Research article Special Issues

On a class of differential inclusions in the frame of generalized Hilfer fractional derivative

  • In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.

    Citation: Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad. On a class of differential inclusions in the frame of generalized Hilfer fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193

    Related Papers:

    [1] Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225
    [2] Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406
    [3] Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280
    [4] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [5] Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820
    [6] Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
    [7] Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041
    [8] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [9] Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar . Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2022, 7(1): 1155-1184. doi: 10.3934/math.2022068
    [10] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
  • In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the φ-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a φ-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.



    Fractional calculus has come out as one of the most applicable subjects of mathematics [1]. Its importance is evident from the fact that many real-world phenomena can be best interpreted and modeled using this theory. It is also a fact that many disciplines of engineering and science have been influenced by the tools and techniques of fractional calculus. Its emergence can easily be traced and linked with the famous correspondence between the two mathematicians, L'Hospital and Leibnitz, which was made on 30th September 1695. After that, many researchers tried to explore the concept of fractional calculus, which is based on the generalization of nth order derivatives or n-fold integration [2,3,4].

    Recently, Khan and Khan [5] have discovered novel definitions of fractional integral and derivative operators. These operators enjoy interesting properties such as continuity, boundedeness, linearity etc. The integral operators, they presented, are stated as under:

    Definition 1 ([5]). Let hLθ[s,t](conformable integrable on [s,t][0,)). The left-sided and right-sided generalized conformable fractional integrals τθKνs+ and τθKνt of order ν>0 with θ(0,1], τR, θ+τ0 are defined by:

    τθKνs+h(r)=1Γ(ν)rs(rτ+θwτ+θτ+θ)ν1h(w)wτdθw,r>s, (1.1)

    and

    τθKνth(r)=1Γ(ν)tr(wτ+θrτ+θτ+θ)ν1h(w)wτdθw,t>r, (1.2)

    respectively, and τθK0s+h(r)=τθK0th(r)=h(r). Here Γ denotes the well-known Gamma function.

    Here the integral tsdθw represents the conformable integration, defined as:

    tsh(w)dθw=tsh(w)wθ1dw. (1.3)

    The operators defined in Definition 1 are in generalized form and contain few important operators in themselves. Here, only the left-sided operators are presented, the corresponding right-sided operators may be deduced in the similar way. Moreover, to understand the theory of conformable fractional calculus, one can see [5,6,7]. Also, the basic theory of fractional calculus can be found in the books [1,8,9] and for the latest research in this field one can see [3,4,10,11,12] and the references there in.

    Remark 1. 1) For θ=1 in the Definition 1, the following Katugampula fractional integral operator is obtained [13]:

    τ1Kνs+h(r)=1Γ(ν)rs(rτ+1wτ+1τ+1)ν1h(w)dw,r>s. (1.4)

    2) For τ=0 in the Definition 1, the New Riemann Liouville type conformable fractional integral operator is obtained as given below:

    0θKνs+h(r)=1Γ(ν)rs(rθwθθ)ν1h(w)dθw,r>s. (1.5)

    3) Using the definition of conformable integral given in (1.3) and L'Hospital rule, it is straightforward that when θ0 in (1.5), we get the Hadamard fractional integral operator as follows:

    00+Kνs+h(r)=1Γ(ν)rs(logrw)ν1h(w)dww,r>s. (1.6)

    4) For θ=1 in (1.5), the well-known Riemann-Liouville fractional integral operator is obtained as follows:

    01Kνs+h(r)=1Γ(ν)rs(rw)ν1h(w)dw,r>s. (1.7)

    5) For the case ν=1,τ=0 in Definition 1, we get the conformable fractional integrals. And when θ=ν=1, τ=0, we get the classical Riemann integrals.

    This subsection is devoted to start with the definition of convex function, which plays a very important role in establishment of various kinds of inequalities [14]. This definition is given as follows [15]:

    Definition 2. A function h:IRR is said to be convex on I if the inequality

    h(ηs+(1η)t)ηh(s)+(1η)h(t) (1.8)

    holds for all s,tI and 0η1. The function h is said to be concave on I if the inequality given in (1.8) holds in the reverse direction.

    Associated with the Definition 2 of convex functions the following double inequality is well-known and it has been playing a key role in various fields of science and engineering [15].

    Theorem 1. Let h:IRR be a convex function and s,tI with s<t. Then we have the following Hermite-Hadamard inequality:

    h(s+t2)1tstsh(τ)dτh(s)+h(t)2. (1.9)

    This inequality (1.9) appears in a reversed order if the function h is supposed to be concave. Also, the relation (1.9) provides upper and lower estimates for the integral mean of the convex function h. The inequality (1.9) has various versions (extensions or generalizations) corresponding to different integral operators [16,17,18,19,20,21,22,23,24,25] each version has further forms with respect to various kinds of convexities [26,27,28,29,30,31,32] or with respect to different bounds obtained for the absolute difference of the two leftmost or rightmost terms in the Hermite-Hadamard inequality.

    By using the Riemann-Liouville fractional integral operators, Sirikaye et al. have proved the following Hermite-Hadamard inequality [33].

    Theorem 2. ([33]). Let h:[s,t]R be a function such that 0s<t and hL[s,t]. If h is convex on [s,t], then the following double inequality holds:

    h(s+t2)Γ(ν+1)2(ts)ν[01Kνs+h(t)+01Kνth(s)]h(s)+h(t)2. (1.10)

    For more recent research related to generalized Hermite-Hadamard inequality one can see [34,35,36,37,38,39,40,41,42] and the references therein.

    Motivated from the Riemann-Liouville version of Hermite-Hadamard inequality (given above in (1.10)), we prove the same inequality for newly introduced generalized conformable fractional operators. As a result we get a more generalized inequality, containing different versions of Hermite-Hadamard inequality in single form. We also prove an identity for generalized conformable fractional operators and establish a bound for the absolute difference of two rightmost terms in the newly obtained Hermite-Hadamard inequality. We point out some relations of our results with those of other results from the past. At the end we present conclusion, where directions for future research are also mentioned.

    In the following theorem the well-known Hermite-Hadamard inequality for the newly defined integral operators is proved.

    Theorem 3. Let ν>0 and τR,θ(0,1] such that τ+θ>0. Let h:[s,t][0,)R be a function such that hLθ[s,t](conformal integrable on [s, t]). If h is also a convex function on [s,t], then the following Hermite-Hadamard inequality for generalized conformable fractional Integrals τθKνs+ and τθKνt holds:

    h(s+t2)(τ+θ)νΓ(ν+1)4(tτ+θsτ+θ)ν[τθKνs+H(t)+τθKνtH(s)]h(s)+h(t)2, (2.1)

    where H(x)=h(x)+˜h(x), ˜h(x)=h(s+tx).

    Proof. Let η[0,1]. Consider x,y[s,t], defined by x=ηs+(1η)t,y=(1η)s+ηt. Since h is a convex function on [s,t], we have

    h(s+t2)=h(x+y2)h(x)+h(y)2=h(ηs+(1η)t)+h((1η)s+ηt)2. (2.2)

    Multiplying both sides of (2.2) by

    (ts)(τ+θ)1ν((1η)s+ηt)τ+θ1Γ(ν)[tτ+θ((1η)s+ηt)τ+θ]1ν,

    and integrating with respect to η, we get

    (ts)(τ+θ)1νΓ(ν)h(s+t2)10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νdη(ts)(τ+θ)1νΓ(ν)12{10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh(ηs+(1η)t)dη+10(1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh((1η)s+ηt)dη}. (2.3)

    Note that we have

    10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νdη=1ν(τ+θ)(ts)(tτ+θsτ+θ)ν.

    Also, by using the identity ˜h((1η)s+ηt)=h(ηs+(1η)t), and making substitution (1η)s+ηt=w, we get

    (ts)(τ+θ)1νΓ(ν)10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh(ηs+(1η)t)dη=(τ+θ)1νΓ(ν)tswτ+θ1[tτ+θwτ+θ]1ν˜h(w)dw=(τ+θ)1νΓ(ν)tswτ[tτ+θwτ+θ]1ν˜h(w)dθw=τθKνs+˜h(t). (2.4)

    Similarly

    (ts)(τ+θ)1νΓ(ν)10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh(ηt+(1η)s)dη=τθKνs+h(t). (2.5)

    By substituting these values in (2.3), we get

    (tτ+θsτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)τθKνs+H(t)2. (2.6)

    Again, by multiplying both sides of (2.2) by

    (ts)(τ+θ)1ν((1η)s+ηt)τ+θ1Γ(ν)[((1η)s+ηt)τ+θsτ+θ]1ν,

    and then integrating with respect to η and by using the same techniques used above, we can obtain:

    (tτ+θsτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)τθKνtH(s)2. (2.7)

    Adding (2.7) and (2.6), we get:

    h(s+t2)Γ(ν+1)(τ+θ)ν4(tτ+θsτ+θ)ν[τθKνs+H(t)+τθKνtH(s)]. (2.8)

    Hence the left-hand side of the inequality (2.1) is established.

    Also since h is convex, we have:

    h(ηs+(1η)t)+h((1η)s+ηt)h(s)+h(t). (2.9)

    Multiplying both sides

    (ts)(τ+θ)1ν((1η)s+ηt)τ+θ1Γ(ν)[tτ+θ((1η)s+ηt)τ+θ]1ν,

    and integrating with respect to η we get

    (ts)(τ+θ)1νΓ(ν)10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh(ηs+(1η)t)dη+(ts)(τ+θ)1νΓ(ν)10((1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νh(ηt+(1η)s)dη(ts)(τ+θ)1νΓ(ν)[h(s)+h(t)]10(1η)s+ηt)τ+θ1[tτ+θ((1η)s+ηt)τ+θ]1νdη, (2.10)

    that is,

    τθKνs+H(t)(tτ+θsτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. (2.11)

    Similarly multiplying both sides of (2.9) by

    (ts)(τ+θ)1ν((1η)s+ηt)τ+θ1Γ(ν)[((1η)s+ηt)τ+θsτ+θ]1ν,

    and integrating with respect to η, we can obtain

    τθKνtH(s)(tτ+θsτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. (2.12)

    Adding the inequalities (2.11) and (2.12), we get:

    Γ(ν+1)(τ+θ)ν4(tτ+θsτ+θ)ν[τθKνtH(s)+τθKνs+H(t)]h(s)+h(t)2. (2.13)

    Combining (2.8) and (2.13), we get the required result.

    The inequality in (2.1) is in compact form containing few inequalities for different integrals in it. The following remark tells us about that fact.

    Remark 2. 1) For θ=1 in (2.1), we get Hermite-Hadamard inequality for Katugampola fractional integral operators, as follows [38]:

    h(s+t2)(τ+1)νΓ(ν+1)4(tτ+1sτ+1)ν[τ1Kνs+H(t)+τ1KνtH(s)]h(s)+h(t)2, (2.14)

    where H(x)=h(x)+˜h(x), ˜h(x)=h(s+tx).

    2) For τ=0 in (2.1), we get Hermite-Hadamard inequality for newly obtained Riemann Liouville type conformable fractional integral operators, as follows:

    h(s+t2)θνΓ(ν+1)4(tθsθ)ν[0θKνs+H(t)+0θKνtH(s)]h(s)+h(t)2, (2.15)

    where H(x)=h(x)+˜h(x), ˜h(x)=h(s+tx).

    3) For τ+θ0, in (2.1), applying L'Hospital rule and the relation (1.3), we get Hermite-Hadamard inequality for Hadamard fractional integral operators, as follows:

    h(s+t2)Γ(ν+1)2(lnts)ν[00+Kνs+h(t)+00+Kνth(s)]h(s)+h(t)2. (2.16)

    4) For τ+θ=1 in (2.1), the Hermite-Hadamard inequality is obtained for Riemann-Liouville fractional integrals [33]:

    h(s+t2)Γ(ν+1)2(ts)ν[01Kνs+h(t)+01Kνth(s)]h(s)+h(t)2. (2.17)

    5) For the case ν=1,τ=0 in (2.1), the Hermite-Hadamard inequality is obtained for the conformable fractional integrals as follows:

    h(s+t2)θ2(tθsθ)tsH(w)dθwh(s)+h(t)2. (2.18)

    6) When θ=ν=1, τ=0 the Hermite-Hadamard inequality is obtained for classical Riemann integrals [15]:

    h(s+t2)1tstsh(w)dwh(s)+h(t)2. (2.19)

    To bound the difference of two rightmost terms in the main inequality (2.1), we need to establish the following Lemma.

    Lemma 1. Let τ+θ>0 and ν>0. If hLθ[s,t], then

    h(s)+h(t)2(τ+θ)νΓ(ν+1)4(tτ+θsτ+θ)ν[τθKνs+H(t)+τθKνtH(s)]=ts4(tτ+θsτ+θ)ν10Δντ+θ(η)h(ηs+(1η)t)dη, (2.20)

    where

    Δντ+θ(η)=[(ηs+(1η)t)τ+θsτ+θ]ν[(ηt+(1η)s)τ+θsτ+θ]ν+[tτ+θ((1η)s+ηt)τ+θ]ν[tτ+θ((1η)t+ηs)τ+θ]ν.

    Proof. With the help of integration by parts, we have

    τθKνs+H(t)=(tτ+θsτ+θ)ν(τ+θ)νΓ(ν+1)H(s)+(ts)ν(τ+θ)νΓ(ν+1)10[tτ+θ((1η)s+ηt)τ+θ]νH(ηt+(1η)s)dη. (2.21)

    Similarly, we have

    τθKνtH(s)=(tτ+θsτ+θ)ν(τ+θ)νΓ(ν+1)H(t)(ts)ν(τ+θ)νΓ(ν+1)10[((1η)s+ηt)τ+θsτ+θ]νH(ηt+(1η)s)dη. (2.22)

    Using (2.21) and (2.22) we have

    4(tτ+θsτ+θ)νts(h(s)+h(t)2(τ+θ)νΓ(ν+1)4(tτ+θsτ+θ)ν[τθKνtH(s)+τθKνs+H(t)])=10([((1η)s+ηt)τ+θsτ+θ]ν[(tτ+θ((1η)s+ηt)τ+θ]ν)H(ηt+(1η)s)dη. (2.23)

    Also, we have

    H(ηt+(1η)s)=h(ηt+(1η)s)h(ηs+(1η)t),η[0,1]. (2.24)

    And

    10[((1η)s+ηt)τ+θsτ+θ]νH(ηt+(1η)s)dη=10[((1η)t+ηs)τ+θsτ+θ]νh(ηs+(1η)t)dη10[((1η)s+ηt)τ+θsτ+θ]νh(ηs+(1η)t)dη. (2.25)

    Also, we have

    10[tτ+θ((1η)s+ηt)τ+θ]νH(ηt+(1η)s)dη=10[tτ+θ((1η)t+ηs)τ+θ]νh(ηs+(1η)t)dη10[tτ+θ((1η)s+ηt)τ+θ]νh(ηs+(1η)t)dη. (2.26)

    Using (2.23), (2.25) and (2.26) we get the required result.

    Remark 3. When τ+θ=1 in Lemma 1, we get the Lemma 2 in [33].

    Definition 3. For ν>0, we define the operators

    Ων1(x,y,τ+θ)=s+t2s|xw||yτ+θwτ+θ|νdwts+t2|xw||yτ+θwτ+θ|νdw, (2.27)

    and

    Ων2(x,y,τ+θ)=s+t2s|xw||wτ+θyτ+θ|νdwts+t2|xw||wτ+θyτ+θ|νdw, (2.28)

    where x,y[s,t][0,) and τ+θ>0.

    Theorem 4. Let h be a conformable integrable function over [s,t] such that |h| is convex function. Then for ν>0 and τ+θ>0 we have:

    |h(s)+h(t)2(τ+θ)νΓ(ν+1)4(tτ+θsτ+θ)ν[τθKνs+H(t)+τθKνtH(s)]|Kντ+θ(s,t)4(ts)(tτ+θsτ+θ)ν(|h(s)|+|h(t)|), (2.29)

    where Kντ+θ(s,t)=Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)Ων2(t,s,τ+θ)Ων1(s,t,τ+θ).

    Proof. Using Lemma 1 and convexity of |h|, we have:

    |h(s)+h(t)2(τ+θ)νΓ(ν+1)4(tτ+θsτ+θ)ν[τθKνs+H(t)+τθKνtH(s)]|ts4(tτ+θsτ+θ)ν10|Δντ+θ(η)||h(ηs+(1η)t)|dηts4(tτ+θsτ+θ)ν(|h(s)|10η|Δντ+θ(η)|dη+|h(t)|10(1η)|Δντ+θ(η)|dη). (2.30)

    Here 10η|Δντ+θ(η)|dη=1(ts)2ts|ψ(u)|(tu)du,

    and ψ(u)=(uτ+θsτ+θ)ν((t+su)τ+θsτ+θ)ν+(tτ+θ(s+tu)τ+θ)ν(tτ+θuτ+θ)ν.

    We observe that ψ is a nondecreasing function on [s,t]. Moreover, we have:

    ψ(s)=2(tτ+θsτ+θ)ν<0,

    and also ψ(s+t2)=0. As a consequence, we have

    {ψ(u)0,if sus+t2,ψ(u)>0,if s+t2<ut.

    Thus we get

    10η|Δντ+θ(η)|dη=1(ts)2ts|ψ(u)|(tu)du=1(ts)2[s+t2sψ(u)(tu)du+ts+t2ψ(u)(tu)du]=1(ts)2[K1+K2+K3+K4], (2.31)

    where

    K1=s+t2s(tu)(uτ+θsτ+θ)νdu+ts+t2(tu)(uτ+θsτ+θ)νdu, (2.32)
    K2=s+t2s(tu)((t+su)τ+θsτ+θ)νduts+t2(tu)((t+su)τ+θsτ+θ)νdu, (2.33)
    K3=s+t2s(tu)(tτ+θ(s+tu)τ+θ)νdu+ts+t2(tu)(tτ+θ(s+tu)τ+θ)νdu, (2.34)

    and

    K4=s+t2s(tu)(tτ+θuτ+θ)νduts+t2(tu)(tτ+θuτ+θ)νdu. (2.35)

    We can see here that K1=Ων2(t,s,τ+θ), K4=Ων1(t,t,τ+θ).

    Also, by using of change of the variables v=s+tu, we get

    K2=Ων2(s,s,τ+θ),K3=Ων1(s,t,τ+θ). (2.36)

    By substituting these values in (2.31), we get

    10ηΔντ+θ(η)dη=Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)Ων1(s,t,τ+θ)(ts)2. (2.37)

    Similarly, we can find

    10(1η)Δντ+θ(η)dη=Ων2(s,s,τ+θ)Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)Ων1(s,t,τ+θ)(ts)2. (2.38)

    Finally, by using (2.30), (2.37) and (2.38) we get the required result.

    Remark 4. when τ+θ=1 in (2.29), we obtain

    |h(s)+h(t)2Γ(ν+1)2(ts)ν[01Kνth(s)+01Kνs+h(t)]|(ts)2(ν+1)(112ν)[h(s)+h(t)],

    which is Theorem 3 in [33].

    A generalized version of Hermite-Hadamard inequality via newly introduced GC fractional operators has been acquired successfully. This result combines several versions (new and old) of the Hermite-Hadamard inequality into a single form, each one has been discussed by fixing parameters in the newly established version of the Hermite-Hadamard inequality. Moreover, an identity containing the GC fractional integral operators has been proved. By using this identity, a bound for the absolute of the difference between the two rightmost terms in the newly established Hermite-Hadamard inequality has been presented. Also, some relations of our results with those of already existing results have been pointed out. Since this is a fact that there exist more than one definitions for fractional derivatives [2] which makes it difficult to choose a convenient operator for solving a given problem. Thus, in the present paper, the GC fractional operators (containing various previously defined fractional operators into a single form) have been used in order to overcome the problem of choosing a suitable fractional operator and to provide a unique platform for researchers working with different operators in this field. Also, by making use of GC fractional operators one can follow the research work which has been performed for the two versions (1.9) and (1.10) of Hermite-Hadamard inequality.

    This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006. doi: 10.1016/S0304-0208(06)80001-0.
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge, UK: Cambridge Scientific Publishers, 2009.
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [5] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. doi: 10.1186/s13661-020-01361-0. doi: 10.1186/s13661-020-01361-0
    [6] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54 (2003), 3413–3442. doi: 10.1155/S0161171203301486. doi: 10.1155/S0161171203301486
    [7] K. Deimling, Set-valued differential equations, De Gruyter, Berlin, 1992.
    [8] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Berlin/Heidelberg: Springer, 1977.
    [9] L. Górniewicz, Topological fixed point theory of multivalued mappings, Dordrecht: Springer, 1999. doi: 10.1007/978-94-015-9195-9.
    [10] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. doi: 10.1142/3779.
    [11] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. doi: 10.1016/j.chaos.2021.110668. doi: 10.1016/j.chaos.2021.110668
    [12] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, New York: Springer, 2011.
    [13] S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. doi: 10.3906/mat-2010-70. doi: 10.3906/mat-2010-70
    [14] Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Amsterdam: Elsevier, 2015. doi: 10.1016/B978-0-12-804277-9.50006-7.
    [15] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [16] J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [17] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [18] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142
    [19] R. Almeida, A Gronwall inequality for a general Caputo fractional operator, arXiv. Available from: https://arXiv.org/abs/1705.10079.
    [20] M. R. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
    [21] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [22] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006. doi: 10.1016/j.cnsns.2016.09.006
    [23] J. V. C. Sousa, E. C. D. Oliveira, On the φ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [24] N. Abada, M. Benchohra, H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equations, 246 (2009), 3834–3863. doi: 10.1016/j.jde.2009.03.004. doi: 10.1016/j.jde.2009.03.004
    [25] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109
    [26] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals, 141 (2020), 110341. doi: 10.1016/j.chaos.2020.110341. doi: 10.1016/j.chaos.2020.110341
    [27] M. S. Abdo, A. G. Ibrahim, S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139–159. doi: 10.17114/j.aua.2018.54.10. doi: 10.17114/j.aua.2018.54.10
    [28] M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Noncompact perturbation of nonconvex noncompact sweeping process with delay, Comment. Math. Univ. Carol., 11 (2020), 1–22. doi: 10.14712/1213-7243.2020.014. doi: 10.14712/1213-7243.2020.014
    [29] M. Benchohra, A. Ouahab, Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003 (2003), 1–10. doi: 10.14232/ejqtde.2003.1.3. doi: 10.14232/ejqtde.2003.1.3
    [30] A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for nonlinear sequential Caputo and Caputo-Hadamard fractional differential inclusions with three-point boundary conditions, Math. Eng. Sci. Aerospace, 12 (2021), 163–179.
    [31] A. Lachouri, A. Ardjouni, A. Djoudi, Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions. J. Interdiscip. Math., 2021 (2021), 1–19. doi: 10.1080/09720529.2021.1877901.
    [32] A. Lachouri, M. S. Abdo, A. Ardjouni, B. Abdalla, T. Abdeljawad, Hilfer fractional differential inclusions with Erdé lyi-Kober fractional integral boundary condition, Adv. Differ. Equ., 2021 (2021), 244. doi: 10.1186/s13662-021-03397-7. doi: 10.1186/s13662-021-03397-7
    [33] J. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29 (2018), 1362–1392. doi: 10.1016/j.indag.2018.07.002. doi: 10.1016/j.indag.2018.07.002
    [34] M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving φ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143
    [35] A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. doi: 10.1186/s13662-019-2047-y. doi: 10.1186/s13662-019-2047-y
    [36] A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open J. Math. Anal., 3 (2019), 106–111. doi: 10.30538/psrp-oma2019.0044. doi: 10.30538/psrp-oma2019.0044
    [37] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. doi: 10.1016/j.aej.2020.04.053. doi: 10.1016/j.aej.2020.04.053
    [38] F. Jarad, E. U˜gurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z
    [39] A. Lachouri, A. Ardjouni, A Djoudi, Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Math. Morav., 24 (2020), 109–122. doi: 10.5937/MatMor2001109L. doi: 10.5937/MatMor2001109L
    [40] A. Lachouri, A. Ardjouni, A. Djoudi, Positive solutions of a fractional integro-differential equation with integral boundary conditions, Commun. Optim. Theory, 2020 (2020), 1–9. doi: 10.23952/cot.2020.1. doi: 10.23952/cot.2020.1
    [41] A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniqueness results for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions, Filomat, 34 (2020), 4881–4891. doi: 10.2298/FIL2014881L. doi: 10.2298/FIL2014881L
    [42] S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. doi: 10.3390/sym13030469. doi: 10.3390/sym13030469
    [43] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. doi: 10.1016/j.aej.2020.01.055. doi: 10.1016/j.aej.2020.01.055
    [44] R. Subashini, C. Ravichandran, K. Jothimani, H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Cont. Dyn. Sys. S., 13 (2020), 911–923. doi: 10.3934/dcdss.2020053. doi: 10.3934/dcdss.2020053
    [45] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. doi: 10.1016/j.chaos.2021.110915. doi: 10.1016/j.chaos.2021.110915
    [46] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887
    [47] D. A. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521
    [48] A. Wongcharoen, S. K. Ntouyas, J. Tariboon, Boundary value problems for Hilfer fractional differential inclusions with nonlocal integral boundary conditions, Mathematics, 8 (2020), 1905. doi: 10.3390/math8111905. doi: 10.3390/math8111905
    [49] M. Aitalioubrahim, S. Sajid, Higher-order boundary value problems for Caratheodory differential inclusions, Miskolc Math. Notes, 9 (2008), 7–15. doi: 10.18514/MMN.2008.180. doi: 10.18514/MMN.2008.180
    [50] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786.
    [51] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. doi: 10.1007/978-0-387-21593-8.
    [52] H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543
    [53] M. Kisielewicz, Differential inclusions and optimal control, Kluwer, Dordrecht, The Netherlands, 1991.
    [54] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
  • This article has been cited by:

    1. Rania Saadeh, Laith Hamdi, Ahmad Qazza, 2024, Chapter 18, 978-981-97-4875-4, 259, 10.1007/978-981-97-4876-1_18
    2. Saad Ihsan Butt, Ahmad Khan, Sanja Tipurić-Spužević, New fractal–fractional Simpson estimates for twice differentiable functions with applications, 2024, 51, 23074108, 100205, 10.1016/j.kjs.2024.100205
    3. Rania Saadeh, Motasem Mustafa, Aliaa Burqan, 2024, Chapter 17, 978-981-97-4875-4, 239, 10.1007/978-981-97-4876-1_17
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2395) PDF downloads(93) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog