Loading [MathJax]/jax/output/SVG/jax.js
Research article

Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive

  • Received: 27 March 2022 Revised: 28 May 2022 Accepted: 18 July 2022 Published: 13 September 2022
  • MSC : 26A33, 34A37, 34K37, 93B05

  • The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.

    Citation: Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart. Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive[J]. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100

    Related Papers:

    [1] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Correction: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2023, 8(4): 9185-9186. doi: 10.3934/math.2023460
    [2] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [3] Kui Liu . Stability analysis for $ (\omega, c) $-periodic non-instantaneous impulsive differential equations. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101
    [4] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [5] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [6] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [7] M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
    [8] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [9] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [10] Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera . A study on controllability for Hilfer fractional differential equations with impulsive delay conditions. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209
  • The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.



    Nonlinear stochastic differential equations play a very important role in formulation and analysis in mechanical, electrical, control engineering, physical sciences, economic and social sciences. Recently, stochastic fractional differential equations have been considered greatly by research community in various aspects due to its salient features for real world problems ([1,2,3,4,5,6]). Also, differential systems with impulses become an important area and many interesting works have been reported in ([7,8,9]). The Sobolev differential system is typically visible in the mathematical structure of numerous physical processes, such as fluid flow through cracked rocks and thermodynamics. Controllability problem for different kinds of fractional dynamical systems have been studied. The control hypothesis is an important area of mathematics that deals with the design and evaluation of control mechanisms. Controllability has had a significant impact on the development of modern mathematical control theory. Control system analysis and design frequently use the problem of dynamical system controllability. In recent years, fractional-order control systems defined by fractional-order differential equations have attracted a lot of attention ([10,11,12,13]) and the references therein.There are many interesting results on the existence and uniqueness of mild solutions for a class of Sobolev type fractional evolution equations [14].

    According to the aforementioned literature review, the existence and exact controllability of the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type have not been thoroughly investigated. Because of this, we think about the existence solution and controllability for the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form

    {Dq,ȷ0+[Zx(t)+G(t,x(ϑ1(t))]=Ax(t)+f(t,x(ϑ2(t)),t0h(t,s)g1(s,x(ϑ3(s)))ds)+σ((t,x(ϑ4(t)),t0h(t,s)g2(s,x(ϑ5(s)))ds)dωdt,t(si,ti+1],i[0,m],x(t)=ξi(t,x(t)),t(ti,si],i[1,m],I(1q)(1ȷ)0+x(0)=x0, (1.1)

    where Dq,ȷ0+ is the Hilfer fractional derivative, 0q1, 0<ȷ<1, the state x() takes values in a separable Hilbert space X with inner product , and norm . The symbol A and Z are linear operators on X. Time interval J=(0,b] where, ti,si are fixed number satisfying 0=s0<t1s1t2<<sm1<tmsmtm+1=b and ξi is noninstataneous impulsive function for all i=1,2,,m, ϑi(t):JJ, i=1,2,3,4,5, are continuous functions. Let K be another separable Hilbert space with inner product ,K and norm K. Suppose {ω(t)}t0 is given K-valued Wiener process with a finite trace nuclear covariance operator Q0. We are also employing the same notation for the norm L(K,X), where L(K,X) denotes the space of all bounded linear operators from K into X. Also, h:J×JR is a continuous function and the mappings G:J×XX, f:J×X×XX, σ:J×X×XLQ(K,X), g1:J×XX and g2:J×XX are nonlinear functions. Here LQ(K,X) denotes the space of all Q-Hilbert Schmidt operator from K into X.

    To the best of our knowledge, there is no work reported on existence solution and controllability for nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form (1.1). Thus, we will make the first attempt to study such problem in this paper. The presented work can be summarized as following:

    Section 2 introduces some basic definitions and lemmas that will help you prove the important points. In Section 3, we show that mild solutions of nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneousimpulsive conditionsexist and are unique. In Section 4, we prove that nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive circumstances are controllable. In the final Section 5, we consider an example to verify the theoretical results. The work is ended by Section 6, which is the conclusion.

    In this section, some definitions and results are given which will be used throughout this paper.

    Definition 2.1. [15] The fractional integral operator of order ȷ>0 for a function f can be defined as

    Iȷf(t)=1Γ(ȷ)t0f(s)(ts)1ȷds,t>0,

    where Γ() is the Gamma function.

    Definition 2.2. [16] The Hilfer fractional derivative of order 0q1 and 0<ȷ<1 is defined as

    Dq,ȷ0+f(t)=Iq(1ȷ)0+ddtI(1q)(1ȷ)0+f(t).

    Let (Ω,Υ,P) be a complete probability space furnished with complete family of right continuous increasing sub σ-algebras {Υt:tJ} satisfying ΥtΥ. An X-valued random variable is an Υ- measurable function x(t):ΩX and a collection of random variables Π={x(t,ω):ΩX|tJ} is called a stochastic process. Usually we suppress the dependence on ωΩ and write x(t) instead of x(t,ω) and x(t):JX in the place of Π. Let βn(t)(n=1,2,...) be a sequence of real valued one-dimensional standard Brownian motions mutually independent over (Ω,Υ,P). Set

    ω(t)=n=1λnβn(t)en,t0,

    where λn,(n=1,2,...) are nonnegative real numbers and {en}(n=1,2,...) is a complete orthonormal basis in K. Let QL(K,K) be an operator defined by Qen=λnen with finite Tr(Q)=n=1λn<, (Tr denotes the trace of the operator). Then the above K-valued stochastic process ω(t) is called Q-Wiener process.

    We assume that Υt=σ{ω(s):0st} is the σ-algebra generated by ω. For ΨL(K,X) we define Ψ2Q=Tr(ΨQΨ)=n=1λnΨen2. If Ψ2Q<, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,X) denote the space of all Q-Hilbert-Schmidt operators Ψ:KX. The completion LQ(K,X) of L(K,X) with respect to the topology induced by the norm Q where Ψ2Q=Ψ,Ψ is a Hilbert space with the above norm topology.

    The collection of all strongly-measurable, square-integrable, X-valued random variables, denoted by L2(Ω,X) is a Banach space equipped with norm x()L2(Ω,X)=(Ex(,ω)2)12, where the expectation, E is defined by E(x)=Ωx(ω)dP.

    Let C(J,L2(Ω,X)) be the Banach space of all continuous maps from J into L2(Ω,X) satisfying the condition suptJEx(t)2<. Define Y=Cq,ȷ((0,b],L2(Ω,X))={x:xC((0,b],L2(Ω,X)):limt0+t(1q)(1ȷ)} endowed with the norm Y=(supt(0,b]Et(1q)(1ȷ)x(t)2)12.

    Obviously, Y is a Banach space.

    Introduce the set Br={xY:x2Yr}, where r>0.

    The operators A:D(A)XX and Z:D(Z)XX satisfy the following hypotheses:

    (H1) A and Z are closed linear operators.

    (H2) D(Z)D(A) and Z is bijective.

    (H3) Z1:XD(Z) is continuous. Here, (H1) and (H2) together with the closed graph theorem imply the boundedness of the linear operator AZ1:XX.

    (H4) For each tJ and for λρ(AZ1), the resolvent of AZ1, the resolvent R(λ,AZ1) is compact operator.

    Lemma 2.3. [17] Let T(t) be a uniformly continuous semigroup generated by A. If the resolvent set R(λ,A) of A is compact for every λρ(A), then T(t) is a compact semigroup.

    From the above fact, AZ1 generates a compact semigroup {S(t),t>0} in X, which means that there exists M>1 such that suptJS(t)M. We suppose that 0ρ(AZ1), the resolvent set of AZ1 and S(t)M for some constant M1 and every t>0. We define the fractional power (AZ1)γ by

    (AZ1)γ=1Γ(γ)0tγ1S(t)dt,γ>0.

    For γ(0,1], (AZ1)γ is a closed linear operator on its domain D((AZ1)γ). Furthermore, the subspace D((AZ1)γ) is dense in X. We will introduce the following basic properties of (AZ1)γ.

    Theorem 2.4. (see [18]) The following results hold.

    (i) Let 0<γ1, then Xγ:=D((AZ1)γ) is a Banach space with the norm xγ=(AZ1)γx, xXγ.

    (ii) If 0<β<γ1, then D((AZ1)γ)D((AZ1)β) and the embedding is compact whenever the resolvent operator of (AZ1) is compact.

    (iii) For every 0<γ1, there exists a positive constant Cγ such that

    (AZ1)γS(t)Cγtγ,0<tb.

    For xX, we define two families of operators {Sq,ȷ(t):t>0} and {Pȷ(t):t>0} by

    Sq,ȷ(t)=Iq(1ȷ)0+Pȷ(t),Pȷ(t)=tȷ1Tȷ(t),Tȷ(t)=0ȷθΨȷ(θ)S(tȷθ)dθ, (2.1)

    where

    Ψȷ(θ)=n=1(θ)n1(n1)!Γ(1nȷ),0<ȷ<1,θ(0,), (2.2)

    is a function of Wright-type which satisfies

    0θτΨȷ(θ)dθ=Γ(1+τ)Γ(1+ȷτ), for θ0.

    Lemma 2.5. ([19], Propositions 2.15–2.17) The operators Sq,ȷ and Pȷ have the following properties.

    (i) {Pȷ(t):t>0} is continuous in the uniform operator topology.

    (ii) For any fixed t>0,Sq,ȷ(t) and Pȷ(t) are linear and bounded operators, and

    Pȷ(t)xMtȷ1Γ(ȷ)x,Sq,ȷ(t)xMt(q1)(1ȷ)Γ(q(1ȷ)+ȷ)x. (2.3)

    (iii) {Pȷ(t):t>0} and {Sq,ȷ(t):t>0} are strongly continuous.

    By Theorem 2.4 and Lemma 2.5, we have

    Lemma 2.6. For any xX, β(0,1) and δ(0,1], we have

    (AZ1)Tȷ(t)x=(AZ1)1βTȷ(t)(AZ1)βx,0<tb,

    and

    (AZ1)δTȷ(t)xȷCδΓ(2δ)tδȷΓ(1+ȷ(1δ))x,0<tb.

    Lemma 2.7. [20] (Burkholder-Davis-Gundy inequalities) Let T>0 and (Mt)0tT be a continuous local martingale such that M0=0. For every 0<p<, there exist universal constants cp and Cp, independent of T and (Mt)0tT such that cpE(Mp2T)E((sup0tT|Mt|)p)CpE(Mp2T).

    In this section, we study the existence and uniqueness of mild solution for the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form (1.1).

    Definition 3.1. (see [19]) An Υt-adapted stochastic process x(t):JX is a mild solution of the system (1.1) if the function AZ1Pȷ(ts)G(s,x(ϑ1(s)),s(0,b) is integrable on (0,b) and the following integral equation is verified:

    x(t)=Z1Sq,ȷ(t)[Zx0+G(0,x(0))]Z1G(t,x(ϑ1(t))+t0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+t0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(0,t1],x(t)=ξi(t,x(t)),t(ti,si],i=1,2,,m,x(t)=Z1Sq,ȷ(tsi)ξi(si,x(si))Z1G(t,x(ϑ1(t))+tsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+tsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(si,ti+1],i=1,2,,m. (3.1)

    In this paper we need the following assumptions.

    (H5) (i) The function G:J×XX is continuous and there exists constants K1>0, K2>0 such that for tJ, ϑ1(t)X we have

    E(AZ1)βG(t,x1(ϑ1(t)))(AZ1)βG(t,x2(ϑ1(t)))2K1Ex1(ϑ1(t))x2(ϑ1(t))2,K2=E(AZ1)βG(t,0)2.

    (ii) The function f:J×X×XX is continuous and there exists constants N1>0, N2>0 such that for tJ, ϑ2(t),v1(t),v2(t)X, we have

    Ef(t,x1(ϑ2(t)),v1(t))f(t,x2(ϑ2(t)),v2(t))2N1[Ex1(ϑ2(t))x2(ϑ2(t))2+Ev1(t)v2(t)2],N2=Ef(t,0,0)2.

    (iii) The function σ:J×X×XLQ(K,X) is continuous and there exists constants C1>0, C2>0 such that for tJ, ϑ4(t),y1(t),y2(t)X, we have

    Eσ(t,x1(ϑ4(t)),y1(t))σ(t,x2(ϑ4(t)),y2(t))2QC1[Ex1(ϑ4(t))x2(ϑ4(t))2+Ey1(t)y2(t)2],C2=Eσ(t,0,0)2Q.

    (iv) The functions ξi:(ti,si]×XX are continuous and there exist constants C7,C8>0, such that for all t(ti,si],i=1,2,,m, x, yX, we have

    Eξi(t,x)ξi(t,y)2C7Exy2,C8=ξi(t,0)2.

    (H6) (i) g1:J×XX is continuous and there exist constants C3>0, C4>0 such that for tJ and ϑ3(t)X, we have

    Eg1(t,x1(ϑ3(t)))g1(t,x2(ϑ3(t)))2C3Ex1(ϑ3(t))x2(ϑ3(t))2,C4=Eg(t,0)2.

    (ii) g2:J×XX is continuous and there exist constants C5>0, C6>0 such that for tJ and ϑ5(t)X, we have

    Eg2(t,x1(ϑ5(t)))g2(t,x2(ϑ3(t)))2C5Ex1(ϑ3(t))x2(ϑ3(t))2,C6=Eg2(t,0)2.

    (H7) There exists a constant C such that E|h(t,s)|2C for (t,s)J×J.

    (H8) There exists a constant q such that for all x1,x2X,

    Ex1(ϑi(t))x2(ϑi(t))2qEx1(t)x2(t)2, for i=1,2,3,4,5.

    (H9) There exists a constant r>0 such that

    25M2Z12Γ2(q(1ȷ)+ȷ)[Z2Ex02+M20(K1Ex02+K2)+(rC7+C8)]+b2(1q)(1ȷ)(rC7+C8)+25Z12[rK1+K2][M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25Z12M2b22q(1ȷ)ȷ2Γ2(ȷ)δ1r,

    where

    δ1=(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2),M0=(AZ1)β.

    Theorem 3.2. If the hypotheses (H1)(H9) are satisfied, then the system (1.1) has a mild solution on J provided that

    ζ:=25Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q1)(1ȷ)C7Γ2(q(1ȷ)+ȷ)}+C7<1.

    Proof. Consider the operator Φ on Y defined as follows:

    Φx(t)=Z1Sq,ȷ(t)[Zx0+G(0,x(0))]Z1G(t,x(ϑ1(t))+t0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+t0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(0,t1],Φx(t)=ξi(t,x(t)),t(ti,si],i=1,2,,m,Φx(t)=Z1Sq,ȷ(tsi)ξi(si,x(si))Z1G(t,x(ϑ1(t))+tsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+tsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(si,ti+1],i=1,2,,m.

    It will be shown that the operator Φ has a fixed point. This fixed point is then a mild solution of a system (1.1). For xBr, we show that Φ maps Br into itself. From Lemmas 2.5–2.7 together with Hölder inequality, we have for t(0,t1]

    Φx2Y25suptJt2(1q)(1ȷ){EZ1Sq,ȷ(t)[Zx0+G(0,x(0))]2+EZ1G(t,x(ϑ1(t)))2+Et0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+Et0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+Et0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q}25M2Z12Γ2(q(1ȷ)+ȷ)[Z2Ex02+M20(K1Ex02+K2)]+25Z12[rK1+K2][M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25Z12M2b22q(1ȷ)δ1ȷ2Γ2(ȷ)r,

    for t(ti,si]

    Φx2YsuptJt2(1q)(1ȷ)Eξi(t,x(t))2b2(1q)(1ȷ)(rC7+C8)r,

    and for t(si,ti+1]

    Φx2Y25suptJt2(1q)(1ȷ){EZ1Sq,ȷ(tsi)ξi(si,x(si))2+EZ1G(t,x(ϑ1(t)))2+EtsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+EtsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+EtsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q}25M2Z12Γ2(q(1ȷ)+ȷ)(rC7+C8)+25Z12[rK1+K2][M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25Z12M2b22q(1ȷ)δ1ȷ2Γ2(ȷ)r.

    Thus Φ maps Br into itself.

    We show that (Φx)(t) is continuous on [0,b] for any xBr. Let 0<tb and ϵ>0 be sufficiently small, then for t(0,t1]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)25suptJt(1q)(1ȷ)EZ1(Sq,ȷ(t+ϵ)Sq,ȷ(t))[Zx0+G(0,x(0))]|2+5suptJt(1q)(1ȷ)EZ1G(t+ϵ,x(ϑ1(t+ϵ)))Z1G(t,x(ϑ1(t)))2+5suptJt(1q)(1ȷ)Et+ϵ0Z1AZ1Pȷ(t+ϵs)G(s,x(ϑ1(s)))dst0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+5suptJt(1q)(1ȷ)Et+ϵ0Z1Pȷ(t+ϵs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dst0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+5suptJt(1q)(1ȷ)t+ϵ0Z1Pȷ(t+ϵs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q, (3.2)

    for t(ti,si]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)2suptJt2(1q)(1ȷ)Eξi(t+ϵ,x(t+ϵ))ξi(t,x(t))2, (3.3)

    and for t(si,ti+1]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)25suptJt(1q)(1ȷ)EZ1(Sq,ȷ(t+ϵsi)Sq,ȷ(tsi))ξi(si,x(si))2+5suptJt(1q)(1ȷ)EZ1G(t+ϵ,x(ϑ1(t+ϵ)))Z1G(t,x(ϑ1(t)))2+5suptJt(1q)(1ȷ)Et+ϵsiZ1AZ1Pȷ(t+ϵs)G(s,x(ϑ1(s)))dstsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+5suptJt(1q)(1ȷ)Et+ϵsiZ1Pȷ(t+ϵs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dstsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+5suptJt(1q)(1ȷ)t+ϵsiZ1Pȷ(t+ϵs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q. (3.4)

    Clearly, the right hand sides of (3.2)–(3.4) are tends to zero as ϵ0. Hence, (Φx)(t) is continuous on [0,b].

    Next for x1,x2Br, we show that Φ is a contraction mapping. From Lemmas 2.5–2.7 together with Hölder inequality, we obtain for t(0,t1]

    E(Φx1)(t)(Φx2)(t)225Z12{(AZ1)β2E(AZ1)βG(t,x1(ϑ1(t)))(AZ1)βG(t,x2(ϑ1(t)))2+Et0(ts)ȷ1(AZ1)1βTȷ(ts)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]ds2+Et0Pȷ(ts)[f(s,x1(ϑ2(s)),s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)f(s,x2(ϑ2(s)),s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds2+Et0Pȷ(ts)[σ(s,x1(ϑ4(s)),s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)σ(s,x2(ϑ4(s)),s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)2}25Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]}Ex1(t)x2(t)2, (3.5)

    for t(ti,si]

    E(Φx1)(t)(Φx2)(t)2Eξi(t,x1(t))ξi(t,x2(t))2C7Ex1(t)x2(t)2, (3.6)

    and for t(si,ti+1]

    E(Φx1)(t)(Φx2)(t)225Z12{ESq,ȷ(tsi)(ξi(si,x1(si))ξi(si,x2(si)))2+(AZ1)β2E(AZ1)βG(t,x1(ϑ1(t)))(AZ1)βG(t,x2(ϑ1(t)))2+Etsi(ts)ȷ1(AZ1)1βTȷ(ts)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]ds2+EtsiPȷ(ts)[f(s,x1(ϑ2(s)),s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)f(s,x2(ϑ2(s)),s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds2+EtsiPȷ(ts)[σ(s,x1(ϑ4(s)),s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)σ(s,x2(ϑ4(s)),s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)2}25Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q1)(1ȷ)C7Γ2(q(1ȷ)+ȷ)}Ex1(t)x2(t)2. (3.7)

    Therefore, by combining (3.5)–(3.7), we get

    suptJt2(1q)(1ȷ)E(Φx1)(t)(Φx2)(t)2ζsuptJt2(1q)(1ȷ)Ex1(t)x2(t)2.

    This implies that

    Φx1Φx22Yζx1x22Y.

    Then, Φ is a contraction mapping and hence there exists unique fixed point xBr such that Φx=x. Hence, any fixed point of Φ is a mild solution of (1.1) on J. The proof is completed.

    In this section, we study the controllability of the following Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive condition:

    {Dq,ȷ0+[Zx(t)+G(t,x(ϑ1(t)))]=Ax(t)+Bu(t)+f(t,x(ϑ2(t)),t0h(t,s)g1(s,x(ϑ3(s)))ds)+σ(t,x(ϑ4(t)),t0h(t,s)g2(s,x(ϑ5(s)))ds)dωdt,t(si,ti+1],i[0,m]x(t)=ξi(t,x(t)),t(ti,si],i[1,m]I(1q)(1ȷ)0+x(0)=x0, (4.1)

    where B:UX is a bounded linear operator and the control function uL2(J,U), the Hilbert space of admissible control functions with U a Hilbert space.

    Definition 4.1. An Υt-adapted stochastic process x(t):JX is a mild solution of the system (4.1) if the function AZ1Pȷ(ts)G(s,x(ϑ1(s)),s(0,b) is integrable on (0,b) and the following integral equation is verified:

    x(t)=Z1Sq,ȷ(t)[Zx0+G(0,x(0))]Z1G(t,x(ϑ1(t))+t0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+t0Z1Pȷ(ts)Bu(s)ds+t0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(0,t1]x(t)=ξi(t,x(t)),t(ti,si],i=1,2,,mx(t)=Z1Sq,ȷ(tsi)ξi(si,x(si))Z1G(t,x(ϑ1(t))+tsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+tsiZ1Pȷ(ts)Bu(s)ds+tsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(si,ti+1],i=1,2,,m. (4.2)

    Definition 4.2. The system (4.1) is said to be controllable on J, if for every x0,x1X, there exists a control uL2(J,U) such that the mild solution x(t) of the system (4.1) satisfies x(b)=x1, where x1 and b are the preassigned terminal state and time respectively.

    To establish the result, we need the following additional hypotheses

    (H10) The linear operator W from U into X defined by

    Wu=b0Z1Pȷ(bs)Bu(s)ds

    has an inverse bounded operator W1 which takes values in L2(J,U)kerW, where the kernel space of W is defined by kerW={xL2(J,U):Wx=0} and B is bounded operator.

    (H11) There exists a constant r>0 such that

    [δ3+δ4Γ2(q(1ȷ)+ȷ)+(M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+36Z12M2b22q(1ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷZ12B2W12ȷ2Γ2(ȷ)]+36M2b22q(1ȷ)Z12B2W12Ex12ȷ2Γ2(ȷ)+b2(1q)(1ȷ)(rC7+C8)r,

    where

    δ2=36Z12[rK1+K2],δ3=36M2Z12[Z2Ex02+M20(K1Ex02+K2)],δ4=36M2Z12(rC7+C8).

    Theorem 4.3. If the hypotheses (H1)(H8), (H10) and (H11) are satisfied then, the system (4.1) is controllable on J. provided that

    ϱ:=36Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q1)(1ȷ)C7Γ2(q(1ȷ)+ȷ)}{1+36M2b2ȷZ14B2W12ȷ2Γ2(ȷ)}+c7<1.

    Proof. Using the assumption (H10), define the control

    u(t)=W1{x1Z1Sq,ȷ(t)[Zx0+G(0,x(0))]+Z1G(b,x(ϑ1(b)))b0Z1AZ1Pȷ(bs)G(s,x(ϑ1(s)))dsb0Z1Pȷ(bs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dsb0Z1Pȷ(bs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)},t(0,t1],u(t)=W1{x1Z1Sq,ȷ(tsi)ξi(si,x(si))+Z1G(b,x(ϑ1(b)))bsiZ1AZ1Pȷ(bs)G(s,x(ϑ1(s)))dsbsiZ1Pȷ(bs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dsbsiZ1Pȷ(bs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)},t(si,ti+1].

    Consider the operator Φ on Y defined as follows:

    Φx(t)=Z1Sq,ȷ(t)[Zx0+G(0,x(0))]Z1G(t,x(ϑ1(t))+t0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+t0Z1Pȷ(ts)Bu(s)ds+t0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(0,t1],Φx(t)=ξi(t,x(t)),t(ti,si],i=1,2,,m,Φx(t)=Z1Sq,ȷ(tsi)ξi(si,x(si))Z1G(t,x(ϑ1(t))+tsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds+tsiZ1Pȷ(ts)Bu(s)ds+tsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t(si,ti+1],i=1,2,,m.

    It will be shown that the operator Φ has a fixed point. This fixed point is then a mild solution of a system (4.1). For xBr, we show that Φ maps Br into itself. From Lemmas 2.5–2.7 together with Hölder inequality, yields for t(0,t1]

    Φx2Y36suptJt2(1q)(1ȷ){EZ1Sq,ȷ(t)[Zx0+G(0,x(0))]2+EZ1G(t,x(ϑ1(t))2+Et0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds2+Et0Z1Pȷ(ts)Bu(s)ds2+Et0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+Et0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q
    {36M2Z12Γ2(q(1ȷ)+ȷ)[Z2Ex02+M20(K1Ex02+K2)]+36Z12[rK1+K2][M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+36Z12M2b22q(1ȷ)ȷ2Γ2(ȷ)[(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2)]}[1+M2b2ȷZ12B2W12ȷ2Γ2(ȷ)]+36M2b22q(1ȷ)Z12B2W12ȷ2Γ2(ȷ)Ex12=[δ3Γ2(q(1ȷ)+ȷ)+(M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+49Z12M2b22q(1ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷZ12B2W12ȷ2Γ2(ȷ)]+49M2b22q(1ȷ)Z12B2W12Ex12ȷ2Γ2(ȷ)r.

    for t(ti,si]

    Φx2YsuptJt2(1q)(1ȷ)Eξi(t,x(t))2b2(1q)(1ȷ)(rC7+C8)r,

    and for t(si,ti+1]

    Φx2Y36suptJt2(1q)(1ȷ){EZ1Sq,ȷ(tsi)ξi(si,x(si))2+EZ1G(t,x(ϑ1(t))2+EtsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s))ds2+EtsiZ1Pȷ(ts)Bu(s)ds2+EtsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+EtsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q
    {36M2Z12Γ2(q(1ȷ)+ȷ)(rC7+C8)+36Z12[rK1+K2][M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+36Z12M2b22q(1ȷ)ȷ2Γ2(ȷ)[(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2)]}[1+M2b2ȷZ12B2W12ȷ2Γ2(ȷ)]+36M2b22q(1ȷ)Z12B2W12ȷ2Γ2(ȷ)Ex12=[δ4Γ2(q(1ȷ)+ȷ)+(M20+M2C21βb2βȷ+2(1q)(1ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+49Z12M2b22q(1ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷZ12B2W12ȷ2Γ2(ȷ)]+49M2b22q(1ȷ)Z12B2W12Ex12ȷ2Γ2(ȷ)r.

    Thus Φ maps Br into itself.

    We show that (Φx)(t) is continuous on [0,b] for any xBr. Let 0<tb and ϵ>0 be sufficiently small, then, then for t(0,t1]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)26suptJt(1q)(1ȷ)EZ1(Sq,ȷ(t+ϵ)Sq,ȷ(t))[Zx0+G(0,x(0))]|2+6suptJt(1q)(1ȷ)EZ1G(t+ϵ,x(ϑ1(t+ϵ)))Z1G(t,x(ϑ1(t)))2+6suptJt(1q)(1ȷ)Et+ϵ0Z1AZ1Pȷ(t+ϵs)G(s,x(ϑ1(s)))dst0Z1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+6suptJt(1q)(1ȷ)Et+ϵ0Z1Pȷ(t+ϵs)Bu(s)dst0Z1Pȷ(ts)Bu(s)ds2+6suptJt(1q)(1ȷ)Et+ϵ0Z1Pȷ(t+ϵs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dst0Z1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+6suptJt(1q)(1ȷ)t+ϵ0Z1Pȷ(t+ϵs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)t0Z1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q, (4.3)

    for t(ti,si]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)2suptJt2(1q)(1ȷ)Eξi(t+ϵ,x(t+ϵ))ξi(t,x(t))2 (4.4)

    and for t(si,ti+1]

    (Φx)(+ϵ)(Φx)()2Y=suptJt(1q)(1ȷ)E(Φx)(t+ϵ)(Φx)(t)26suptJt(1q)(1ȷ)EZ1(Sq,ȷ(t+ϵsi)Sq,ȷ(tsi))ξi(si,x(si))2+6suptJt(1q)(1ȷ)EZ1G(t+ϵ,x(ϑ1(t+ϵ)))Z1G(t,x(ϑ1(t)))2+6suptJt(1q)(1ȷ)Et+ϵsiZ1AZ1Pȷ(t+ϵs)G(s,x(ϑ1(s)))dstsiZ1AZ1Pȷ(ts)G(s,x(ϑ1(s)))ds2+6suptJt(1q)(1ȷ)Et+ϵsiZ1Pȷ(t+ϵs)Bu(s)dstsiZ1Pȷ(ts)Bu(s)ds2+6suptJt(1q)(1ȷ)Et+ϵsiZ1Pȷ(t+ϵs)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)dstsiZ1Pȷ(ts)f(s,x(ϑ2(s)),s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds2+6suptJt(1q)(1ȷ)t+ϵsiZ1Pȷ(t+ϵs)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)tsiZ1Pȷ(ts)σ(s,x(ϑ4(s)),s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)2Q, (4.5)

    Clearly, the right hand sides of (4.3)–(4.5) are tends to zero as ϵ0. Hence, (Φx)(t) is continuous on [0,b].

    Next for x1,x2Br, we show that Φ is a contraction mapping. From Lemmas 2.5–2.7 together with Hölder inequality, we obtain for t(0,t1]

    E(Φx1)(t)(Φx2)(t)236Z12{(AZ1)β2E(AZ1)βG(t,x1(ϑ1(t)))(AZ1)βG(t,x2(ϑ1(t)))2+Et0(ts)ȷ1(AZ1)1βTȷ(ts)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]ds2+Et0Pȷ(ts)[f(s,x1(ϑ2(s)),s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)f(s,x2(ϑ2(s)),s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds2+Et0Pȷ(ts)[σ(s,x1(ϑ4(s)),s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)σ(s,x2(ϑ4(s)),s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)2}+36Et0Z1Pȷ(ts)BW1{Z1(AZ1)β[(AZ1)βG(b,x1(ϑ1(b)))(AZ1)βG(b,x2(ϑ1(b)))]b0Z1(bs)ȷ1(AZ1)1βTȷ(bs)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]dsb0Z1Pȷ(bτ)[f(τ,x1(ϑ2(τ)),τ0h(τ,η)g1(η,x1(ϑ3(η)))dη)f(τ,x2(ϑ2(τ)),τ0h(τ,η)g1(η,x2(ϑ3(η)))dη)]dτb0Z1Pȷ(bτ)[σ(τ,x1(ϑ4(τ)),τ0h(τ,η)g2(η,x1(ϑ5(η)))dη)σ(τ,x2(ϑ4(τ)),τ0h(τ,η)g2(η,x2(ϑ5(η)))dη)dω(τ)]}ds236Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]}×{1+49M2b2ȷZ14B2W12ȷ2Γ2(ȷ)}Ex1(t)x2(t)2, (4.6)

    for t(ti,si]

    E(Φx1)(t)(Φx2)(t)2Eξi(t,x1(t))ξi(t,x2(t))2C7Ex1(t)x2(t)2, (4.7)

    and for t(si,ti+1]

    E(Φx1)(t)(Φx2)(t)236Z12{ESq,ȷ(tsi)(ξi(si,x1(si))ξi(si,x2(si)))2+(AZ1)β2E(AZ1)βG(t,x1(ϑ1(t)))(AZ1)βG(t,x2(ϑ1(t)))2+Etsi(ts)ȷ1(AZ1)1βTȷ(ts)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]ds2+EtsiPȷ(ts)[f(s,x1(ϑ2(s)),s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)f(s,x2(ϑ2(s)),s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds2+EtsiPȷ(ts)[σ(s,x1(ϑ4(s)),s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)σ(s,x2(ϑ4(s)),s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)2}+36EtsiZ1Pȷ(ts)BW1{Z1Sq,ȷ(bsi)(ξi(si,x1(si))ξi(si,x2(si)))+Z1(AZ1)β[(AZ1)βG(b,x1(ϑ1(b)))(AZ1)βG(b,x2(ϑ1(b)))]bsiZ1(bs)ȷ1(AZ1)1βTȷ(bs)[(AZ1)βG(s,x1(ϑ1(s)))(AZ1)βG(s,x2(ϑ1(s)))]dsbsiZ1Pȷ(bτ)[f(τ,x1(ϑ2(τ)),τ0h(τ,η)g1(η,x1(ϑ3(η)))dη)f(τ,x2(ϑ2(τ)),τ0h(τ,η)g1(η,x2(ϑ3(η)))dη)]dτbsiZ1Pȷ(bτ)[σ(τ,x1(ϑ4(τ)),τ0h(τ,η)g2(η,x1(ϑ5(η)))dη)σ(τ,x2(ϑ4(τ)),τ0h(τ,η)g2(η,x2(ϑ5(η)))dη)dω(τ)]}ds236Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q1)(1ȷ)C7Γ2(q(1ȷ)+ȷ)}{1+36M2b2ȷZ14B2W12ȷ2Γ2(ȷ)}Ex1(t)x2(t)2, (4.8)

    Therefore, by combining (4.6)–(4.8), we get

    suptJt2(1q)(1ȷ)E(Φx1)(t)(Φx2)(t)2ϱsuptJt2(1q)(1ȷ)Ex1(t)x2(t)2.

    This implies that

    Φx1Φx22Yϱx1x22Y.

    Then, Φ is a contraction mapping and hence there exists unique fixed point xBr such that Φx(t)=x(t). Therefore the system (4.1) has a mild solution satisfying x(b)=x1. Thus, system (4.1) is controllable on J.

    In this section, we present an example to illustrate our main result. Let us consider the following Sobolev-type Hilfer fractional stochastic partial differential equation with noninstantaneous impulsive condition

    {D13,350+[x(t,y)xyy(t,y)+˜G(t,x(tρ1,y))]=2x(t,y)y2+υ(t,y)+x(tρ2,y)+t0sinx(sρ3,y)ds+x(tρ4,y)+t0ex(sρ5,y)dω(s),t(0,15](25,35](44,1],0zπ,x(t,0)=x(t,π)=0,t(0,1],x(t,y)=15e(t15)x(t,y)1+x(t,y),t(15,25],0yπ,x(t,y)=35e(t35)x(t,y)1+x(t,y),t(35,45],0yπ,I4150+(x(0,y))=x0(y),0yπ, (5.1)

    where D13,350+ is the Hilfer fractional derivative of order q=13,ȷ=35.

    Let X=U=L2([0,π]), define the operator Z:D(Z)XX and A:D(A)XX by Zx=xxyy and Ax=xyy where domains D(Z) and D(A) are given by {xX:x,xy are absolutely continuous, xyyX,x(0)=x(π)=0}. Then A and Z can be written as

    Ax=n=1n2x,xnxn,xD(A),Zx=n=1(1+n2)x,xnxn,xD(Z).

    Furthermore, for xX we have

    Z1x=n=111+n2x,xnxn,AZ1x=n=1n21+n2x,xnxn.

    It is known that AZ1 is self-adjoin and has the eigenvalues λn=n2π2,nN, with the corresponding normalized eigenvectors en()=2sin(nπ). Furthermore, AZ1 generates a uniformly strongly continuous semigroup of bounded linear operators S(t),t0, on X which is given by

    S(t)x=n=1en21+n2tx,xnxn,xX,

    with S(t)et1.

    Moreover, the two operators S13,35(t) and P35(t) can be defined by

    S13,35(t)x=35Γ(215)t00θ(ts)1315s25Ψ35(θ)T(s35θ)xdθds,
    P35(t)x=350θt25Ψ35(θ)T(s35θ)xdθ.

    Clearly,

    P35(t)1Γ(35),S13,35(t)1Γ(1115).

    We define the bounded operator B:UX by B=I.

    Also, We define the following functions:

    x(t)y=x(t,y),ξ1(t,x(t,y))=15e(t15)x(t,y)1+x(t,y),ξ2(t,x(t,y))=35e(t35)x(t,y)1+x(t,y),G(t,x(ϑ1(t)))(y)=˜G(t,x(tρ1,y)),t0h(t,s)g1(s,x(ϑ3(s))(y)ds=t0sinx(sρ3,y)ds,t0h(t,s)g2(s,x(ϑ5(s))(y)ds=t0ex(sρ5,y)dsf(t,x(ϑ2(t)),t0h(t,s)g1(s,x(ϑ3(s)))ds)(y)=x(tρ2,y)+t0sinx(sρ3,y)ds,σ(t,x(ϑ4(t)),t0h(t,s)g2(s,x(ϑ5(s)))ds)(y)=x(tρ4,y)+t0ex(sρ5,y)ds,

    where h(t,s)=1.

    Hence, with the above choices, system (5.1) can be rewritten in the abstract form of (4.1). On the other hand, all the hypotheses of Theorem 4 are satisfied and

    ϱ:=36Z12{[M20+M2C21βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q1)(1ȷ)C7Γ2(q(1ȷ)+ȷ)}{1+36M2b2ȷZ14B2W12ȷ2Γ2(ȷ)}+c7<1.

    Thus, we can conclude that the Sobolev-type Hilfer fractional stochastic partial differential inclusions with noninstantaneous impulsive condition (5.1) is controllable on (0,1].

    In this paper, we show that there is a moderate solution for nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive in Hilbert space. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive circumstances, we established suitable controllability criteria. To demonstrate the acquired results, an example is given.

    The author declares that they have no competing interests.



    [1] X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997.
    [2] A. Atangana, S. I. Araz, Fractional stochastic differential equations: Applications to Covid-19 modeling, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0729-6
    [3] F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson iumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528
    [4] H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021), 104666. https://doi.org/10.1016/j.rinp.2021.104666 doi: 10.1016/j.rinp.2021.104666
    [5] M. Adel, Numerical simulations for the variable order two-dimensional reaction sub diffusion equation: Linear and nonlinear, Fractals, 30 (2022), 2240019. https://doi.org/10.1142/S0218348X22400199 doi: 10.1142/S0218348X22400199
    [6] M. Adel, M. Elsaid, An efficient approach for solving fractional variable order reaction sub-diffusion equation base on Hermite formula, Fractals, 30 (2022), 2240020. https://doi.org/10.1142/S0218348X22400205 doi: 10.1142/S0218348X22400205
    [7] M. M. Khader, J. F. Gómez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method, Int. J. Circ. Theor. App., 49 (2021), 3266–3285. https://doi.org/10.1002/cta.3103 doi: 10.1002/cta.3103
    [8] M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8062
    [9] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound Value Probl., 2020 (2020), 1–25. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0
    [10] J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322–332. https://doi.org/10.1016/j.jmaa.2004.01.050 doi: 10.1016/j.jmaa.2004.01.050
    [11] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
    [12] P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order 1<q<2 with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213–235. https://doi.org/10.1007/s10883-015-9309-0 doi: 10.1007/s10883-015-9309-0
    [13] A. Chadha, S. N. Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control Syst., 24 (2018), 101–128. https://doi.org/10.1007/s10883-016-9348-1 doi: 10.1007/s10883-016-9348-1
    [14] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarke's subdifferential, J. Inequal. Appl., 2019 (2019), 233. https://doi.org/10.1186/s13660-019-2184-6 doi: 10.1186/s13660-019-2184-6
    [15] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993.
    [16] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [17] R. F. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-4224-6
    [18] A. Pazy, Semigroups of linear operators and applications to partial differential equations, In: Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [19] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [20] I. Yaroslavtsev, Burkholder-Davis-Gundy inequalities in UMD banach spaces, Commun. Math. Phys., 379 (2020), 417–459. https://doi.org/10.1007/s00220-020-03845-7 doi: 10.1007/s00220-020-03845-7
  • This article has been cited by:

    1. Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart, Correction: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive, 2023, 8, 2473-6988, 9185, 10.3934/math.2023460
    2. Ihteram Ali, Imtiaz Ahmad, Applications of the nonlinear Klein/Sinh-Gordon equations in modern physics: a numerical study, 2024, 4, 2767-8946, 361, 10.3934/mmc.2024029
    3. Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad, Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators, 2023, 8, 2473-6988, 30374, 10.3934/math.20231551
    4. Vandana Yadav, Ramesh Kumar Vats, Ankit Kumar, An Investigation on the Approximate Controllability of Non-instantaneous Impulsive Hilfer Sobolev-Type Fractional Stochastic System Driven by the Rosenblatt Process and Poisson Jumps, 2025, 24, 1575-5460, 10.1007/s12346-025-01222-0
    5. Zeeshan Afzal, Mansoor Alshehri, Error evaluation and stability analysis of numerical schemes in multiple sclerosis modeling, 2025, 16, 20904479, 103551, 10.1016/j.asej.2025.103551
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1882) PDF downloads(103) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog