The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.
Citation: Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart. Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive[J]. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
[1] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Correction: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2023, 8(4): 9185-9186. doi: 10.3934/math.2023460 |
[2] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[3] | Kui Liu . Stability analysis for $ (\omega, c) $-periodic non-instantaneous impulsive differential equations. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101 |
[4] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[5] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[6] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[7] | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229 |
[8] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[9] | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345 |
[10] | Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera . A study on controllability for Hilfer fractional differential equations with impulsive delay conditions. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209 |
The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.
Nonlinear stochastic differential equations play a very important role in formulation and analysis in mechanical, electrical, control engineering, physical sciences, economic and social sciences. Recently, stochastic fractional differential equations have been considered greatly by research community in various aspects due to its salient features for real world problems ([1,2,3,4,5,6]). Also, differential systems with impulses become an important area and many interesting works have been reported in ([7,8,9]). The Sobolev differential system is typically visible in the mathematical structure of numerous physical processes, such as fluid flow through cracked rocks and thermodynamics. Controllability problem for different kinds of fractional dynamical systems have been studied. The control hypothesis is an important area of mathematics that deals with the design and evaluation of control mechanisms. Controllability has had a significant impact on the development of modern mathematical control theory. Control system analysis and design frequently use the problem of dynamical system controllability. In recent years, fractional-order control systems defined by fractional-order differential equations have attracted a lot of attention ([10,11,12,13]) and the references therein.There are many interesting results on the existence and uniqueness of mild solutions for a class of Sobolev type fractional evolution equations [14].
According to the aforementioned literature review, the existence and exact controllability of the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type have not been thoroughly investigated. Because of this, we think about the existence solution and controllability for the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form
{Dq,ȷ0+[Zx(t)+G(t,x(ϑ1(t))]=Ax(t)+f(t,x(ϑ2(t)),∫t0h(t,s)g1(s,x(ϑ3(s)))ds)+σ((t,x(ϑ4(t)),∫t0h(t,s)g2(s,x(ϑ5(s)))ds)dωdt,t∈(si,ti+1],i∈[0,m],x(t)=ξi(t,x(t)),t∈(ti,si],i∈[1,m],I(1−q)(1−ȷ)0+x(0)=x0, | (1.1) |
where Dq,ȷ0+ is the Hilfer fractional derivative, 0≤q≤1, 0<ȷ<1, the state x(⋅) takes values in a separable Hilbert space X with inner product ⟨⋅,⋅⟩ and norm ‖⋅‖. The symbol A and Z are linear operators on X. Time interval J=(0,b] where, ti,si are fixed number satisfying 0=s0<t1≤s1≤t2<…<sm−1<tm≤sm≤tm+1=b and ξi is noninstataneous impulsive function for all i=1,2,…,m, ϑi(t):J→J, i=1,2,3,4,5, are continuous functions. Let K be another separable Hilbert space with inner product ⟨⋅,⋅⟩K and norm ‖⋅‖K. Suppose {ω(t)}t≥0 is given K-valued Wiener process with a finite trace nuclear covariance operator Q≥0. We are also employing the same notation ‖⋅‖ for the norm L(K,X), where L(K,X) denotes the space of all bounded linear operators from K into X. Also, h:J×J→R is a continuous function and the mappings G:J×X→X, f:J×X×X→X, σ:J×X×X→LQ(K,X), g1:J×X→X and g2:J×X→X are nonlinear functions. Here LQ(K,X) denotes the space of all Q-Hilbert Schmidt operator from K into X.
To the best of our knowledge, there is no work reported on existence solution and controllability for nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form (1.1). Thus, we will make the first attempt to study such problem in this paper. The presented work can be summarized as following:
Section 2 introduces some basic definitions and lemmas that will help you prove the important points. In Section 3, we show that mild solutions of nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneousimpulsive conditionsexist and are unique. In Section 4, we prove that nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive circumstances are controllable. In the final Section 5, we consider an example to verify the theoretical results. The work is ended by Section 6, which is the conclusion.
In this section, some definitions and results are given which will be used throughout this paper.
Definition 2.1. [15] The fractional integral operator of order ȷ>0 for a function f can be defined as
Iȷf(t)=1Γ(ȷ)∫t0f(s)(t−s)1−ȷds,t>0, |
where Γ(⋅) is the Gamma function.
Definition 2.2. [16] The Hilfer fractional derivative of order 0≤q≤1 and 0<ȷ<1 is defined as
Dq,ȷ0+f(t)=Iq(1−ȷ)0+ddtI(1−q)(1−ȷ)0+f(t). |
Let (Ω,Υ,P) be a complete probability space furnished with complete family of right continuous increasing sub σ-algebras {Υt:t∈J} satisfying Υt⊂Υ. An X-valued random variable is an Υ- measurable function x(t):Ω→X and a collection of random variables Π={x(t,ω):Ω→X|t∈J} is called a stochastic process. Usually we suppress the dependence on ω∈Ω and write x(t) instead of x(t,ω) and x(t):J→X in the place of Π. Let βn(t)(n=1,2,...) be a sequence of real valued one-dimensional standard Brownian motions mutually independent over (Ω,Υ,P). Set
ω(t)=∞∑n=1√λnβn(t)en,t≥0, |
where λn,(n=1,2,...) are nonnegative real numbers and {en}(n=1,2,...) is a complete orthonormal basis in K. Let Q∈L(K,K) be an operator defined by Qen=λnen with finite Tr(Q)=∑∞n=1λn<∞, (Tr denotes the trace of the operator). Then the above K-valued stochastic process ω(t) is called Q-Wiener process.
We assume that Υt=σ{ω(s):0≤s≤t} is the σ-algebra generated by ω. For Ψ∈L(K,X) we define ∥Ψ∥2Q=Tr(ΨQΨ∗)=∑∞n=1∥√λnΨen∥2. If ∥Ψ∥2Q<∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,X) denote the space of all Q-Hilbert-Schmidt operators Ψ:K→X. The completion LQ(K,X) of L(K,X) with respect to the topology induced by the norm ‖⋅‖Q where ‖Ψ‖2Q=⟨Ψ,Ψ⟩ is a Hilbert space with the above norm topology.
The collection of all strongly-measurable, square-integrable, X-valued random variables, denoted by L2(Ω,X) is a Banach space equipped with norm ‖x(⋅)‖L2(Ω,X)=(E‖x(⋅,ω)‖2)12, where the expectation, E is defined by E(x)=∫Ωx(ω)dP.
Let C(J,L2(Ω,X)) be the Banach space of all continuous maps from J into L2(Ω,X) satisfying the condition supt∈JE‖x(t)‖2<∞. Define Y=Cq,ȷ((0,b],L2(Ω,X))={x:x∈C((0,b],L2(Ω,X)):limt→0+t(1−q)(1−ȷ)} endowed with the norm ‖⋅‖Y=(supt∈(0,b]E‖t(1−q)(1−ȷ)x(t)‖2)12.
Obviously, Y is a Banach space.
Introduce the set Br={x∈Y:‖x‖2Y≤r}, where r>0.
The operators A:D(A)⊂X→X and Z:D(Z)⊂X→X satisfy the following hypotheses:
(H1) A and Z are closed linear operators.
(H2) D(Z)⊂D(A) and Z is bijective.
(H3) Z−1:X→D(Z) is continuous. Here, (H1) and (H2) together with the closed graph theorem imply the boundedness of the linear operator AZ−1:X→X.
(H4) For each t∈J and for λ∈ρ(AZ−1), the resolvent of AZ−1, the resolvent R(λ,AZ−1) is compact operator.
Lemma 2.3. [17] Let T(t) be a uniformly continuous semigroup generated by A. If the resolvent set R(λ,A) of A is compact for every λ∈ρ(A), then T(t) is a compact semigroup.
From the above fact, AZ−1 generates a compact semigroup {S(t),t>0} in X, which means that there exists M>1 such that supt∈J‖S(t)‖≤M. We suppose that 0∈ρ(AZ−1), the resolvent set of AZ−1 and ‖S(t)‖≤M for some constant M≥1 and every t>0. We define the fractional power (AZ−1)−γ by
(AZ−1)−γ=1Γ(γ)∫∞0tγ−1S(t)dt,γ>0. |
For γ∈(0,1], (AZ−1)γ is a closed linear operator on its domain D((AZ−1)γ). Furthermore, the subspace D((AZ−1)γ) is dense in X. We will introduce the following basic properties of (AZ−1)γ.
Theorem 2.4. (see [18]) The following results hold.
(i) Let 0<γ≤1, then Xγ:=D((AZ−1)γ) is a Banach space with the norm ‖x‖γ=‖(AZ−1)γx‖, x∈Xγ.
(ii) If 0<β<γ≤1, then D((AZ−1)γ)↪D((AZ−1)β) and the embedding is compact whenever the resolvent operator of (AZ−1) is compact.
(iii) For every 0<γ≤1, there exists a positive constant Cγ such that
‖(AZ−1)γS(t)‖≤Cγtγ,0<t≤b. |
For x∈X, we define two families of operators {Sq,ȷ(t):t>0} and {Pȷ(t):t>0} by
Sq,ȷ(t)=Iq(1−ȷ)0+Pȷ(t),Pȷ(t)=tȷ−1Tȷ(t),Tȷ(t)=∫∞0ȷθΨȷ(θ)S(tȷθ)dθ, | (2.1) |
where
Ψȷ(θ)=∞∑n=1(−θ)n−1(n−1)!Γ(1−nȷ),0<ȷ<1,θ∈(0,∞), | (2.2) |
is a function of Wright-type which satisfies
∫∞0θτΨȷ(θ)dθ=Γ(1+τ)Γ(1+ȷτ), for θ≥0. |
Lemma 2.5. ([19], Propositions 2.15–2.17) The operators Sq,ȷ and Pȷ have the following properties.
(i) {Pȷ(t):t>0} is continuous in the uniform operator topology.
(ii) For any fixed t>0,Sq,ȷ(t) and Pȷ(t) are linear and bounded operators, and
‖Pȷ(t)x‖≤Mtȷ−1Γ(ȷ)‖x‖,‖Sq,ȷ(t)x‖≤Mt(q−1)(1−ȷ)Γ(q(1−ȷ)+ȷ)‖x‖. | (2.3) |
(iii) {Pȷ(t):t>0} and {Sq,ȷ(t):t>0} are strongly continuous.
By Theorem 2.4 and Lemma 2.5, we have
Lemma 2.6. For any x∈X, β∈(0,1) and δ∈(0,1], we have
(AZ−1)Tȷ(t)x=(AZ−1)1−βTȷ(t)(AZ−1)βx,0<t≤b, |
and
‖(AZ−1)δTȷ(t)x‖≤ȷCδΓ(2−δ)tδȷΓ(1+ȷ(1−δ))‖x‖,0<t≤b. |
Lemma 2.7. [20] (Burkholder-Davis-Gundy inequalities) Let T>0 and (Mt)0≤t≤T be a continuous local martingale such that M0=0. For every 0<p<∞, there exist universal constants cp and Cp, independent of T and (Mt)0≤t≤T such that cpE(⟨M⟩p2T)≤E((sup0≤t≤T|Mt|)p)≤CpE(⟨M⟩p2T).
In this section, we study the existence and uniqueness of mild solution for the nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition of the form (1.1).
Definition 3.1. (see [19]) An Υt-adapted stochastic process x(t):J→X is a mild solution of the system (1.1) if the function AZ−1Pȷ(t−s)G(s,x(ϑ1(s)),s∈(0,b) is integrable on (0,b) and the following integral equation is verified:
x(t)=Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]−Z−1G(t,x(ϑ1(t))+∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(0,t1],x(t)=ξi(t,x(t)),t∈(ti,si],i=1,2,…,m,x(t)=Z−1Sq,ȷ(t−si)ξi(si,x(si))−Z−1G(t,x(ϑ1(t))+∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(si,ti+1],i=1,2,…,m. | (3.1) |
In this paper we need the following assumptions.
(H5) (i) The function G:J×X→X is continuous and there exists constants K1>0, K2>0 such that for t∈J, ϑ1(t)∈X we have
E‖(AZ−1)βG(t,x1(ϑ1(t)))−(AZ−1)βG(t,x2(ϑ1(t)))‖2≤K1E‖x1(ϑ1(t))−x2(ϑ1(t))‖2,K2=E‖(AZ−1)βG(t,0)‖2. |
(ii) The function f:J×X×X→X is continuous and there exists constants N1>0, N2>0 such that for t∈J, ϑ2(t),v1(t),v2(t)∈X, we have
E‖f(t,x1(ϑ2(t)),v1(t))−f(t,x2(ϑ2(t)),v2(t))‖2≤N1[E‖x1(ϑ2(t))−x2(ϑ2(t))‖2+E‖v1(t)−v2(t)‖2],N2=E‖f(t,0,0)‖2. |
(iii) The function σ:J×X×X→LQ(K,X) is continuous and there exists constants C1>0, C2>0 such that for t∈J, ϑ4(t),y1(t),y2(t)∈X, we have
E‖σ(t,x1(ϑ4(t)),y1(t))−σ(t,x2(ϑ4(t)),y2(t))‖2Q≤C1[E‖x1(ϑ4(t))−x2(ϑ4(t))‖2+E‖y1(t)−y2(t)‖2],C2=E‖σ(t,0,0)‖2Q. |
(iv) The functions ξi:(ti,si]×X→X are continuous and there exist constants C7,C8>0, such that for all t∈(ti,si],i=1,2,…,m, x, y∈X, we have
E‖ξi(t,x)−ξi(t,y)‖2≤C7E‖x−y‖2,C8=‖ξi(t,0)‖2. |
(H6) (i) g1:J×X→X is continuous and there exist constants C3>0, C4>0 such that for t∈J and ϑ3(t)∈X, we have
E‖g1(t,x1(ϑ3(t)))−g1(t,x2(ϑ3(t)))‖2≤C3E‖x1(ϑ3(t))−x2(ϑ3(t))‖2,C4=E‖g(t,0)‖2. |
(ii) g2:J×X→X is continuous and there exist constants C5>0, C6>0 such that for t∈J and ϑ5(t)∈X, we have
E‖g2(t,x1(ϑ5(t)))−g2(t,x2(ϑ3(t)))‖2≤C5E‖x1(ϑ3(t))−x2(ϑ3(t))‖2,C6=E‖g2(t,0)‖2. |
(H7) There exists a constant C such that E|h(t,s)|2≤C for (t,s)∈J×J.
(H8) There exists a constant q such that for all x1,x2∈X,
E‖x1(ϑi(t))−x2(ϑi(t))‖2≤qE‖x1(t)−x2(t)‖2, for i=1,2,3,4,5. |
(H9) There exists a constant r>0 such that
25M2‖Z−1‖2Γ2(q(1−ȷ)+ȷ)[‖Z‖2E‖x0‖2+M20(K1E‖x0‖2+K2)+(rC7+C8)]+b2(1−q)(1−ȷ)(rC7+C8)+25‖Z−1‖2[rK1+K2][M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25‖Z−1‖2M2b2−2q(1−ȷ)ȷ2Γ2(ȷ)δ1≤r, |
where
δ1=(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2),M0=‖(AZ−1)−β‖. |
Theorem 3.2. If the hypotheses (H1)–(H9) are satisfied, then the system (1.1) has a mild solution on J provided that
ζ:=25‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q−1)(1−ȷ)C7Γ2(q(1−ȷ)+ȷ)}+C7<1. |
Proof. Consider the operator Φ on Y defined as follows:
Φx(t)=Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]−Z−1G(t,x(ϑ1(t))+∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(0,t1],Φx(t)=ξi(t,x(t)),t∈(ti,si],i=1,2,…,m,Φx(t)=Z−1Sq,ȷ(t−si)ξi(si,x(si))−Z−1G(t,x(ϑ1(t))+∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(si,ti+1],i=1,2,…,m. |
It will be shown that the operator Φ has a fixed point. This fixed point is then a mild solution of a system (1.1). For x∈Br, we show that Φ maps Br into itself. From Lemmas 2.5–2.7 together with Hölder inequality, we have for t∈(0,t1]
‖Φx‖2Y≤25supt∈Jt2(1−q)(1−ȷ){E‖Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]‖2+E‖Z−1G(t,x(ϑ1(t)))‖2+E‖∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+E‖∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+E‖∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q}≤25M2‖Z−1‖2Γ2(q(1−ȷ)+ȷ)[‖Z‖2E‖x0‖2+M20(K1E‖x0‖2+K2)]+25‖Z−1‖2[rK1+K2][M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25‖Z−1‖2M2b2−2q(1−ȷ)δ1ȷ2Γ2(ȷ)≤r, |
for t∈(ti,si]
‖Φx‖2Y≤supt∈Jt2(1−q)(1−ȷ)E‖ξi(t,x(t))‖2≤b2(1−q)(1−ȷ)(rC7+C8)≤r, |
and for t∈(si,ti+1]
‖Φx‖2Y≤25supt∈Jt2(1−q)(1−ȷ){E‖Z−1Sq,ȷ(t−si)ξi(si,x(si))‖2+E‖Z−1G(t,x(ϑ1(t)))‖2+E‖∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+E‖∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+E‖∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q}≤25M2‖Z−1‖2Γ2(q(1−ȷ)+ȷ)(rC7+C8)+25‖Z−1‖2[rK1+K2][M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+25‖Z−1‖2M2b2−2q(1−ȷ)δ1ȷ2Γ2(ȷ)≤r. |
Thus Φ maps Br into itself.
We show that (Φx)(t) is continuous on [0,b] for any x∈Br. Let 0<t≤b and ϵ>0 be sufficiently small, then for t∈(0,t1]
‖(Φx)(⋅+ϵ)−(Φx)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φx)(t+ϵ)−(Φx)(t)‖2≤5supt∈Jt(1−q)(1−ȷ)E‖Z−1(Sq,ȷ(t+ϵ)−Sq,ȷ(t))[Zx0+G(0,x(0))]|2+5supt∈Jt(1−q)(1−ȷ)E‖Z−1G(t+ϵ,x(ϑ1(t+ϵ)))−Z−1G(t,x(ϑ1(t)))‖2+5supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵ0Z−1AZ−1Pȷ(t+ϵ−s)G(s,x(ϑ1(s)))ds−∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+5supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵ0Z−1Pȷ(t+ϵ−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+5supt∈Jt(1−q)(1−ȷ)‖∫t+ϵ0Z−1Pȷ(t+ϵ−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)−∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q, | (3.2) |
for t∈(ti,si]
‖(Φx)(⋅+ϵ)−(Φx)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φx)(t+ϵ)−(Φx)(t)‖2≤supt∈Jt2(1−q)(1−ȷ)E‖ξi(t+ϵ,x(t+ϵ))−ξi(t,x(t))‖2, | (3.3) |
and for t∈(si,ti+1]
‖(Φx)(⋅+ϵ)−(Φx)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φx)(t+ϵ)−(Φx)(t)‖2≤5supt∈Jt(1−q)(1−ȷ)E‖Z−1(Sq,ȷ(t+ϵ−si)−Sq,ȷ(t−si))ξi(si,x(si))‖2+5supt∈Jt(1−q)(1−ȷ)E‖Z−1G(t+ϵ,x(ϑ1(t+ϵ)))−Z−1G(t,x(ϑ1(t)))‖2+5supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵsiZ−1AZ−1Pȷ(t+ϵ−s)G(s,x(ϑ1(s)))ds−∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+5supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵsiZ−1Pȷ(t+ϵ−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+5supt∈Jt(1−q)(1−ȷ)‖∫t+ϵsiZ−1Pȷ(t+ϵ−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)−∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q. | (3.4) |
Clearly, the right hand sides of (3.2)–(3.4) are tends to zero as ϵ→0. Hence, (Φx)(t) is continuous on [0,b].
Next for x1,x2∈Br, we show that Φ is a contraction mapping. From Lemmas 2.5–2.7 together with Hölder inequality, we obtain for t∈(0,t1]
E‖(Φx1)(t)−(Φx2)(t)‖2≤25‖Z−1‖2{‖(AZ−1)−β‖2E‖(AZ−1)βG(t,x1(ϑ1(t)))−(AZ−1)βG(t,x2(ϑ1(t)))‖2+E‖∫t0(t−s)ȷ−1(AZ−1)1−βTȷ(t−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds‖2+E‖∫t0Pȷ(t−s)[f(s,x1(ϑ2(s)),∫s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)−f(s,x2(ϑ2(s)),∫s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds‖2+E‖∫t0Pȷ(t−s)[σ(s,x1(ϑ4(s)),∫s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)−σ(s,x2(ϑ4(s)),∫s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)‖2}≤25‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]}E‖x1(t)−x2(t)‖2, | (3.5) |
for t∈(ti,si]
E‖(Φx1)(t)−(Φx2)(t)‖2≤E‖ξi(t,x1(t))−ξi(t,x2(t))‖2≤C7E‖x1(t)−x2(t)‖2, | (3.6) |
and for t∈(si,ti+1]
E‖(Φx1)(t)−(Φx2)(t)‖2≤25‖Z−1‖2{E‖Sq,ȷ(t−si)(ξi(si,x1(si))−ξi(si,x2(si)))‖2+‖(AZ−1)−β‖2E‖(AZ−1)βG(t,x1(ϑ1(t)))−(AZ−1)βG(t,x2(ϑ1(t)))‖2+E‖∫tsi(t−s)ȷ−1(AZ−1)1−βTȷ(t−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds‖2+E‖∫tsiPȷ(t−s)[f(s,x1(ϑ2(s)),∫s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)−f(s,x2(ϑ2(s)),∫s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds‖2+E‖∫tsiPȷ(t−s)[σ(s,x1(ϑ4(s)),∫s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)−σ(s,x2(ϑ4(s)),∫s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)‖2}≤25‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q−1)(1−ȷ)C7Γ2(q(1−ȷ)+ȷ)}E‖x1(t)−x2(t)‖2. | (3.7) |
Therefore, by combining (3.5)–(3.7), we get
supt∈Jt2(1−q)(1−ȷ)E‖(Φx1)(t)−(Φx2)(t)‖2≤ζsupt∈Jt2(1−q)(1−ȷ)E‖x1(t)−x2(t)‖2. |
This implies that
‖Φx1−Φx2‖2Y≤ζ‖x1−x2‖2Y. |
Then, Φ is a contraction mapping and hence there exists unique fixed point x∈Br such that Φx=x. Hence, any fixed point of Φ is a mild solution of (1.1) on J. The proof is completed.
In this section, we study the controllability of the following Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive condition:
{Dq,ȷ0+[Zx(t)+G(t,x(ϑ1(t)))]=Ax(t)+Bu(t)+f(t,x(ϑ2(t)),∫t0h(t,s)g1(s,x(ϑ3(s)))ds)+σ(t,x(ϑ4(t)),∫t0h(t,s)g2(s,x(ϑ5(s)))ds)dωdt,t∈(si,ti+1],i∈[0,m]x(t)=ξi(t,x(t)),t∈(ti,si],i∈[1,m]I(1−q)(1−ȷ)0+x(0)=x0, | (4.1) |
where B:U→X is a bounded linear operator and the control function u∈L2(J,U), the Hilbert space of admissible control functions with U a Hilbert space.
Definition 4.1. An Υt-adapted stochastic process x(t):J→X is a mild solution of the system (4.1) if the function AZ−1Pȷ(t−s)G(s,x(ϑ1(s)),s∈(0,b) is integrable on (0,b) and the following integral equation is verified:
x(t)=Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]−Z−1G(t,x(ϑ1(t))+∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫t0Z−1Pȷ(t−s)Bu(s)ds+∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(0,t1]x(t)=ξi(t,x(t)),t∈(ti,si],i=1,2,…,mx(t)=Z−1Sq,ȷ(t−si)ξi(si,x(si))−Z−1G(t,x(ϑ1(t))+∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫tsiZ−1Pȷ(t−s)Bu(s)ds+∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(si,ti+1],i=1,2,…,m. | (4.2) |
Definition 4.2. The system (4.1) is said to be controllable on J, if for every x0,x1∈X, there exists a control u∈L2(J,U) such that the mild solution x(t) of the system (4.1) satisfies x(b)=x1, where x1 and b are the preassigned terminal state and time respectively.
To establish the result, we need the following additional hypotheses
(H10) The linear operator W from U into X defined by
Wu=∫b0Z−1Pȷ(b−s)Bu(s)ds |
has an inverse bounded operator W−1 which takes values in L2(J,U)∖kerW, where the kernel space of W is defined by kerW={x∈L2(J,U):Wx=0} and B is bounded operator.
(H11) There exists a constant r>0 such that
[δ3+δ4Γ2(q(1−ȷ)+ȷ)+(M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+36‖Z−1‖2M2b2−2q(1−ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷ‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)]+36M2b2−2q(1−ȷ)‖Z−1‖2‖B‖2‖W−1‖2E‖x1‖2ȷ2Γ2(ȷ)+b2(1−q)(1−ȷ)(rC7+C8)≤r, |
where
δ2=36‖Z−1‖2[rK1+K2],δ3=36M2‖Z−1‖2[‖Z‖2E‖x0‖2+M20(K1E‖x0‖2+K2)],δ4=36M2‖Z−1‖2(rC7+C8). |
Theorem 4.3. If the hypotheses (H1)–(H8), (H10) and (H11) are satisfied then, the system (4.1) is controllable on J. provided that
ϱ:=36‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q−1)(1−ȷ)C7Γ2(q(1−ȷ)+ȷ)}{1+36M2b2ȷ‖Z−1‖4‖B‖2‖W−1‖2ȷ2Γ2(ȷ)}+c7<1. |
Proof. Using the assumption (H10), define the control
u(t)=W−1{x1−Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]+Z−1G(b,x(ϑ1(b)))−∫b0Z−1AZ−1Pȷ(b−s)G(s,x(ϑ1(s)))ds−∫b0Z−1Pȷ(b−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫b0Z−1Pȷ(b−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)},t∈(0,t1],u(t)=W−1{x1−Z−1Sq,ȷ(t−si)ξi(si,x(si))+Z−1G(b,x(ϑ1(b)))−∫bsiZ−1AZ−1Pȷ(b−s)G(s,x(ϑ1(s)))ds−∫bsiZ−1Pȷ(b−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫bsiZ−1Pȷ(b−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)},t∈(si,ti+1]. |
Consider the operator Φ∗ on Y defined as follows:
Φ∗x(t)=Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]−Z−1G(t,x(ϑ1(t))+∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫t0Z−1Pȷ(t−s)Bu(s)ds+∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(0,t1],Φ∗x(t)=ξi(t,x(t)),t∈(ti,si],i=1,2,…,m,Φ∗x(t)=Z−1Sq,ȷ(t−si)ξi(si,x(si))−Z−1G(t,x(ϑ1(t))+∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds+∫tsiZ−1Pȷ(t−s)Bu(s)ds+∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds+∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s),t∈(si,ti+1],i=1,2,…,m. |
It will be shown that the operator Φ∗ has a fixed point. This fixed point is then a mild solution of a system (4.1). For x∈Br, we show that Φ∗ maps Br into itself. From Lemmas 2.5–2.7 together with Hölder inequality, yields for t∈(0,t1]
‖Φ∗x‖2Y≤36supt∈Jt2(1−q)(1−ȷ){E‖Z−1Sq,ȷ(t)[Zx0+G(0,x(0))]‖2+E‖Z−1G(t,x(ϑ1(t))‖2+E‖∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds‖2+E‖∫t0Z−1Pȷ(t−s)Bu(s)ds‖2+E‖∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+E‖∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q |
≤{36M2‖Z−1‖2Γ2(q(1−ȷ)+ȷ)[‖Z‖2E‖x0‖2+M20(K1E‖x0‖2+K2)]+36‖Z−1‖2[rK1+K2][M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+36‖Z−1‖2M2b2−2q(1−ȷ)ȷ2Γ2(ȷ)[(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2)]}[1+M2b2ȷ‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)]+36M2b2−2q(1−ȷ)‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)E‖x1‖2=[δ3Γ2(q(1−ȷ)+ȷ)+(M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+49‖Z−1‖2M2b2−2q(1−ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷ‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)]+49M2b2−2q(1−ȷ)‖Z−1‖2‖B‖2‖W−1‖2E‖x1‖2ȷ2Γ2(ȷ)≤r. |
for t∈(ti,si]
‖Φ∗x‖2Y≤supt∈Jt2(1−q)(1−ȷ)E‖ξi(t,x(t))‖2≤b2(1−q)(1−ȷ)(rC7+C8)≤r, |
and for t∈(si,ti+1]
‖Φ∗x‖2Y≤36supt∈Jt2(1−q)(1−ȷ){E‖Z−1Sq,ȷ(t−si)ξi(si,x(si))‖2+E‖Z−1G(t,x(ϑ1(t))‖2+E‖∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s))ds‖2+E‖∫tsiZ−1Pȷ(t−s)Bu(s)ds‖2+E‖∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+E‖∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q |
≤{36M2‖Z−1‖2Γ2(q(1−ȷ)+ȷ)(rC7+C8)+36‖Z−1‖2[rK1+K2][M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ)]+36‖Z−1‖2M2b2−2q(1−ȷ)ȷ2Γ2(ȷ)[(N1(r+bC(rC3+C4))+N2)+Tr(Q)(C1(r+bC(rC5+C6))+C2)]}[1+M2b2ȷ‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)]+36M2b2−2q(1−ȷ)‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)E‖x1‖2=[δ4Γ2(q(1−ȷ)+ȷ)+(M20+M2C21−βb2βȷ+2(1−q)(1−ȷ)Γ2(β)Γ2(1+ȷβ)Γ2(ȷ))δ2+49‖Z−1‖2M2b2−2q(1−ȷ)δ1ȷ2Γ2(ȷ)]×[1+M2b2ȷ‖Z−1‖2‖B‖2‖W−1‖2ȷ2Γ2(ȷ)]+49M2b2−2q(1−ȷ)‖Z−1‖2‖B‖2‖W−1‖2E‖x1‖2ȷ2Γ2(ȷ)≤r. |
Thus Φ∗ maps Br into itself.
We show that (Φ∗x)(t) is continuous on [0,b] for any x∈Br. Let 0<t≤b and ϵ>0 be sufficiently small, then, then for t∈(0,t1]
‖(Φ∗x)(⋅+ϵ)−(Φ∗x)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φ∗x)(t+ϵ)−(Φ∗x)(t)‖2≤6supt∈Jt(1−q)(1−ȷ)E‖Z−1(Sq,ȷ(t+ϵ)−Sq,ȷ(t))[Zx0+G(0,x(0))]|2+6supt∈Jt(1−q)(1−ȷ)E‖Z−1G(t+ϵ,x(ϑ1(t+ϵ)))−Z−1G(t,x(ϑ1(t)))‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵ0Z−1AZ−1Pȷ(t+ϵ−s)G(s,x(ϑ1(s)))ds−∫t0Z−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵ0Z−1Pȷ(t+ϵ−s)Bu(s)ds−∫t0Z−1Pȷ(t−s)Bu(s)ds‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵ0Z−1Pȷ(t+ϵ−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫t0Z−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+6supt∈Jt(1−q)(1−ȷ)‖∫t+ϵ0Z−1Pȷ(t+ϵ−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)−∫t0Z−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q, | (4.3) |
for t∈(ti,si]
‖(Φ∗x)(⋅+ϵ)−(Φ∗x)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φ∗x)(t+ϵ)−(Φ∗x)(t)‖2≤supt∈Jt2(1−q)(1−ȷ)E‖ξi(t+ϵ,x(t+ϵ))−ξi(t,x(t))‖2 | (4.4) |
and for t∈(si,ti+1]
‖(Φ∗x)(⋅+ϵ)−(Φ∗x)(⋅)‖2Y=supt∈Jt(1−q)(1−ȷ)E‖(Φ∗x)(t+ϵ)−(Φ∗x)(t)‖2≤6supt∈Jt(1−q)(1−ȷ)E‖Z−1(Sq,ȷ(t+ϵ−si)−Sq,ȷ(t−si))ξi(si,x(si))‖2+6supt∈Jt(1−q)(1−ȷ)E‖Z−1G(t+ϵ,x(ϑ1(t+ϵ)))−Z−1G(t,x(ϑ1(t)))‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵsiZ−1AZ−1Pȷ(t+ϵ−s)G(s,x(ϑ1(s)))ds−∫tsiZ−1AZ−1Pȷ(t−s)G(s,x(ϑ1(s)))ds‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵsiZ−1Pȷ(t+ϵ−s)Bu(s)ds−∫tsiZ−1Pȷ(t−s)Bu(s)ds‖2+6supt∈Jt(1−q)(1−ȷ)E‖∫t+ϵsiZ−1Pȷ(t+ϵ−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds−∫tsiZ−1Pȷ(t−s)f(s,x(ϑ2(s)),∫s0h(s,τ)g1(τ,x(ϑ3(τ)))dτ)ds‖2+6supt∈Jt(1−q)(1−ȷ)‖∫t+ϵsiZ−1Pȷ(t+ϵ−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)−∫tsiZ−1Pȷ(t−s)σ(s,x(ϑ4(s)),∫s0h(s,τ)g2(τ,x(ϑ5(τ)))dτ)dω(s)‖2Q, | (4.5) |
Clearly, the right hand sides of (4.3)–(4.5) are tends to zero as ϵ→0. Hence, (Φ∗x)(t) is continuous on [0,b].
Next for x1,x2∈Br, we show that Φ∗ is a contraction mapping. From Lemmas 2.5–2.7 together with Hölder inequality, we obtain for t∈(0,t1]
E‖(Φ∗x1)(t)−(Φ∗x2)(t)‖2≤36‖Z−1‖2{‖(AZ−1)−β‖2E‖(AZ−1)βG(t,x1(ϑ1(t)))−(AZ−1)βG(t,x2(ϑ1(t)))‖2+E‖∫t0(t−s)ȷ−1(AZ−1)1−βTȷ(t−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds‖2+E‖∫t0Pȷ(t−s)[f(s,x1(ϑ2(s)),∫s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)−f(s,x2(ϑ2(s)),∫s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds‖2+E‖∫t0Pȷ(t−s)[σ(s,x1(ϑ4(s)),∫s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)−σ(s,x2(ϑ4(s)),∫s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)‖2}+36E‖∫t0Z−1Pȷ(t−s)BW−1{Z−1(AZ−1)−β[(AZ−1)βG(b,x1(ϑ1(b)))−(AZ−1)βG(b,x2(ϑ1(b)))]−∫b0Z−1(b−s)ȷ−1(AZ−1)1−βTȷ(b−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds−∫b0Z−1Pȷ(b−τ)[f(τ,x1(ϑ2(τ)),∫τ0h(τ,η)g1(η,x1(ϑ3(η)))dη)−f(τ,x2(ϑ2(τ)),∫τ0h(τ,η)g1(η,x2(ϑ3(η)))dη)]dτ−∫b0Z−1Pȷ(b−τ)[σ(τ,x1(ϑ4(τ)),∫τ0h(τ,η)g2(η,x1(ϑ5(η)))dη)−σ(τ,x2(ϑ4(τ)),∫τ0h(τ,η)g2(η,x2(ϑ5(η)))dη)dω(τ)]}ds‖2≤36‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]}×{1+49M2b2ȷ‖Z−1‖4‖B‖2‖W−1‖2ȷ2Γ2(ȷ)}E‖x1(t)−x2(t)‖2, | (4.6) |
for t∈(ti,si]
E‖(Φ∗x1)(t)−(Φ∗x2)(t)‖2≤E‖ξi(t,x1(t))−ξi(t,x2(t))‖2≤C7E‖x1(t)−x2(t)‖2, | (4.7) |
and for t∈(si,ti+1]
E‖(Φ∗x1)(t)−(Φ∗x2)(t)‖2≤36‖Z−1‖2{E‖Sq,ȷ(t−si)(ξi(si,x1(si))−ξi(si,x2(si)))‖2+‖(AZ−1)−β‖2E‖(AZ−1)βG(t,x1(ϑ1(t)))−(AZ−1)βG(t,x2(ϑ1(t)))‖2+E‖∫tsi(t−s)ȷ−1(AZ−1)1−βTȷ(t−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds‖2+E‖∫tsiPȷ(t−s)[f(s,x1(ϑ2(s)),∫s0h(s,τ)g1(τ,x1(ϑ3(τ)))dτ)−f(s,x2(ϑ2(s)),∫s0h(s,τ)g1(τ,x2(ϑ3(τ)))dτ)]ds‖2+E‖∫tsiPȷ(t−s)[σ(s,x1(ϑ4(s)),∫s0h(s,τ)g2(τ,x1(ϑ5(τ)))dτ)−σ(s,x2(ϑ4(s)),∫s0h(s,τ)g2(τ,x2(ϑ5(τ)))dτ)]dω(s)‖2}+36E‖∫tsiZ−1Pȷ(t−s)BW−1{−Z−1Sq,ȷ(b−si)(ξi(si,x1(si))−ξi(si,x2(si)))+Z−1(AZ−1)−β[(AZ−1)βG(b,x1(ϑ1(b)))−(AZ−1)βG(b,x2(ϑ1(b)))]−∫bsiZ−1(b−s)ȷ−1(AZ−1)1−βTȷ(b−s)[(AZ−1)βG(s,x1(ϑ1(s)))−(AZ−1)βG(s,x2(ϑ1(s)))]ds−∫bsiZ−1Pȷ(b−τ)[f(τ,x1(ϑ2(τ)),∫τ0h(τ,η)g1(η,x1(ϑ3(η)))dη)−f(τ,x2(ϑ2(τ)),∫τ0h(τ,η)g1(η,x2(ϑ3(η)))dη)]dτ−∫bsiZ−1Pȷ(b−τ)[σ(τ,x1(ϑ4(τ)),∫τ0h(τ,η)g2(η,x1(ϑ5(η)))dη)−σ(τ,x2(ϑ4(τ)),∫τ0h(τ,η)g2(η,x2(ϑ5(η)))dη)dω(τ)]}ds‖2≤36‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q−1)(1−ȷ)C7Γ2(q(1−ȷ)+ȷ)}{1+36M2b2ȷ‖Z−1‖4‖B‖2‖W−1‖2ȷ2Γ2(ȷ)}E‖x1(t)−x2(t)‖2, | (4.8) |
Therefore, by combining (4.6)–(4.8), we get
supt∈Jt2(1−q)(1−ȷ)E‖(Φ∗x1)(t)−(Φ∗x2)(t)‖2≤ϱsupt∈Jt2(1−q)(1−ȷ)E‖x1(t)−x2(t)‖2. |
This implies that
‖Φ∗x1−Φ∗x2‖2Y≤ϱ‖x1−x2‖2Y. |
Then, Φ∗ is a contraction mapping and hence there exists unique fixed point x∈Br such that Φ∗x(t)=x(t). Therefore the system (4.1) has a mild solution satisfying x(b)=x1. Thus, system (4.1) is controllable on J.
In this section, we present an example to illustrate our main result. Let us consider the following Sobolev-type Hilfer fractional stochastic partial differential equation with noninstantaneous impulsive condition
{D13,350+[x(t,y)−xyy(t,y)+˜G(t,x(t−ρ1,y))]=∂2x(t,y)∂y2+υ(t,y)+x(t−ρ2,y)+∫t0sinx(s−ρ3,y)ds+x(t−ρ4,y)+∫t0ex(s−ρ5,y)dω(s),t∈(0,15]⋃(25,35]⋃(44,1],0≤z≤π,x(t,0)=x(t,π)=0,t∈(0,1],x(t,y)=15e−(t−15)‖x(t,y)‖1+‖x(t,y)‖,t∈(15,25],0≤y≤π,x(t,y)=35e−(t−35)‖x(t,y)‖1+‖x(t,y)‖,t∈(35,45],0≤y≤π,I4150+(x(0,y))=x0(y),0≤y≤π, | (5.1) |
where D13,350+ is the Hilfer fractional derivative of order q=13,ȷ=35.
Let X=U=L2([0,π]), define the operator Z:D(Z)⊂X→X and A:D(A)⊂X→X by Zx=x−xyy and Ax=xyy where domains D(Z) and D(A) are given by {x∈X:x,xy are absolutely continuous, xyy∈X,x(0)=x(π)=0}. Then A and Z can be written as
Ax=−∞∑n=1n2⟨x,xn⟩xn,x∈D(A),Zx=∞∑n=1(1+n2)⟨x,xn⟩xn,x∈D(Z). |
Furthermore, for x∈X we have
Z−1x=∞∑n=111+n2⟨x,xn⟩xn,AZ−1x=∞∑n=1−n21+n2⟨x,xn⟩xn. |
It is known that AZ−1 is self-adjoin and has the eigenvalues λn=−n2π2,n∈N, with the corresponding normalized eigenvectors en(℘)=√2sin(nπ℘). Furthermore, AZ−1 generates a uniformly strongly continuous semigroup of bounded linear operators S(t),t≥0, on X which is given by
S(t)x=∞∑n=1e−n21+n2t⟨x,xn⟩xn,x∈X, |
with ‖S(t)‖≤e−t≤1.
Moreover, the two operators S13,35(t) and P35(t) can be defined by
S13,35(t)x=35Γ(215)∫t0∫∞0θ(t−s)−1315s−25Ψ35(θ)T(s35θ)xdθds, |
P35(t)x=35∫∞0θt−25Ψ35(θ)T(s35θ)xdθ. |
Clearly,
‖P35(t)‖≤1Γ(35),‖S13,35(t)‖≤1Γ(1115). |
We define the bounded operator B:U→X by B=I.
Also, We define the following functions:
x(t)y=x(t,y),ξ1(t,x(t,y))=15e−(t−15)‖x(t,y)‖1+‖x(t,y)‖,ξ2(t,x(t,y))=35e−(t−35)‖x(t,y)‖1+‖x(t,y)‖,G(t,x(ϑ1(t)))(y)=˜G(t,x(t−ρ1,y)),∫t0h(t,s)g1(s,x(ϑ3(s))(y)ds=∫t0sinx(s−ρ3,y)ds,∫t0h(t,s)g2(s,x(ϑ5(s))(y)ds=∫t0ex(s−ρ5,y)dsf(t,x(ϑ2(t)),∫t0h(t,s)g1(s,x(ϑ3(s)))ds)(y)=x(t−ρ2,y)+∫t0sinx(s−ρ3,y)ds,σ(t,x(ϑ4(t)),∫t0h(t,s)g2(s,x(ϑ5(s)))ds)(y)=x(t−ρ4,y)+∫t0ex(s−ρ5,y)ds, |
where h(t,s)=1.
Hence, with the above choices, system (5.1) can be rewritten in the abstract form of (4.1). On the other hand, all the hypotheses of Theorem 4 are satisfied and
ϱ:=36‖Z−1‖2{[M20+M2C21−βb2βȷΓ2(β)Γ2(1+ȷβ)Γ2(ȷ)]qK1+M2b2ȷqȷ2Γ2(ȷ)[N1(1+bCC3)+C1Tr(Q)(1+bCC5)]+M2b2(q−1)(1−ȷ)C7Γ2(q(1−ȷ)+ȷ)}{1+36M2b2ȷ‖Z−1‖4‖B‖2‖W−1‖2ȷ2Γ2(ȷ)}+c7<1. |
Thus, we can conclude that the Sobolev-type Hilfer fractional stochastic partial differential inclusions with noninstantaneous impulsive condition (5.1) is controllable on (0,1].
In this paper, we show that there is a moderate solution for nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive in Hilbert space. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive circumstances, we established suitable controllability criteria. To demonstrate the acquired results, an example is given.
The author declares that they have no competing interests.
[1] | X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997. |
[2] | A. Atangana, S. I. Araz, Fractional stochastic differential equations: Applications to Covid-19 modeling, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0729-6 |
[3] |
F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson iumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528
![]() |
[4] |
H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021), 104666. https://doi.org/10.1016/j.rinp.2021.104666 doi: 10.1016/j.rinp.2021.104666
![]() |
[5] |
M. Adel, Numerical simulations for the variable order two-dimensional reaction sub diffusion equation: Linear and nonlinear, Fractals, 30 (2022), 2240019. https://doi.org/10.1142/S0218348X22400199 doi: 10.1142/S0218348X22400199
![]() |
[6] |
M. Adel, M. Elsaid, An efficient approach for solving fractional variable order reaction sub-diffusion equation base on Hermite formula, Fractals, 30 (2022), 2240020. https://doi.org/10.1142/S0218348X22400205 doi: 10.1142/S0218348X22400205
![]() |
[7] |
M. M. Khader, J. F. Gómez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method, Int. J. Circ. Theor. App., 49 (2021), 3266–3285. https://doi.org/10.1002/cta.3103 doi: 10.1002/cta.3103
![]() |
[8] | M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8062 |
[9] |
H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound Value Probl., 2020 (2020), 1–25. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0
![]() |
[10] |
J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322–332. https://doi.org/10.1016/j.jmaa.2004.01.050 doi: 10.1016/j.jmaa.2004.01.050
![]() |
[11] |
H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
![]() |
[12] |
P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order 1<q<2 with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213–235. https://doi.org/10.1007/s10883-015-9309-0 doi: 10.1007/s10883-015-9309-0
![]() |
[13] |
A. Chadha, S. N. Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control Syst., 24 (2018), 101–128. https://doi.org/10.1007/s10883-016-9348-1 doi: 10.1007/s10883-016-9348-1
![]() |
[14] |
H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarke's subdifferential, J. Inequal. Appl., 2019 (2019), 233. https://doi.org/10.1186/s13660-019-2184-6 doi: 10.1186/s13660-019-2184-6
![]() |
[15] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993. |
[16] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[17] | R. F. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-4224-6 |
[18] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, In: Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[19] |
H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
[20] |
I. Yaroslavtsev, Burkholder-Davis-Gundy inequalities in UMD banach spaces, Commun. Math. Phys., 379 (2020), 417–459. https://doi.org/10.1007/s00220-020-03845-7 doi: 10.1007/s00220-020-03845-7
![]() |
1. | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart, Correction: Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive, 2023, 8, 2473-6988, 9185, 10.3934/math.2023460 | |
2. | Ihteram Ali, Imtiaz Ahmad, Applications of the nonlinear Klein/Sinh-Gordon equations in modern physics: a numerical study, 2024, 4, 2767-8946, 361, 10.3934/mmc.2024029 | |
3. | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad, Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators, 2023, 8, 2473-6988, 30374, 10.3934/math.20231551 | |
4. | Vandana Yadav, Ramesh Kumar Vats, Ankit Kumar, An Investigation on the Approximate Controllability of Non-instantaneous Impulsive Hilfer Sobolev-Type Fractional Stochastic System Driven by the Rosenblatt Process and Poisson Jumps, 2025, 24, 1575-5460, 10.1007/s12346-025-01222-0 | |
5. | Zeeshan Afzal, Mansoor Alshehri, Error evaluation and stability analysis of numerical schemes in multiple sclerosis modeling, 2025, 16, 20904479, 103551, 10.1016/j.asej.2025.103551 |