get

(@' (@) (p(@t) — Ryp(@0)), pu(it) — Ry, p(it))
< Cligllwr=lIp(@) = Ryp(@)l| - [[pa(@t) — Ry p(@)|
< CR2gllwr=lIp@lla - pa(it) = Rup(@|
< CI*\|pi(@) = Rup(@)- (3.35)

From (3.29) and (3.32)—(3.35), we have

cllpa(it) — R, p(@)II;
< a(pu(@t) = Rup(@r), pua(@t) — Ry p(i)) + (¢ (@) (pi(@t) — Ry, p(@)), pi(it) — Ry, p(it))
= (@) = y(@), pu(@t) — Ryp(@0)) + (p(@t) (¢’ (y(@1)) — ¢ (yu(@0))), pa(it) — Ry p(it))
+(¢'n(@)(p(@t) — Ryp(i1)), pr(it) — Ry, p(i))
< Ch||py(@t) — Rap(@)ll;. (3.36)

Note that
pr@)(x, T) — Ryp(i)(x,T) = 0,

then combining (3.32)—(3.36), and using the e-Cauchy inequality and the assumptions for A and ¢(-),
(3.29) can be rewritten as

1d 1
=5 2 IPu@ = Rup@I + cllpi(@) — Rp@IF < CH* + Sl1pu(@) - Ryp(@IP. (3.37)

Integrating the above inequality in time and using Gronwall’s inequality, we have
Ipa(it) — Rup@llz=cwy + 1pa(@) — Rup@llz2 iy < CH, (3.38)
which implies (3.25). O

Lemma 3.3. For it € L*(J; H'(Q)), assume p(it), p,(ii), y(it), y,(it) € L*(J; H' (Q)) N L*(J; H*(Q)), then
we have the estimate

|l p(it) — Ph(ﬁ)”LZ(J;Hl(Q)) < Ch. (3.39)
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Proof. After rewriting

p(i) — pp(it) = p(it) — Ry p(it) + Ryp(it) — Ry p(Qyit)
+R;,p(Opit) — pr(Onit) + pr(Qpit) — py(it),

from Lemma 3.1 and assumption of p, it is known that

IRy p(it) — Rpp(Qn(@)l 2.1 )y < Ch,

and from Lemma 3.2, we get

|pr(Onit) — Ry p( Qi iz 2y < Ch, (3.40)

so we have

|| p(it) — Ph(ﬁ)”LZ(J;Hl(Q))
< |lp@@) — Rpp@|lz2s:11 ) + IRkp(@E) — Rup(Oni)l| 271 )
IRy p(Qnit) = pr(Oni)lz2.m1 @) + 1P Qnit) — pr@llr2(:11 )
< CH? + ||pu(Qnit) = pr(@)ll 20 -

Choose it = Qyii, wy, = y,(Qyit) — yu(it) in (3.3), and let g, = p,(Qyit) — py(it) in (3.4), then we obtain
the following error equations

O Onit) = yn (@), yu(Onit) — y(@D)) + (Bu(Onit)) — ¢(yit), yu(Onit) — yu(i))

+ a (yn(Onit) — yu(@), yn(Qnit) — yn(it)) = (B(Qpit — i), yu(Qpit) — yn(it)) (3.41)
— (Pr(Onit) = pp(@t), pp(QOnit) — py(it))

+ (¢ Vn(OniD) pr(Qnit) — ¢’ (@) pi(@0), pr( Qi) — pu(i))

+ a(pu(Qnit) — pp(iD), pr(Qnit) — pr(it)) = (Yu(Qnit) — yn(@), pu(Qpit) — pp(id)) . (3.42)

Then from equality (3.41), using e-Cauchy inequality and (3.7), we derive

%dit”yh(Qhﬁ) = yu@IP + cllyn(Qnit) = yu(@IIF

< (B(Qypit — it), yn(Qpit) — yn(it))

= (Qnit — it, B*(yp(Qpit) — y(i0)))

< Cllie = Qnitll1 1B (y(@) — (i)l

< CI2|lyn(Quit) = ya(@ly

< Ch* + €llyn(Qnit) = y(@)ll7 (3.43)

Note that
yr(Qrit)(x,0) — Qp(i)(x,0) = 0,

next, integrating both sides of (3.43) in time, we obtain
||)’h(QhL~l) - yh(ﬁ)||i°°(J;U) + C“yh(Qhﬁ) - yh(a)”iZ(J;Hl(Q)) < Ch4a
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and obviously

[yn(Qpnit) — yh(a)”H(J;Hl(Q)) < Ch. (3.44)

Next, we consider the equality (3.42) similar to the above idea.

— (P Qnit) = pu (@), pr(Onit) = pi (@) + (¢’ Vi Quit))(Pi(Qnit) — i), pi(QOpi) — pi(it))
+a (pr(Qnit) — pp(it), pr(Qnit) — pu(it))
= (Yu(Qnit) — yu(@t), pr(Qnit) — pu(it))
+ (pr(@)(@' (@) = ¢ (Yu(Qn(@D))), pu(Qn(it)) — pu(it)) - (3.45)

Note that

On(Qnit) = y(@t), pr(Qnit) — pi(@t)) < Cllyn(Qnit) = yp(@l - | pn(Qnit) — p(@)l|
< Cliyn(Qnit) = yu(@II} + | pa(Qnit) = pr(@If. (3.46)

Using the assumption for ¢(-) and (3.9), we get

(pr(@)(@" (i) — &' (Yu(Qnit))), pa(Qnit) — pp(it))
< Cllpa@lloallg’ Ga@)) — ¢ Gu(Quidll - |pr(Qnit) — pa(@lloa
< Cllpa@N Il (@) — yu(Qaidll - 11 pa( Qi) — pa(@ll;
< Cllyn(Qnit) = yu(@II; + lpa(Qnit) — p(@)I[;, (3.47)

where we used the embedding |[v|p4 < C||v||;. Then, using (3.45), (3.46), (3.47) and the assumption
for ¢(-), we have

_%%”ph(Qhﬁ) — pr@IP + cllpu(Qnit) — pr(@II;
< = (P Qnit) — prit), pr(Qnit) — pr(@t)) + a(pr(Onit) — pu(), pr(Qnit) — pp(it))
+(@' Qi) (pr( Qi) — pi()), pr(Qit) — pi(it))
= (Yn(Onit) — yu(@), pr(Onit) — pi(it))
+(pu(@) (@' (@) — ¢’ Yu(Qnib))), pr(Qnit) — pa(it))

. " C g "
< Cllyn(Qnit) = ya(@II; + E”ph(Qhu) — pr@)I7. (3.48)
Next, we consider the given condition

pr(Qnit)(x, T) = py(i)(x, T) = 0, (3.49)

then, we integrate in time for (3.48) and use Gronwall’s inequality and (3.44), we have

”ph(th:t) - ph(ﬁ)”iw(_];LZ(Q)) + ”ph(thl) - ph(ﬁ)lliZ(];Hl(Q)) < Ch4’ (350)

which implies (3.39). O
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Let y(u) and y;(u;,) are the solutions of (2.3) and (2.13), respectively. Let

1 T
Ju) = {5 f (Ilp = pall + 1ly = yall* + llu”z)dt} ’
0

1 T
Tn(ur) = {5 fo (11PwCuw) = pall® + llynCun) = yalP + ||uh||2)dr} .

Then, the simplified problems of (2.2) and (2.12) read as

meily{J(u)}, (3.51)
and
lgleilg{Jh(uh)}a (3.52)

respectively. Tt can be shown that
() v) = fo s povde,
(), v) = fo i + pla), vy,
(J(Qut), ) = fo (Ot + Q. .

T
(J(up),v) =f (up + pp, vy,
0

where p(u;) and p(Qpu) are solutions of (3.1)—(3.2) for &t = u;, and &t = Qpu, respectively.

In many application, J(-) is uniform convex near the solution u. The convexity of J(-) is bound up
with the second order sufficient conditions of the control problem, which are supposed in many studies
on numerical methods of the problem. Next, there is a constant ¢ > 0, independent of %, such that

(J'(Qntt) = J' (un), Qnit = un) > cllQntt = unll7 1.0 (3.53)

where u and u;, are solutions of (3.51) and (3.52) respectively, Qu is the orthogonal projection of u
which is introduced in (3.5). From beginning to end, we will use the above inequality in this paper.
More discussion of this can be found in [3,4].

4. Superconvergence

In this section, superconvergence for both the control variable and the state variables will be
discussed. Let 7€ defined in [31] is the average operator such that 7°u = Q,u. Let

Qf ={U,: 7 Q ul, >0},
Q' ={u, : T c Q,ul, =0},
QO =O\(Qu QY.

In this paper, we assume that u and T, are regular such that meas(Q~)=meas(Q") < Ch.
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Theorem 4.1. Let u be the solution of (2.4)—(2.6) and uy, be the solution of (2.14)—(2.16). We assume
that the exact control and state solution satisfy

u, u+p e L*(J; W=(Q),

and
yw), p(u) € (L*(J; H*(Q)).

Then, we have
10 = uplliz .0y < ChE. (4.1)

Proof. Setv = u;, in (2.6) and v, = Q,u in (2.16), and add the two inequalities, then we get

T
f {(un + ppn—u—p, Qpu — up) + (u+ p, Qpu — u)ldr > 0. (4.2)
0

By using the definition of Q) and (4.2), we get
T
f (Qntt — up, Qpu — up)dt
0
T
= f (u = up, Qpu — uy)dt
0

T
< fo {(pn = P, Qnit — up) + (u + p, Qpu — u)}d. (4.3)

For the first term of (4.3), we separate it into three parts,
T
f (Pn — P, Qnit — up)dt
0
T T
= f (pn — p(up), Onu — wp)dt + f (p(up) = p(Qnu), Qput — uy)dt
0 0

T
+ fo (p(Qnu) — p(u), Qpu — up)dt, (4.4)

from (4.3)-(4.4), we get that
T
f {(Ontt — up, Oput — up) — (p(up) — p(Ontt), Qput — uy)}dt
0
T T
< fo (Pr — p(up), Qpu — up)dt + ﬁ (P(Onut) — p(u), Qpu — up)dt

T
+ f (u+ p, Qpu — u)dt. 4.5)
0

We can estimate the following by e-Cauchy inequality
T T
f (p(up) = pns Onu — up)dt < Cf lpQun) — pall - |Qnue — uplldz
0 0
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T T
< f lp(u) — pallidt + Gf 1Qntt — wyll*dt
0 0
= ”p(uh) - phlliZ(J;HIQ) + EllQhu - uh”iZ(/;u) (46)

and
T T
L(mmm—mwgm—mMnu{Lnm@m—mwuwm—wwt

T T
< f Ip(Qnu) — p(w)l[Pdt + €f 1Qnut — uylPdt
0 0
= ||p(Qhu) - p(”)”izu;[]) + ”Qhu - uh”iZ(‘];U)- (47)

For the second term of (4.3)

T T
f(u‘i‘P,Qhu—u)dl‘:f {f +f +f(u+p,Qhu—u)dx}dt.
0 0 Q+ Qo Qb

Obviously, (Qnu — u)lq0 = 0. From (2.6), we have pointwise a.e. (u + p) > 0, we set if|o+ = 0 and
itlo\o+ = u, so that (u + p,u)|o+ < 0. So, (u + p)lo+ = 0. Then

T T
f (u+ p, Qpu — w)dt = f (u + p, Qpu — u)epdt
0 0
T
< f (u+p—n(u+ p), Qnu — u)gpdt
0
T
< Chzf llze + plly qeollull; ordt
0

T
< Chzf i + plli collttlly.co - meas(QP)dt
0
< Ch. (4.8)

According to (3.53), the left hand of (4.5) can be restated as:
T
f {(Qnu — up, Qe — up) — (p(un) — p(Qnut), OQpu — up)} dt
0
T
= j(; {(Onu + p(Quu), Qpu — uy) — (up + p(up), Qpu — uy)} dt

= fOT(J’(Qhu) = J'(up), Qpu — wy)dt
>cl|Qnit = w72 .- (4.9)
Then, combining (3.10), (3.39) and (4.5)—(4.9), we have
10wt = upll2siwy < Ch3,

which completes the proof of Theorem 4.1. O
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Theorem 4.2. Let u be the solution of (2.4)—(2.6), uy, be the solution of (2.14)—(2.16) and € is convex.

We assume that the exact control and state solution satisfy
u, u+p e L*(J; W(Q)),

and
yw), pu) € L*(J; H(Q)) N L*(J; HA(Q)).

Then, we have

3
lyn = Ruyllz2mr @) < Ch?,
3
lpn — th”LZ(J;Hl(Q)) < Ch?.

Proof. From (2.4)—(2.5) and (2.14)—(2.15), We have the following error equations

One = Yo wi) + aQyn =y, wi) + (@) — &), wi) = (wy, — u, wy), Ywy, € Vi,

— (pns = Pisqn) + a(qp, pu — p) + (@' OGP — &' OP, qn) = On =Y. q1),  Yqu € Vj.

Using the definition of R;,, we have

e = Ruyes wn) + a(yn — Ry, wi) + (p(vi) — d(Ry), wi)
= v — Ry, wi) + (uy, — u, wy) + (¢(y) — ¢(Ry), wy),
~ (Pns — Rupis qn) + a(qn, pn — Rip) + (&' n)(Pr — Rup), qn)
= (Ryp; = P qn) + On =¥, qn) + (@' )P = Rup), qi) + (p(¢'(Y) — " (Vi)), qn),

for any wy, and g, € V.
First, taking w;, = y, — R,y in (4.14) and using the assumption of ¢(-), we have

1d
——|lyp — RpYII* + — Ryl
5 dtlly; wyll” + cllyn — Ruylly

< O = Ry, yn — Rpy) + a(yn, — Ryy, yn — Rypy) + (6(vi) — d(RpY), yn — Rpy)

= (e = Ry, yn = Ryy) + (up, — Qptt, yn — Ryy)
+(Qntt — u, yn = Ryy) + (@) — (Ry), yu — Riy)

< Clly: = Ruyill - lyn = Ryl + et — Qnull - llyn — Riyll
+1OQnue — ull-y - |lyn — Ruylli + ll@ll1.00 - [y = RVl - llyn — RuYl)

< C(R?|lyn — Ruyll + ety — Qpuall - llyn — Ryl + Il - 1y — Ryl
+1?| 1ol Y ll2llys — Riyll)

< C(h* + 1 + llyw = Riyll} + Iy — Rul})

< Ch + €llys, — Ruyll}-

Note that

yiu(x,0) = Rpy(x,0) = 0,

(4.10)
(4.11)

(4.12)
(4.13)

(4.14)

(4.15)

(4.16)
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integrating in time and using Gronwall’s inequality, we estimate

||Yh - Rhy”%‘”(j;U) + ||)’h - Rhy||i2(J;Hl(Q)) < Ch3a (417)

which implies (4.10).
Then, we take g, = p;, — R,p in (4.15). Notice that

(Rwp: — pi» Pr — Rip) < CR2||py, — Ryplls
and
On =Y, P — Rup) = On — Ry, pn — Rup) + (Rpy — y, pn — Rup)
< C(h* + Ity = RiyIl} + llps — Rupll}) (4.18)

Using the definition of R;, and the assumption for ¢(-), we have

(&' On)(p = Rup), pr — Rup) < CH21I¢ll1 lIpllalipn — Rypll
< Ch|\pn = Rupll;

< C(h* +lips = RplR), (4.19)

and

(p(¢'(¥) = '), P — Rip)
<Cll¢ll2.co(P(Y = ¥n)s P1 — Rnp)
<ClIgll.colly = yall - 1plloallpn = Rupllo.s
<ClIll.co(lly = Riyll + 1Ry = yulDllplhllps = Riplly
<C (h* + IIRyy = yall; + llps — Rupll}) (4.20)

From (4.15) and (4.18)—(4.20), we have

1d
———||p, = RyplI> + —R,p|P
5 dtllph wPll” + cllpn — Ruplly

< —(pns = Rups> qn) + a(pr, — Rup, pn — Rup) + (&' vn)(ph — Rup), P — Rup)
= (Rwp: = s> P — Rup) + On = > pw = Rup) + (@' n)(p = Rup), pr — Rup)
+(p(¢' ) = ¢"Om))» Pr — Riup)
< C(h* + Iy = RiyIl} + llps = Rupl}) - (4.21)

Note that
pu(x,T) = Ryp(x,T) = 0,
integrating in time and using Gronwall’s inequality and (4.10), we estimate
”ph - thll%m(j;U) + ”ph - th”iz(f;Hl(Q)) < Ch3’ (422)

which implies (4.11). |
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5. Conclusions

In this paper, we present finite element approximation method for solving semilinear parabolic OCP.
When the state and co-state variables are approximated by the piecewise linear functions, the control
variable is approximated by the piecewise constant functions, superconvergence properties for both the
control variable and the state variables are discussed. In our future work, we shall use this method to
deal with hyperbolic optimal control problems, including linear and nonlinear styles.
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